Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning
Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforce...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 32; no. 1; pp. 242 - 253 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforcement learning (DRL)-based methods have been proposed to learn offloading policies through interacting with the MEC environment that consists of UE, wireless channels, and MEC hosts. However, these methods have weak adaptability to new environments because they have low sample efficiency and need full retraining to learn updated policies for new environments. To overcome this weakness, we propose a task offloading method based on meta reinforcement learning, which can adapt fast to new environments with a small number of gradient updates and samples. We model mobile applications as Directed Acyclic Graphs (DAGs) and the offloading policy by a custom sequence-to-sequence (seq2seq) neural network. To efficiently train the seq2seq network, we propose a method that synergizes the first order approximation and clipped surrogate objective. The experimental results demonstrate that this new offloading method can reduce the latency by up to 25 percent compared to three baselines while being able to adapt fast to new environments. |
---|---|
AbstractList | Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforcement learning (DRL)-based methods have been proposed to learn offloading policies through interacting with the MEC environment that consists of UE, wireless channels, and MEC hosts. However, these methods have weak adaptability to new environments because they have low sample efficiency and need full retraining to learn updated policies for new environments. To overcome this weakness, we propose a task offloading method based on meta reinforcement learning, which can adapt fast to new environments with a small number of gradient updates and samples. We model mobile applications as Directed Acyclic Graphs (DAGs) and the offloading policy by a custom sequence-to-sequence (seq2seq) neural network. To efficiently train the seq2seq network, we propose a method that synergizes the first order approximation and clipped surrogate objective. The experimental results demonstrate that this new offloading method can reduce the latency by up to 25 percent compared to three baselines while being able to adapt fast to new environments. |
Author | Wang, Jin Hu, Jia Georgalas, Nektarios Zomaya, Albert Y. Min, Geyong |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0003-2487-2148 surname: Wang fullname: Wang, Jin email: jw855@exeter.ac.uk organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom – sequence: 2 givenname: Jia orcidid: 0000-0001-5406-8420 surname: Hu fullname: Hu, Jia email: j.hu@exeter.ac.uk organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom – sequence: 3 givenname: Geyong orcidid: 0000-0003-1395-7314 surname: Min fullname: Min, Geyong email: g.min@exeter.ac.uk organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom – sequence: 4 givenname: Albert Y. orcidid: 0000-0002-3090-1059 surname: Zomaya fullname: Zomaya, Albert Y. email: albert.zomaya@sydney.edu.au organization: School of Information Technologies, The University of Sydney, Sydney, NSW, Australia – sequence: 5 givenname: Nektarios orcidid: 0000-0001-9746-3236 surname: Georgalas fullname: Georgalas, Nektarios email: nektarios.georgalas@bt.com organization: Applied Research Department, British Telecom, Edinburgh, United Kingdom |
BookMark | eNp9kMtKAzEUQIMo-PwAcRNwPTWvSZOl1vqASkXreojJjUTbpCap4N87pcWFC1e5hHPuhXOIdmOKgNApJQNKib6YPV4_DxhhZMAJFUrLHXRA21Y1jCq-289EtI1mVO-jw1LeSQ-1RByg2Y0pFV86s6zhC_DMlA889X6ejAvxDYeIx-4N8Cgtlqu6_rkyBRxOET9ANfgJQvQpW1hArHgCJsceOkZ73swLnGzfI_RyM56N7prJ9PZ-dDlpLNO8NrplXjortJbEuuHQOuC-BfuqwCnLmQGrBQcjtPNaUEc8IVIwrkBpUFLyI3S-2bvM6XMFpXbvaZVjf7JjgiupKaG0p4YbyuZUSgbf2VBNDSnWbMK8o6RbJ-zWCbt1wm6bsDfpH3OZw8Lk73-ds40TAOCX11RSQST_AQWQfgQ |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1145_3579824 crossref_primary_10_1109_TCC_2023_3290777 crossref_primary_10_3390_fi16010016 crossref_primary_10_1109_JIOT_2021_3074382 crossref_primary_10_1016_j_comnet_2020_107628 crossref_primary_10_1016_j_sysarc_2021_102225 crossref_primary_10_1145_3544836 crossref_primary_10_1109_TMC_2021_3139995 crossref_primary_10_1007_s10586_023_04045_3 crossref_primary_10_1109_JIOT_2024_3403756 crossref_primary_10_1109_TMC_2024_3427380 crossref_primary_10_1007_s10462_024_10756_9 crossref_primary_10_1109_MCE_2022_3159348 crossref_primary_10_1109_TII_2021_3074513 crossref_primary_10_1109_TII_2022_3225313 crossref_primary_10_1109_JIOT_2021_3126101 crossref_primary_10_1109_OJCOMS_2024_3426098 crossref_primary_10_1109_JIOT_2023_3327121 crossref_primary_10_1109_TVT_2024_3389951 crossref_primary_10_1109_TNSE_2024_3501398 crossref_primary_10_1109_JIOT_2024_3481232 crossref_primary_10_1109_TNNLS_2022_3143554 crossref_primary_10_3390_fi16060181 crossref_primary_10_1016_j_simpat_2024_102917 crossref_primary_10_1109_JIOT_2023_3234966 crossref_primary_10_1016_j_jpdc_2024_104927 crossref_primary_10_3390_math10244812 crossref_primary_10_3390_s22114088 crossref_primary_10_1016_j_sysarc_2025_103335 crossref_primary_10_1016_j_comcom_2023_11_013 crossref_primary_10_1109_TVT_2023_3270967 crossref_primary_10_1007_s10723_023_09656_z crossref_primary_10_1109_TITS_2024_3524882 crossref_primary_10_3390_electronics12204371 crossref_primary_10_1016_j_future_2022_11_025 crossref_primary_10_1109_TMC_2023_3264901 crossref_primary_10_1155_2022_6107893 crossref_primary_10_1016_j_knosys_2021_107660 crossref_primary_10_1109_TNSM_2024_3428496 crossref_primary_10_1109_TCCN_2024_3378219 crossref_primary_10_3390_s23031546 crossref_primary_10_3390_su15097506 crossref_primary_10_1016_j_comcom_2024_05_023 crossref_primary_10_1109_TMC_2023_3320253 crossref_primary_10_1109_TDSC_2022_3216571 crossref_primary_10_1109_ACCESS_2021_3073902 crossref_primary_10_1109_JIOT_2023_3264498 crossref_primary_10_1109_TCOMM_2021_3125034 crossref_primary_10_1016_j_comcom_2022_04_029 crossref_primary_10_1016_j_future_2024_04_028 crossref_primary_10_1016_j_future_2022_11_017 crossref_primary_10_1109_JIOT_2021_3077449 crossref_primary_10_1109_TNET_2023_3330255 crossref_primary_10_1109_JIOT_2022_3188928 crossref_primary_10_1109_COMST_2023_3329027 crossref_primary_10_1109_TMC_2023_3247579 crossref_primary_10_1109_TNSM_2024_3387707 crossref_primary_10_1007_s00607_024_01353_3 crossref_primary_10_1007_s11277_023_10307_5 crossref_primary_10_1109_JIOT_2022_3168885 crossref_primary_10_1016_j_future_2024_107627 crossref_primary_10_1145_3548687 crossref_primary_10_1109_TMC_2024_3489028 crossref_primary_10_1109_TCCN_2021_3118460 crossref_primary_10_1109_TPDS_2023_3332333 crossref_primary_10_1109_TCC_2024_3381646 crossref_primary_10_1145_3532093 crossref_primary_10_1016_j_jksuci_2022_12_006 crossref_primary_10_1007_s10922_023_09761_0 crossref_primary_10_1109_TMC_2023_3329444 crossref_primary_10_1109_TCC_2022_3192560 crossref_primary_10_32604_cmc_2024_057353 crossref_primary_10_1016_j_comnet_2022_109164 crossref_primary_10_26599_IJCS_2022_9100031 crossref_primary_10_1109_JIOT_2021_3123822 crossref_primary_10_1007_s40031_024_01049_4 crossref_primary_10_1109_JIOT_2021_3138263 crossref_primary_10_1109_JIOT_2024_3439332 crossref_primary_10_1109_TNSE_2023_3272351 crossref_primary_10_1109_TSC_2023_3332308 crossref_primary_10_1016_j_future_2021_10_013 crossref_primary_10_1109_TICPS_2024_3424425 crossref_primary_10_3390_s24165141 crossref_primary_10_1109_JSAC_2021_3087227 crossref_primary_10_1109_TCDS_2023_3246107 crossref_primary_10_1007_s00521_024_09643_9 crossref_primary_10_1109_TPDS_2024_3468892 crossref_primary_10_1016_j_jnca_2023_103702 crossref_primary_10_32604_cmc_2023_037483 crossref_primary_10_1002_nem_2243 crossref_primary_10_1007_s11227_024_06417_x crossref_primary_10_1007_s11227_024_06439_5 crossref_primary_10_1109_ACCESS_2025_3535870 crossref_primary_10_1109_TITS_2024_3382747 crossref_primary_10_1109_TMC_2021_3123165 crossref_primary_10_1016_j_comnet_2021_108327 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1117_1_JEI_31_6_061809 crossref_primary_10_1007_s10845_024_02412_4 crossref_primary_10_1109_JIOT_2021_3067732 crossref_primary_10_1109_TMC_2024_3429571 crossref_primary_10_1109_ACCESS_2024_3405411 crossref_primary_10_1109_TVT_2024_3481876 crossref_primary_10_1002_cpe_8156 crossref_primary_10_1109_TNSE_2024_3493053 crossref_primary_10_1109_MCOM_002_2300721 crossref_primary_10_1109_TGCN_2021_3111731 crossref_primary_10_1109_TSUSC_2022_3217970 crossref_primary_10_1109_JSAC_2022_3233532 crossref_primary_10_1016_j_aej_2024_04_038 crossref_primary_10_1109_JIOT_2022_3172936 crossref_primary_10_3390_app12073319 crossref_primary_10_1016_j_eswa_2024_124657 crossref_primary_10_3390_math12233820 crossref_primary_10_1016_j_comcom_2022_07_030 crossref_primary_10_1016_j_suscom_2024_100972 crossref_primary_10_1109_TNSE_2021_3115054 crossref_primary_10_1109_TMC_2024_3406721 crossref_primary_10_1109_TMC_2024_3452502 crossref_primary_10_1109_TMC_2024_3506221 crossref_primary_10_1145_3715695 crossref_primary_10_1016_j_iot_2024_101118 crossref_primary_10_1109_TMC_2024_3362912 crossref_primary_10_32604_cmc_2024_058810 crossref_primary_10_1016_j_comnet_2021_107969 crossref_primary_10_1109_TPDS_2022_3222765 crossref_primary_10_1109_ACCESS_2021_3112077 crossref_primary_10_1016_j_asoc_2024_112164 crossref_primary_10_1109_TNSM_2021_3087258 crossref_primary_10_3390_electronics12030562 crossref_primary_10_1109_TPDS_2021_3131680 crossref_primary_10_1109_TPDS_2024_3368763 crossref_primary_10_1109_JIOT_2023_3285950 crossref_primary_10_1109_TCSVT_2023_3255229 crossref_primary_10_1109_ACCESS_2022_3147674 crossref_primary_10_1007_s11227_022_04501_8 crossref_primary_10_1016_j_ins_2022_06_078 crossref_primary_10_1016_j_swevo_2024_101575 crossref_primary_10_26599_TST_2021_9010087 crossref_primary_10_1109_OJCOMS_2024_3514456 crossref_primary_10_1142_S0218001421540355 crossref_primary_10_3390_electronics12020412 crossref_primary_10_1109_JIOT_2022_3228246 crossref_primary_10_1016_j_cie_2024_110104 crossref_primary_10_1002_cpe_7995 crossref_primary_10_1016_j_pmcj_2024_101892 crossref_primary_10_1109_TCC_2021_3127345 crossref_primary_10_1109_COMST_2022_3221119 crossref_primary_10_1016_j_cogsys_2025_101355 crossref_primary_10_1016_j_dajour_2023_100295 crossref_primary_10_1007_s10723_024_09741_x crossref_primary_10_1109_TMC_2022_3219983 crossref_primary_10_3390_app13179960 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1109_TMC_2023_3289611 crossref_primary_10_1145_3657284 crossref_primary_10_1109_JIOT_2021_3086961 crossref_primary_10_1109_JIOT_2021_3113872 crossref_primary_10_1109_TPDS_2022_3223796 crossref_primary_10_1109_TNSM_2022_3213761 crossref_primary_10_1109_TPDS_2022_3231296 crossref_primary_10_1109_TMC_2023_3266226 crossref_primary_10_1109_TII_2021_3088057 crossref_primary_10_23919_ICN_2023_0007 crossref_primary_10_1109_TVT_2023_3238771 crossref_primary_10_1186_s13677_022_00340_3 crossref_primary_10_1109_JIOT_2022_3209714 crossref_primary_10_1109_JIOT_2023_3296478 crossref_primary_10_1007_s00607_025_01443_w crossref_primary_10_1109_TVT_2022_3207692 crossref_primary_10_1109_ACCESS_2022_3187701 crossref_primary_10_1109_TNSM_2023_3250395 crossref_primary_10_1109_TC_2024_3355767 crossref_primary_10_1109_TNET_2022_3200853 crossref_primary_10_1016_j_comnet_2024_110791 crossref_primary_10_1016_j_jpdc_2022_04_013 crossref_primary_10_1109_TMC_2023_3320104 crossref_primary_10_1016_j_comcom_2023_04_020 crossref_primary_10_1016_j_aej_2024_08_002 crossref_primary_10_1007_s11227_024_06448_4 crossref_primary_10_1109_JIOT_2024_3461853 crossref_primary_10_1186_s13677_023_00434_6 crossref_primary_10_3390_app13032010 crossref_primary_10_1007_s00500_022_07544_4 crossref_primary_10_1109_TII_2021_3124848 crossref_primary_10_1016_j_comnet_2021_108057 crossref_primary_10_1109_TSC_2024_3417241 crossref_primary_10_1109_TSC_2024_3418330 crossref_primary_10_1109_TII_2020_3038780 crossref_primary_10_2139_ssrn_4196751 crossref_primary_10_1109_JIOT_2021_3081606 crossref_primary_10_1109_TITS_2020_3025247 crossref_primary_10_1109_TSUSC_2022_3210564 crossref_primary_10_1109_JIOT_2023_3235360 crossref_primary_10_1109_ACCESS_2023_3302528 crossref_primary_10_1016_j_comnet_2021_108055 crossref_primary_10_1007_s10462_023_10684_0 crossref_primary_10_1007_s00607_023_01210_9 crossref_primary_10_1109_TNSE_2021_3136942 crossref_primary_10_1007_s11276_021_02750_8 crossref_primary_10_1093_comjnl_bxac088 crossref_primary_10_1016_j_jnca_2023_103785 crossref_primary_10_1109_JIOT_2023_3235351 crossref_primary_10_1007_s11831_023_09885_1 crossref_primary_10_1109_TWC_2024_3470525 crossref_primary_10_1016_j_sysarc_2025_103391 crossref_primary_10_1109_JIOT_2023_3241222 crossref_primary_10_1109_TITS_2024_3410896 |
Cites_doi | 10.1109/MCOM.2019.1800971 10.1109/TCOMM.2018.2866572 10.1038/nature24270 10.1145/3317572 10.1109/TMC.2018.2815015 10.23919/CNSM.2017.8256026 10.1109/LWC.2017.2696539 10.1109/JIOT.2020.2978830 10.1109/JSAC.2018.2815360 10.1109/TCOMM.2017.2699660 10.1109/TMC.2019.2928811 10.1109/TMC.2018.2871460 10.1109/TVT.2018.2867191 10.1109/TCC.2017.2701794 10.1109/TVT.2020.2966500 10.1109/TCC.2016.2560808 10.1109/TPDS.2013.57 10.1109/ACCESS.2017.2665971 10.1109/TPDS.2019.2891695 10.1109/COMST.2017.2745201 10.1016/j.dcan.2018.10.003 10.1145/1999995.2000000 10.1109/MobileCloud.2015.22 10.1109/TSC.2014.2381227 10.1016/j.tics.2019.02.006 10.1109/JIOT.2018.2876279 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2020.3014896 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 253 |
ExternalDocumentID | 10_1109_TPDS_2020_3014896 9161406 |
Genre | orig-research |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-952f6dc49960cd77cde3f5ecb8ed8c32aec943ea49df941d0f0064238e89e8663 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 05:46:43 EDT 2025 Tue Jul 01 03:58:39 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Aug 27 02:31:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-952f6dc49960cd77cde3f5ecb8ed8c32aec943ea49df941d0f0064238e89e8663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3090-1059 0000-0003-2487-2148 0000-0003-1395-7314 0000-0001-9746-3236 0000-0001-5406-8420 |
PQID | 2438691011 |
PQPubID | 85437 |
PageCount | 12 |
ParticipantIDs | ieee_primary_9161406 proquest_journals_2438691011 crossref_citationtrail_10_1109_TPDS_2020_3014896 crossref_primary_10_1109_TPDS_2020_3014896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-1 2021-1-1 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-1 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 finn (ref16) 2017 ref36 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref38 ref19 ref18 rakelly (ref28) 2019 sabell (ref1) 2019; 20 vanschoren (ref14) 2018 chinchali (ref9) 2018 zanni (ref35) 2017 vinyals (ref21) 2015 schulman (ref23) 2017 nichol (ref17) 2018 kingma (ref25) 2015 ref22 bahdanau (ref20) 2015 ref27 ref29 ref7 schulman (ref24) 2016 ref4 ref3 ref6 lillicrap (ref8) 2015 ba (ref26) 2016 ref5 ref40 |
References_xml | – ident: ref12 doi: 10.1109/MCOM.2019.1800971 – ident: ref10 doi: 10.1109/TCOMM.2018.2866572 – start-page: 1 year: 2015 ident: ref25 article-title: Adam: A method for stochastic optimization publication-title: Proc ICLR – ident: ref7 doi: 10.1038/nature24270 – ident: ref39 doi: 10.1145/3317572 – start-page: 766 year: 2018 ident: ref9 article-title: Cellular network traffic scheduling with deep reinforcement learning publication-title: Proc AAAI – year: 2017 ident: ref23 article-title: Proximal policy optimization algorithms – ident: ref33 doi: 10.1109/TMC.2018.2815015 – year: 2018 ident: ref14 article-title: Meta-learning: A survey – ident: ref34 doi: 10.23919/CNSM.2017.8256026 – ident: ref3 doi: 10.1109/LWC.2017.2696539 – ident: ref36 doi: 10.1109/JIOT.2020.2978830 – start-page: 1 year: 2015 ident: ref20 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc ICLR – start-page: 1 year: 2016 ident: ref24 article-title: High-dimensional continuous control using generalized advantage estimation publication-title: Proc ICLR – ident: ref30 doi: 10.1109/JSAC.2018.2815360 – ident: ref5 doi: 10.1109/TCOMM.2017.2699660 – ident: ref13 doi: 10.1109/TMC.2019.2928811 – ident: ref31 doi: 10.1109/TMC.2018.2871460 – ident: ref37 doi: 10.1109/TVT.2018.2867191 – ident: ref18 doi: 10.1109/TCC.2017.2701794 – start-page: 990 year: 2017 ident: ref35 article-title: Automated offloading of android applications for computation/energy-usage optimizations publication-title: Proc IEEE Conf Comput Commun Workshops – start-page: 1126 year: 2017 ident: ref16 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc ICML – year: 2018 ident: ref17 article-title: On first-order meta-learning algorithms – ident: ref40 doi: 10.1109/TVT.2020.2966500 – ident: ref22 doi: 10.1109/TCC.2016.2560808 – ident: ref27 doi: 10.1109/TPDS.2013.57 – ident: ref32 doi: 10.1109/ACCESS.2017.2665971 – ident: ref6 doi: 10.1109/TPDS.2019.2891695 – year: 2015 ident: ref8 article-title: Continuous control with deep reinforcement learning – start-page: 5331 year: 2019 ident: ref28 article-title: Efficient off-policy meta-reinforcement learning via probabilistic context variables – ident: ref29 doi: 10.1109/COMST.2017.2745201 – ident: ref38 doi: 10.1016/j.dcan.2018.10.003 – start-page: 2692 year: 2015 ident: ref21 article-title: Pointer networks publication-title: Proc Int Conf Neural Inf Process – ident: ref2 doi: 10.1145/1999995.2000000 – start-page: 1 year: 2016 ident: ref26 article-title: Layer normalization publication-title: Proc Int Conf Neural Inf Process – ident: ref19 doi: 10.1109/MobileCloud.2015.22 – ident: ref4 doi: 10.1109/TSC.2014.2381227 – ident: ref15 doi: 10.1016/j.tics.2019.02.006 – volume: 20 start-page: 1 year: 2019 ident: ref1 article-title: Developing software for multi-access edge computing – ident: ref11 doi: 10.1109/JIOT.2018.2876279 |
SSID | ssj0014504 |
Score | 2.6774404 |
Snippet | Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 242 |
SubjectTerms | Applications programs Cloud computing Communications traffic Computation offloading deep learning Edge computing Graph theory Heuristic algorithms Learning Learning (artificial intelligence) meta reinforcement learning Mobile applications Mobile computing Multi-access edge computing Network latency Neural networks Policies Retraining Task analysis task offloading Training |
Title | Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/9161406 https://www.proquest.com/docview/2438691011 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDp7ErftsN0dfRYSqaAVvyyaZiFS2YrcXf70z2bSIinhbliQEviQz32TyDcBhlkjUsrSBUknI0SoTKEucp6sJfKnCXEl-jdy_6Vw9ptdP2dMcHM_ewiCiSz7DNn-6u3wz0hMOlZ2QK0N8oDMP80TcmrdasxuDNHOlAoldZIGkbehvMKNQngzuLh6ICcZEUDl-xvr8X2yQK6ry4yR25qW3Av3pxJqskmF7Uqu2_vim2fjfma_CsvczxWmzMNZgDqt1WJnWcBB-S6_D0hdBwg0Y9MpxLU5N-canoBiU46G4tfZ15DLtxUslLs0zimYY_nNGRtCIUSX6WJfiHp0Oq3YhR-GlW5834bF3OTi_CnzdhUCT8a8DmcW2Y3TKwi3adLvaYGIz1CpHk-skLgndNMEylcbKNDKhZceGbD_mEnNyYbZgoRpVuA0iQ7QyyoxRoUpztn0l9U5Qs44YyqQF4RSJQntRcq6N8Vo4chLKgsErGLzCg9eCo1mXt0aR46_GGwzGrKHHoQV7U7gLv2fHRZwmeYe8pyja-b3XLizGnNHiAjB7sFC_T3CfXJJaHbi1-Al0Gdyx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAeSgutGj5aHzihbtgvJ-sjLUShJVC1i8RttbbHqAJtENlc-uuZ8ToRaivEbbWyLUvP9psZj98A7MtMoVG1i7TOYo5W2Ug78nmGhsBXOi604tfIk_PB-DL_diWvVuDz8i0MIvrkM-zzp7_Lt1Mz51DZIZky5A8MXsAa8b5MutdayzuDXPpigeRfyEjRRgx3mEmsDssfx7_IF0zJReUIGiv0P2IhX1bln7PYE8xoAyaLqXV5JTf9eav75s9fqo3PnfsbeB0sTXHULY23sILNJmwsqjiIsKk34dUjScItKEf1rBVHtr7jc1CU9exGXDh3O_W59uJ3I07sNYpuGP7zhWjQimkjJtjW4id6JVbjg44iiLdev4PL0Un5dRyFyguRIfpvIyVTN7AmZ-kWY4dDYzFzEo0u0BYmS2vCN8-wzpV1Kk9s7Ni0IfbHQmFBRsx7WG2mDX4AIRGdSqS1OtZ5wexXU-8MDSuJocp6EC-QqEyQJefqGLeVd09iVTF4FYNXBfB6cLDsctdpcjzVeIvBWDYMOPRgdwF3FXbtrErzrBiQ_ZQk2__v9QnWx-XkrDo7Pf--Ay9Tzm_x4ZhdWG3v57hHBkqrP_p1-QAhKd_6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Adaptive+Task+Offloading+in+Edge+Computing+Based+on+Meta+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Wang%2C+Jin&rft.au=Hu%2C+Jia&rft.au=Min%2C+Geyong&rft.au=Zomaya%2C+Albert+Y.&rft.date=2021-01-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=32&rft.issue=1&rft.spage=242&rft.epage=253&rft_id=info:doi/10.1109%2FTPDS.2020.3014896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2020_3014896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |