PJ-YOLO: Prior-Knowledge and Joint-Feature-Extraction Based YOLO for Infrared Ship Detection
Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of...
Saved in:
Published in | Journal of marine science and engineering Vol. 13; no. 2; p. 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP50, mAP75, and mAP50:95 on the SFISD dataset, respectively. |
---|---|
AbstractList | Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP50, mAP75, and mAP50:95 on the SFISD dataset, respectively. Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP[sub.50], mAP[sub.75], and mAP[sub.50:95] on the SFISD dataset, respectively. |
Audience | Academic |
Author | Li, Chaofeng Fu, Guanghua Liu, Yongjie |
Author_xml | – sequence: 1 givenname: Yongjie surname: Liu fullname: Liu, Yongjie – sequence: 2 givenname: Chaofeng orcidid: 0000-0002-3236-3143 surname: Li fullname: Li, Chaofeng – sequence: 3 givenname: Guanghua orcidid: 0000-0002-1865-9271 surname: Fu fullname: Fu, Guanghua |
BookMark | eNpNUcFuEzEQtVCRKKU3PmAlrmyxx971mlspLaSNlErAAQnJmtrj4Cixg3ej0r_HaVDVmcOMnt57Gs17zY5STsTYW8HPpDT8w2ozkpAcOED_gh0D17oVUsDRs_0VOx3HFa81QC94f8x-3V63PxfzxcfmtsRc2puU79fkl9Rg8s11jmlqrwinXaH28u9U0E0xp-YTjuSbvbAJuTSzFAqWinz7HbfNZ5rokfaGvQy4Hun0_zxhP64uv198beeLL7OL83nrwMipNb3vhECPUuKggJu7wUmHMpDm4AMokqa788EoFYIhTpx7RR0QmU5pFPKEzQ6-PuPKbkvcYHmwGaN9BHJZWixTdGuy6DqDehCDA6kAwiDQEHgtlJBmCLp6vTt4bUv-s6Nxsqu8K6meb6XQQoCAnlfW2YG1xGoaU8j719T2tImuBhNixc8HMFqDUnvB-4PAlTyOhcLTmYLbfX72eX7yHzn6jJg |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY SOI DOA |
DOI | 10.3390/jmse13020226 |
DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2077-1312 |
ExternalDocumentID | oai_doaj_org_article_ac59a7818c23422f81a9e2d7141398f7 A829772440 10_3390_jmse13020226 |
GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY PMFND 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI PUEGO |
ID | FETCH-LOGICAL-c293t-96d511ada33a84209b8c3ca3fe702df24e395bdf944ff9e0e00d4e52ee9547a13 |
IEDL.DBID | BENPR |
ISSN | 2077-1312 |
IngestDate | Wed Aug 27 01:26:19 EDT 2025 Fri Jul 25 11:56:16 EDT 2025 Tue Jun 10 20:53:45 EDT 2025 Tue Jul 01 03:47:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-96d511ada33a84209b8c3ca3fe702df24e395bdf944ff9e0e00d4e52ee9547a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1865-9271 0000-0002-3236-3143 |
OpenAccessLink | https://www.proquest.com/docview/3171121260?pq-origsite=%requestingapplication% |
PQID | 3171121260 |
PQPubID | 2032377 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ac59a7818c23422f81a9e2d7141398f7 proquest_journals_3171121260 gale_infotracacademiconefile_A829772440 crossref_primary_10_3390_jmse13020226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of marine science and engineering |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
RelatedPersons | Liu, Timothy |
RelatedPersons_xml | – fullname: Liu, Timothy |
SSID | ssj0000826106 |
Score | 2.2887907 |
Snippet | Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 226 |
SubjectTerms | Accuracy Algorithms Brightness distribution Datasets Deep learning Design Feature extraction Formability Image resolution Information processing infrared image Infrared imagery joint feature extraction Knowledge Liu, Timothy Localization Modules prior knowledge Radiation Semantics ship detection Shipping industry Ships Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS90wFA7i0xCGmw6vc5IHxadgm6Q_sjd1il5_XGEKCkJIkxO8wnqlVtifv3Pa3nH3MHzxrZQWwneSfN9pz_nC2I7MQGVReyEdzmBNHpB4YYSKaVFJX_okoW7ky6v89FaP77K7haO-qCastwfugdt3PjOuQFrxUmkpY5k6AzIUKe6-poxdHzly3kIy1e3BqJox2ekr3RXm9ftPv16AftIhZ-X_cFBn1f-_DbljmZNV9nGQh_ygH9YntgT1Z7Yy8eDqwVt6jT1cj8X95GLynV8301kjzuefxbirAx_PpnUrSNm9NiCOf7dN37rAD5GvAqcXOQpVflbHhorP-c_H6TP_AW1Xk1Wvs9uT45ujUzEckiA8MnUrTB5QM7nglHKlRiiq0ivvVIQikSFKDcpkVYhG6xgNJJAkQUMmAUymC5eqL2y5ntWwwbjTFT4FiYmoCaULKB1DloPTOdWopn7Eduew2efeC8NiDkHw2kV4R-yQMP37DDlYdzcwrnaIq30rriO2RxGxtM4IKTe0C-BQybHKHlBPcIHiJBmxrXnQ7LAAXyzKIlSSKWZrm-8xmq_sg6SDf7ty7S223Dav8A3VSFttdxPvD4lz2aM priority: 102 providerName: Directory of Open Access Journals |
Title | PJ-YOLO: Prior-Knowledge and Joint-Feature-Extraction Based YOLO for Infrared Ship Detection |
URI | https://www.proquest.com/docview/3171121260 https://doaj.org/article/ac59a7818c23422f81a9e2d7141398f7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoekFIiKcIbSMfQJys7treh3tBDSSUAE0EVCoSkuX1owSpu-lmK_XnM7NxChzgtlp7pdXYM9_n8TwIecEzL7IgLeMGdrDEGpDwoJgIaVFxW9okwWzkT6f5yZmcnWfn0eG2jmGVW5vYG2rXWPSRHwLOATVIgX6_Xl0x7BqFt6uxhcYO2YWhshyQ3fHkdPH51ssCAAf8IN9EvAs43x_-vFx7vKwD7Mr_wqK-ZP-_DHOPNtMH5H6kifR4s64PyR1fPyL35tabOtaYfky-L2bs2_zj_Igu2mXTsg9b9xg1taOzZll3DBnedevZ5KZrNykMdAy45Sh-SIGw0vd1aDEInX75sVzRt77rY7PqJ-RsOvn65oTFZgnMAmJ3TOUOuJNxRghTSp6oqrTCGhF8kXAXuPRCZZULSsoQlE98kjjpM-69ymRhUvGUDOqm9s8INbKCWT5RAbghNw4opMtyb2SOsaqpHZKXW7Hp1aYmhoazBIpX_yneIRmjTG_nYCXr_kXTXuioGNrYTJkCaIPlQnIeytQoz12RArqqMhRD8gpXRKO-oaRMTBuAX8XKVfoYc4MLICnJkOxvF01HRVzr39vm-f-H98hdjq19-4DsfTLo2mt_AHyjq0Zkp5y-G8WtNepP7b8AhLbVMg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCQEE-xUMAHKk5WE9tJ1kgItbTLvtqtRCsVCck4fsAikSzZVMCf4jcyk0eBA9x6i2I7isZjf5_H8yDkGU-8SIK0jBvQYIk5IOFBMRHiLOd2aKMIo5EPj9LxqZyeJWcb5GcfC4Nulf2e2GzUrrRoI98BnANqEAP9frX6yrBqFN6u9iU0WrWY-R_f4Mi2fjnZh_nd5nx0cPJ6zLqqAswCtNVMpQ5IhnFGCDOUPFL50AprRPBZxF3g0guV5C4oKUNQPvJR5KRPuPcqkZmJBXz3CrkqBSA5RqaP3lzYdABOgY2krX89tEc7n7-sPV4NAlKmfyFfUyDgXzDQYNvoFrnZkVK622rRbbLhizvkxsJ6U3QZre-S98dT9m4xX7ygx9WyrNisN8ZRUzg6LZdFzZBPnleeHXyvqzZggu4BSjqKAynQYzopQoUu7_Ttp-WK7vu68QQr7pHTSxHifbJZlIV_QKiROfTykQrARLlxQFhdknojU_SMje2AbPdi06s2A4eGkwuKV_8p3gHZQ5le9MG82c2Lsvqou2WojU2UyYCkWC4k52EYG-W5y2LAcjUM2YA8xxnRuLpRUqYLUoBfxTxZehcjkTOgRNGAbPWTprtlv9a_lfTh_5ufkmvjk8O5nk-OZo_IdY5FhRtX8C2yWVfn_jEwnTp_0qgXJR8uW59_AQIuD24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyGEhLiKjgF-YOIpamI7FyMhtNJWazvaCpg0pEnB8YUViaSkmYC_xq_jnFwGPMDb3qLEiaLjY3-f7e-cQ8gzFloeOqE9psCDBeaAhAvpcRfEGdOJ9n2MRn6ziI5OxOw0PN0hP7tYGJRVdnNiPVGbQuMe-QBwDqhBAPR74FpZxGo0ebX56mEFKTxp7cppNC4ytz--wfJt-3I6gr4-YGwyfv_6yGsrDHgaYK7yZGSAcCijOFeJYL7MEs214s7GPjOOCctlmBknhXBOWt_6vhE2ZNbKUMQq4PDda2Q3xlVRj-wOx4vV28sdHgBX4CZRo7bnXPqDz1-2Fg8KATejv3CwLhfwL1CokW5ym9xqKSo9bHzqDtmx-V1yc6mtytv81vfI2WrmfVgeL1_QVbkuSm_ebc1RlRs6K9Z55SG7vCitN_5elU34BB0CZhqKL1Igy3SauxIF8PTd-XpDR7aqdWH5fXJyJWZ8QHp5kduHhCqRQSvrSwe8lCkD9NWEkVUiQp1soPvkoDNbumnycaSwjkHzpn-at0-GaNPLNphFu75RlJ_SdlCmSodSxUBZNOOCMZcESlpm4gCQXSYu7pPn2CMpjnW0lGpDFuBXMWtWeohxyTEQJL9P9rtOS9tJYJv-dtm9_z9-Sq6DL6fH08X8EbnBsMJwrQvfJ72qvLCPgfZU2ZPWvyj5eNUu_QsVABUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PJ-YOLO%3A+Prior-Knowledge+and+Joint-Feature-Extraction+Based+YOLO+for+Infrared+Ship+Detection&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Liu%2C+Yongjie&rft.au=Li%2C+Chaofeng&rft.au=Fu%2C+Guanghua&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=13&rft.issue=2&rft.spage=226&rft_id=info:doi/10.3390%2Fjmse13020226&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |