PJ-YOLO: Prior-Knowledge and Joint-Feature-Extraction Based YOLO for Infrared Ship Detection

Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 13; no. 2; p. 226
Main Authors Liu, Yongjie, Li, Chaofeng, Fu, Guanghua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP50, mAP75, and mAP50:95 on the SFISD dataset, respectively.
AbstractList Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP50, mAP75, and mAP50:95 on the SFISD dataset, respectively.
Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of traditional detection methods. To address this, we design a prior knowledge auxiliary loss for leveraging the unique brightness distribution of infrared ship images, we construct a joint feature extraction module that sufficiently captures context awareness, channel differentiation, and global information, and then we propose a prior-knowledge- and joint-feature-extraction-based YOLO (PJ-YOLO) for use in detecting infrared ships. Additionally, a residual deformable attention module is designed to integrate multi-scale information, enhancing detail capture. Experimental results on the SFISD and InfiRray Ships datasets demonstrate that the proposed PJ-YOLO achieves state-of-the-art detection performance for infrared ship targets. In particular, PJ-YOLO achieves improvements of 1.6%, 5.0%, and 2.8% in mAP[sub.50], mAP[sub.75], and mAP[sub.50:95] on the SFISD dataset, respectively.
Audience Academic
Author Li, Chaofeng
Fu, Guanghua
Liu, Yongjie
Author_xml – sequence: 1
  givenname: Yongjie
  surname: Liu
  fullname: Liu, Yongjie
– sequence: 2
  givenname: Chaofeng
  orcidid: 0000-0002-3236-3143
  surname: Li
  fullname: Li, Chaofeng
– sequence: 3
  givenname: Guanghua
  orcidid: 0000-0002-1865-9271
  surname: Fu
  fullname: Fu, Guanghua
BookMark eNpNUcFuEzEQtVCRKKU3PmAlrmyxx971mlspLaSNlErAAQnJmtrj4Cixg3ej0r_HaVDVmcOMnt57Gs17zY5STsTYW8HPpDT8w2ozkpAcOED_gh0D17oVUsDRs_0VOx3HFa81QC94f8x-3V63PxfzxcfmtsRc2puU79fkl9Rg8s11jmlqrwinXaH28u9U0E0xp-YTjuSbvbAJuTSzFAqWinz7HbfNZ5rokfaGvQy4Hun0_zxhP64uv198beeLL7OL83nrwMipNb3vhECPUuKggJu7wUmHMpDm4AMokqa788EoFYIhTpx7RR0QmU5pFPKEzQ6-PuPKbkvcYHmwGaN9BHJZWixTdGuy6DqDehCDA6kAwiDQEHgtlJBmCLp6vTt4bUv-s6Nxsqu8K6meb6XQQoCAnlfW2YG1xGoaU8j719T2tImuBhNixc8HMFqDUnvB-4PAlTyOhcLTmYLbfX72eX7yHzn6jJg
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse13020226
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_ac59a7818c23422f81a9e2d7141398f7
A829772440
10_3390_jmse13020226
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
PMFND
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c293t-96d511ada33a84209b8c3ca3fe702df24e395bdf944ff9e0e00d4e52ee9547a13
IEDL.DBID BENPR
ISSN 2077-1312
IngestDate Wed Aug 27 01:26:19 EDT 2025
Fri Jul 25 11:56:16 EDT 2025
Tue Jun 10 20:53:45 EDT 2025
Tue Jul 01 03:47:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-96d511ada33a84209b8c3ca3fe702df24e395bdf944ff9e0e00d4e52ee9547a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1865-9271
0000-0002-3236-3143
OpenAccessLink https://www.proquest.com/docview/3171121260?pq-origsite=%requestingapplication%
PQID 3171121260
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_ac59a7818c23422f81a9e2d7141398f7
proquest_journals_3171121260
gale_infotracacademiconefile_A829772440
crossref_primary_10_3390_jmse13020226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
RelatedPersons Liu, Timothy
RelatedPersons_xml – fullname: Liu, Timothy
SSID ssj0000826106
Score 2.2887907
Snippet Infrared ship images have low resolution and limited recognizable features, especially for small targets, leading to low accuracy and poor generalization of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 226
SubjectTerms Accuracy
Algorithms
Brightness distribution
Datasets
Deep learning
Design
Feature extraction
Formability
Image resolution
Information processing
infrared image
Infrared imagery
joint feature extraction
Knowledge
Liu, Timothy
Localization
Modules
prior knowledge
Radiation
Semantics
ship detection
Shipping industry
Ships
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS90wFA7i0xCGmw6vc5IHxadgm6Q_sjd1il5_XGEKCkJIkxO8wnqlVtifv3Pa3nH3MHzxrZQWwneSfN9pz_nC2I7MQGVReyEdzmBNHpB4YYSKaVFJX_okoW7ky6v89FaP77K7haO-qCastwfugdt3PjOuQFrxUmkpY5k6AzIUKe6-poxdHzly3kIy1e3BqJox2ekr3RXm9ftPv16AftIhZ-X_cFBn1f-_DbljmZNV9nGQh_ygH9YntgT1Z7Yy8eDqwVt6jT1cj8X95GLynV8301kjzuefxbirAx_PpnUrSNm9NiCOf7dN37rAD5GvAqcXOQpVflbHhorP-c_H6TP_AW1Xk1Wvs9uT45ujUzEckiA8MnUrTB5QM7nglHKlRiiq0ivvVIQikSFKDcpkVYhG6xgNJJAkQUMmAUymC5eqL2y5ntWwwbjTFT4FiYmoCaULKB1DloPTOdWopn7Eduew2efeC8NiDkHw2kV4R-yQMP37DDlYdzcwrnaIq30rriO2RxGxtM4IKTe0C-BQybHKHlBPcIHiJBmxrXnQ7LAAXyzKIlSSKWZrm-8xmq_sg6SDf7ty7S223Dav8A3VSFttdxPvD4lz2aM
  priority: 102
  providerName: Directory of Open Access Journals
Title PJ-YOLO: Prior-Knowledge and Joint-Feature-Extraction Based YOLO for Infrared Ship Detection
URI https://www.proquest.com/docview/3171121260
https://doaj.org/article/ac59a7818c23422f81a9e2d7141398f7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoekFIiKcIbSMfQJys7treh3tBDSSUAE0EVCoSkuX1owSpu-lmK_XnM7NxChzgtlp7pdXYM9_n8TwIecEzL7IgLeMGdrDEGpDwoJgIaVFxW9okwWzkT6f5yZmcnWfn0eG2jmGVW5vYG2rXWPSRHwLOATVIgX6_Xl0x7BqFt6uxhcYO2YWhshyQ3fHkdPH51ssCAAf8IN9EvAs43x_-vFx7vKwD7Mr_wqK-ZP-_DHOPNtMH5H6kifR4s64PyR1fPyL35tabOtaYfky-L2bs2_zj_Igu2mXTsg9b9xg1taOzZll3DBnedevZ5KZrNykMdAy45Sh-SIGw0vd1aDEInX75sVzRt77rY7PqJ-RsOvn65oTFZgnMAmJ3TOUOuJNxRghTSp6oqrTCGhF8kXAXuPRCZZULSsoQlE98kjjpM-69ymRhUvGUDOqm9s8INbKCWT5RAbghNw4opMtyb2SOsaqpHZKXW7Hp1aYmhoazBIpX_yneIRmjTG_nYCXr_kXTXuioGNrYTJkCaIPlQnIeytQoz12RArqqMhRD8gpXRKO-oaRMTBuAX8XKVfoYc4MLICnJkOxvF01HRVzr39vm-f-H98hdjq19-4DsfTLo2mt_AHyjq0Zkp5y-G8WtNepP7b8AhLbVMg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCQEE-xUMAHKk5WE9tJ1kgItbTLvtqtRCsVCck4fsAikSzZVMCf4jcyk0eBA9x6i2I7isZjf5_H8yDkGU-8SIK0jBvQYIk5IOFBMRHiLOd2aKMIo5EPj9LxqZyeJWcb5GcfC4Nulf2e2GzUrrRoI98BnANqEAP9frX6yrBqFN6u9iU0WrWY-R_f4Mi2fjnZh_nd5nx0cPJ6zLqqAswCtNVMpQ5IhnFGCDOUPFL50AprRPBZxF3g0guV5C4oKUNQPvJR5KRPuPcqkZmJBXz3CrkqBSA5RqaP3lzYdABOgY2krX89tEc7n7-sPV4NAlKmfyFfUyDgXzDQYNvoFrnZkVK622rRbbLhizvkxsJ6U3QZre-S98dT9m4xX7ygx9WyrNisN8ZRUzg6LZdFzZBPnleeHXyvqzZggu4BSjqKAynQYzopQoUu7_Ttp-WK7vu68QQr7pHTSxHifbJZlIV_QKiROfTykQrARLlxQFhdknojU_SMje2AbPdi06s2A4eGkwuKV_8p3gHZQ5le9MG82c2Lsvqou2WojU2UyYCkWC4k52EYG-W5y2LAcjUM2YA8xxnRuLpRUqYLUoBfxTxZehcjkTOgRNGAbPWTprtlv9a_lfTh_5ufkmvjk8O5nk-OZo_IdY5FhRtX8C2yWVfn_jEwnTp_0qgXJR8uW59_AQIuD24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyGEhLiKjgF-YOIpamI7FyMhtNJWazvaCpg0pEnB8YUViaSkmYC_xq_jnFwGPMDb3qLEiaLjY3-f7e-cQ8gzFloeOqE9psCDBeaAhAvpcRfEGdOJ9n2MRn6ziI5OxOw0PN0hP7tYGJRVdnNiPVGbQuMe-QBwDqhBAPR74FpZxGo0ebX56mEFKTxp7cppNC4ytz--wfJt-3I6gr4-YGwyfv_6yGsrDHgaYK7yZGSAcCijOFeJYL7MEs214s7GPjOOCctlmBknhXBOWt_6vhE2ZNbKUMQq4PDda2Q3xlVRj-wOx4vV28sdHgBX4CZRo7bnXPqDz1-2Fg8KATejv3CwLhfwL1CokW5ym9xqKSo9bHzqDtmx-V1yc6mtytv81vfI2WrmfVgeL1_QVbkuSm_ebc1RlRs6K9Z55SG7vCitN_5elU34BB0CZhqKL1Igy3SauxIF8PTd-XpDR7aqdWH5fXJyJWZ8QHp5kduHhCqRQSvrSwe8lCkD9NWEkVUiQp1soPvkoDNbumnycaSwjkHzpn-at0-GaNPLNphFu75RlJ_SdlCmSodSxUBZNOOCMZcESlpm4gCQXSYu7pPn2CMpjnW0lGpDFuBXMWtWeohxyTEQJL9P9rtOS9tJYJv-dtm9_z9-Sq6DL6fH08X8EbnBsMJwrQvfJ72qvLCPgfZU2ZPWvyj5eNUu_QsVABUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PJ-YOLO%3A+Prior-Knowledge+and+Joint-Feature-Extraction+Based+YOLO+for+Infrared+Ship+Detection&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Liu%2C+Yongjie&rft.au=Li%2C+Chaofeng&rft.au=Fu%2C+Guanghua&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=13&rft.issue=2&rft.spage=226&rft_id=info:doi/10.3390%2Fjmse13020226&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon