Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning

Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforce...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 1; pp. 242 - 253
Main Authors Wang, Jin, Hu, Jia, Min, Geyong, Zomaya, Albert Y., Georgalas, Nektarios
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforcement learning (DRL)-based methods have been proposed to learn offloading policies through interacting with the MEC environment that consists of UE, wireless channels, and MEC hosts. However, these methods have weak adaptability to new environments because they have low sample efficiency and need full retraining to learn updated policies for new environments. To overcome this weakness, we propose a task offloading method based on meta reinforcement learning, which can adapt fast to new environments with a small number of gradient updates and samples. We model mobile applications as Directed Acyclic Graphs (DAGs) and the offloading policy by a custom sequence-to-sequence (seq2seq) neural network. To efficiently train the seq2seq network, we propose a method that synergizes the first order approximation and clipped surrogate objective. The experimental results demonstrate that this new offloading method can reduce the latency by up to 25 percent compared to three baselines while being able to adapt fast to new environments.
AbstractList Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC is how to efficiently offload heterogeneous tasks of mobile applications from user equipment (UE) to MEC hosts. Recently, many deep reinforcement learning (DRL)-based methods have been proposed to learn offloading policies through interacting with the MEC environment that consists of UE, wireless channels, and MEC hosts. However, these methods have weak adaptability to new environments because they have low sample efficiency and need full retraining to learn updated policies for new environments. To overcome this weakness, we propose a task offloading method based on meta reinforcement learning, which can adapt fast to new environments with a small number of gradient updates and samples. We model mobile applications as Directed Acyclic Graphs (DAGs) and the offloading policy by a custom sequence-to-sequence (seq2seq) neural network. To efficiently train the seq2seq network, we propose a method that synergizes the first order approximation and clipped surrogate objective. The experimental results demonstrate that this new offloading method can reduce the latency by up to 25 percent compared to three baselines while being able to adapt fast to new environments.
Author Wang, Jin
Hu, Jia
Georgalas, Nektarios
Zomaya, Albert Y.
Min, Geyong
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-2487-2148
  surname: Wang
  fullname: Wang, Jin
  email: jw855@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom
– sequence: 2
  givenname: Jia
  orcidid: 0000-0001-5406-8420
  surname: Hu
  fullname: Hu, Jia
  email: j.hu@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom
– sequence: 3
  givenname: Geyong
  orcidid: 0000-0003-1395-7314
  surname: Min
  fullname: Min, Geyong
  email: g.min@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, Exeter, United Kingdom
– sequence: 4
  givenname: Albert Y.
  orcidid: 0000-0002-3090-1059
  surname: Zomaya
  fullname: Zomaya, Albert Y.
  email: albert.zomaya@sydney.edu.au
  organization: School of Information Technologies, The University of Sydney, Sydney, NSW, Australia
– sequence: 5
  givenname: Nektarios
  orcidid: 0000-0001-9746-3236
  surname: Georgalas
  fullname: Georgalas, Nektarios
  email: nektarios.georgalas@bt.com
  organization: Applied Research Department, British Telecom, Edinburgh, United Kingdom
BookMark eNp9kMtKAzEUQIMo-PwAcRNwPTWvSZOl1vqASkXreojJjUTbpCap4N87pcWFC1e5hHPuhXOIdmOKgNApJQNKib6YPV4_DxhhZMAJFUrLHXRA21Y1jCq-289EtI1mVO-jw1LeSQ-1RByg2Y0pFV86s6zhC_DMlA889X6ejAvxDYeIx-4N8Cgtlqu6_rkyBRxOET9ANfgJQvQpW1hArHgCJsceOkZ73swLnGzfI_RyM56N7prJ9PZ-dDlpLNO8NrplXjortJbEuuHQOuC-BfuqwCnLmQGrBQcjtPNaUEc8IVIwrkBpUFLyI3S-2bvM6XMFpXbvaZVjf7JjgiupKaG0p4YbyuZUSgbf2VBNDSnWbMK8o6RbJ-zWCbt1wm6bsDfpH3OZw8Lk73-ds40TAOCX11RSQST_AQWQfgQ
CODEN ITDSEO
CitedBy_id crossref_primary_10_1145_3579824
crossref_primary_10_1109_TCC_2023_3290777
crossref_primary_10_3390_fi16010016
crossref_primary_10_1109_JIOT_2021_3074382
crossref_primary_10_1016_j_comnet_2020_107628
crossref_primary_10_1016_j_sysarc_2021_102225
crossref_primary_10_1145_3544836
crossref_primary_10_1109_TMC_2021_3139995
crossref_primary_10_1007_s10586_023_04045_3
crossref_primary_10_1109_JIOT_2024_3403756
crossref_primary_10_1109_TMC_2024_3427380
crossref_primary_10_1007_s10462_024_10756_9
crossref_primary_10_1109_MCE_2022_3159348
crossref_primary_10_1109_TII_2021_3074513
crossref_primary_10_1109_TII_2022_3225313
crossref_primary_10_1109_JIOT_2021_3126101
crossref_primary_10_1109_OJCOMS_2024_3426098
crossref_primary_10_1109_JIOT_2023_3327121
crossref_primary_10_1109_TVT_2024_3389951
crossref_primary_10_1109_TNSE_2024_3501398
crossref_primary_10_1109_JIOT_2024_3481232
crossref_primary_10_1109_TNNLS_2022_3143554
crossref_primary_10_3390_fi16060181
crossref_primary_10_1016_j_simpat_2024_102917
crossref_primary_10_1109_JIOT_2023_3234966
crossref_primary_10_1016_j_jpdc_2024_104927
crossref_primary_10_3390_math10244812
crossref_primary_10_3390_s22114088
crossref_primary_10_1016_j_sysarc_2025_103335
crossref_primary_10_1016_j_comcom_2023_11_013
crossref_primary_10_1109_TVT_2023_3270967
crossref_primary_10_1007_s10723_023_09656_z
crossref_primary_10_1109_TITS_2024_3524882
crossref_primary_10_3390_electronics12204371
crossref_primary_10_1016_j_future_2022_11_025
crossref_primary_10_1109_TMC_2023_3264901
crossref_primary_10_1155_2022_6107893
crossref_primary_10_1016_j_knosys_2021_107660
crossref_primary_10_1109_TNSM_2024_3428496
crossref_primary_10_1109_TCCN_2024_3378219
crossref_primary_10_3390_s23031546
crossref_primary_10_3390_su15097506
crossref_primary_10_1016_j_comcom_2024_05_023
crossref_primary_10_1109_TMC_2023_3320253
crossref_primary_10_1109_TDSC_2022_3216571
crossref_primary_10_1109_ACCESS_2021_3073902
crossref_primary_10_1109_JIOT_2023_3264498
crossref_primary_10_1109_TCOMM_2021_3125034
crossref_primary_10_1016_j_comcom_2022_04_029
crossref_primary_10_1016_j_future_2024_04_028
crossref_primary_10_1016_j_future_2022_11_017
crossref_primary_10_1109_JIOT_2021_3077449
crossref_primary_10_1109_TNET_2023_3330255
crossref_primary_10_1109_JIOT_2022_3188928
crossref_primary_10_1109_COMST_2023_3329027
crossref_primary_10_1109_TMC_2023_3247579
crossref_primary_10_1109_TNSM_2024_3387707
crossref_primary_10_1007_s00607_024_01353_3
crossref_primary_10_1007_s11277_023_10307_5
crossref_primary_10_1109_JIOT_2022_3168885
crossref_primary_10_1016_j_future_2024_107627
crossref_primary_10_1145_3548687
crossref_primary_10_1109_TMC_2024_3489028
crossref_primary_10_1109_TCCN_2021_3118460
crossref_primary_10_1109_TPDS_2023_3332333
crossref_primary_10_1109_TCC_2024_3381646
crossref_primary_10_1145_3532093
crossref_primary_10_1016_j_jksuci_2022_12_006
crossref_primary_10_1007_s10922_023_09761_0
crossref_primary_10_1109_TMC_2023_3329444
crossref_primary_10_1109_TCC_2022_3192560
crossref_primary_10_32604_cmc_2024_057353
crossref_primary_10_1016_j_comnet_2022_109164
crossref_primary_10_26599_IJCS_2022_9100031
crossref_primary_10_1109_JIOT_2021_3123822
crossref_primary_10_1007_s40031_024_01049_4
crossref_primary_10_1109_JIOT_2021_3138263
crossref_primary_10_1109_JIOT_2024_3439332
crossref_primary_10_1109_TNSE_2023_3272351
crossref_primary_10_1109_TSC_2023_3332308
crossref_primary_10_1016_j_future_2021_10_013
crossref_primary_10_1109_TICPS_2024_3424425
crossref_primary_10_3390_s24165141
crossref_primary_10_1109_JSAC_2021_3087227
crossref_primary_10_1109_TCDS_2023_3246107
crossref_primary_10_1007_s00521_024_09643_9
crossref_primary_10_1109_TPDS_2024_3468892
crossref_primary_10_1016_j_jnca_2023_103702
crossref_primary_10_32604_cmc_2023_037483
crossref_primary_10_1002_nem_2243
crossref_primary_10_1007_s11227_024_06417_x
crossref_primary_10_1007_s11227_024_06439_5
crossref_primary_10_1109_ACCESS_2025_3535870
crossref_primary_10_1109_TITS_2024_3382747
crossref_primary_10_1109_TMC_2021_3123165
crossref_primary_10_1016_j_comnet_2021_108327
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1117_1_JEI_31_6_061809
crossref_primary_10_1007_s10845_024_02412_4
crossref_primary_10_1109_JIOT_2021_3067732
crossref_primary_10_1109_TMC_2024_3429571
crossref_primary_10_1109_ACCESS_2024_3405411
crossref_primary_10_1109_TVT_2024_3481876
crossref_primary_10_1002_cpe_8156
crossref_primary_10_1109_TNSE_2024_3493053
crossref_primary_10_1109_MCOM_002_2300721
crossref_primary_10_1109_TGCN_2021_3111731
crossref_primary_10_1109_TSUSC_2022_3217970
crossref_primary_10_1109_JSAC_2022_3233532
crossref_primary_10_1016_j_aej_2024_04_038
crossref_primary_10_1109_JIOT_2022_3172936
crossref_primary_10_3390_app12073319
crossref_primary_10_1016_j_eswa_2024_124657
crossref_primary_10_3390_math12233820
crossref_primary_10_1016_j_comcom_2022_07_030
crossref_primary_10_1016_j_suscom_2024_100972
crossref_primary_10_1109_TNSE_2021_3115054
crossref_primary_10_1109_TMC_2024_3406721
crossref_primary_10_1109_TMC_2024_3452502
crossref_primary_10_1109_TMC_2024_3506221
crossref_primary_10_1145_3715695
crossref_primary_10_1016_j_iot_2024_101118
crossref_primary_10_1109_TMC_2024_3362912
crossref_primary_10_32604_cmc_2024_058810
crossref_primary_10_1016_j_comnet_2021_107969
crossref_primary_10_1109_TPDS_2022_3222765
crossref_primary_10_1109_ACCESS_2021_3112077
crossref_primary_10_1016_j_asoc_2024_112164
crossref_primary_10_1109_TNSM_2021_3087258
crossref_primary_10_3390_electronics12030562
crossref_primary_10_1109_TPDS_2021_3131680
crossref_primary_10_1109_TPDS_2024_3368763
crossref_primary_10_1109_JIOT_2023_3285950
crossref_primary_10_1109_TCSVT_2023_3255229
crossref_primary_10_1109_ACCESS_2022_3147674
crossref_primary_10_1007_s11227_022_04501_8
crossref_primary_10_1016_j_ins_2022_06_078
crossref_primary_10_1016_j_swevo_2024_101575
crossref_primary_10_26599_TST_2021_9010087
crossref_primary_10_1109_OJCOMS_2024_3514456
crossref_primary_10_1142_S0218001421540355
crossref_primary_10_3390_electronics12020412
crossref_primary_10_1109_JIOT_2022_3228246
crossref_primary_10_1016_j_cie_2024_110104
crossref_primary_10_1002_cpe_7995
crossref_primary_10_1016_j_pmcj_2024_101892
crossref_primary_10_1109_TCC_2021_3127345
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1016_j_cogsys_2025_101355
crossref_primary_10_1016_j_dajour_2023_100295
crossref_primary_10_1007_s10723_024_09741_x
crossref_primary_10_1109_TMC_2022_3219983
crossref_primary_10_3390_app13179960
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1109_TMC_2023_3289611
crossref_primary_10_1145_3657284
crossref_primary_10_1109_JIOT_2021_3086961
crossref_primary_10_1109_JIOT_2021_3113872
crossref_primary_10_1109_TPDS_2022_3223796
crossref_primary_10_1109_TNSM_2022_3213761
crossref_primary_10_1109_TPDS_2022_3231296
crossref_primary_10_1109_TMC_2023_3266226
crossref_primary_10_1109_TII_2021_3088057
crossref_primary_10_23919_ICN_2023_0007
crossref_primary_10_1109_TVT_2023_3238771
crossref_primary_10_1186_s13677_022_00340_3
crossref_primary_10_1109_JIOT_2022_3209714
crossref_primary_10_1109_JIOT_2023_3296478
crossref_primary_10_1007_s00607_025_01443_w
crossref_primary_10_1109_TVT_2022_3207692
crossref_primary_10_1109_ACCESS_2022_3187701
crossref_primary_10_1109_TNSM_2023_3250395
crossref_primary_10_1109_TC_2024_3355767
crossref_primary_10_1109_TNET_2022_3200853
crossref_primary_10_1016_j_comnet_2024_110791
crossref_primary_10_1016_j_jpdc_2022_04_013
crossref_primary_10_1109_TMC_2023_3320104
crossref_primary_10_1016_j_comcom_2023_04_020
crossref_primary_10_1016_j_aej_2024_08_002
crossref_primary_10_1007_s11227_024_06448_4
crossref_primary_10_1109_JIOT_2024_3461853
crossref_primary_10_1186_s13677_023_00434_6
crossref_primary_10_3390_app13032010
crossref_primary_10_1007_s00500_022_07544_4
crossref_primary_10_1109_TII_2021_3124848
crossref_primary_10_1016_j_comnet_2021_108057
crossref_primary_10_1109_TSC_2024_3417241
crossref_primary_10_1109_TSC_2024_3418330
crossref_primary_10_1109_TII_2020_3038780
crossref_primary_10_2139_ssrn_4196751
crossref_primary_10_1109_JIOT_2021_3081606
crossref_primary_10_1109_TITS_2020_3025247
crossref_primary_10_1109_TSUSC_2022_3210564
crossref_primary_10_1109_JIOT_2023_3235360
crossref_primary_10_1109_ACCESS_2023_3302528
crossref_primary_10_1016_j_comnet_2021_108055
crossref_primary_10_1007_s10462_023_10684_0
crossref_primary_10_1007_s00607_023_01210_9
crossref_primary_10_1109_TNSE_2021_3136942
crossref_primary_10_1007_s11276_021_02750_8
crossref_primary_10_1093_comjnl_bxac088
crossref_primary_10_1016_j_jnca_2023_103785
crossref_primary_10_1109_JIOT_2023_3235351
crossref_primary_10_1007_s11831_023_09885_1
crossref_primary_10_1109_TWC_2024_3470525
crossref_primary_10_1016_j_sysarc_2025_103391
crossref_primary_10_1109_JIOT_2023_3241222
crossref_primary_10_1109_TITS_2024_3410896
Cites_doi 10.1109/MCOM.2019.1800971
10.1109/TCOMM.2018.2866572
10.1038/nature24270
10.1145/3317572
10.1109/TMC.2018.2815015
10.23919/CNSM.2017.8256026
10.1109/LWC.2017.2696539
10.1109/JIOT.2020.2978830
10.1109/JSAC.2018.2815360
10.1109/TCOMM.2017.2699660
10.1109/TMC.2019.2928811
10.1109/TMC.2018.2871460
10.1109/TVT.2018.2867191
10.1109/TCC.2017.2701794
10.1109/TVT.2020.2966500
10.1109/TCC.2016.2560808
10.1109/TPDS.2013.57
10.1109/ACCESS.2017.2665971
10.1109/TPDS.2019.2891695
10.1109/COMST.2017.2745201
10.1016/j.dcan.2018.10.003
10.1145/1999995.2000000
10.1109/MobileCloud.2015.22
10.1109/TSC.2014.2381227
10.1016/j.tics.2019.02.006
10.1109/JIOT.2018.2876279
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2020.3014896
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 253
ExternalDocumentID 10_1109_TPDS_2020_3014896
9161406
Genre orig-research
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-952f6dc49960cd77cde3f5ecb8ed8c32aec943ea49df941d0f0064238e89e8663
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 05:46:43 EDT 2025
Tue Jul 01 03:58:39 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Wed Aug 27 02:31:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-952f6dc49960cd77cde3f5ecb8ed8c32aec943ea49df941d0f0064238e89e8663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3090-1059
0000-0003-2487-2148
0000-0003-1395-7314
0000-0001-9746-3236
0000-0001-5406-8420
PQID 2438691011
PQPubID 85437
PageCount 12
ParticipantIDs ieee_primary_9161406
proquest_journals_2438691011
crossref_citationtrail_10_1109_TPDS_2020_3014896
crossref_primary_10_1109_TPDS_2020_3014896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.-1
2021-1-1
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
finn (ref16) 2017
ref36
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref38
ref19
ref18
rakelly (ref28) 2019
sabell (ref1) 2019; 20
vanschoren (ref14) 2018
chinchali (ref9) 2018
zanni (ref35) 2017
vinyals (ref21) 2015
schulman (ref23) 2017
nichol (ref17) 2018
kingma (ref25) 2015
ref22
bahdanau (ref20) 2015
ref27
ref29
ref7
schulman (ref24) 2016
ref4
ref3
ref6
lillicrap (ref8) 2015
ba (ref26) 2016
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/MCOM.2019.1800971
– ident: ref10
  doi: 10.1109/TCOMM.2018.2866572
– start-page: 1
  year: 2015
  ident: ref25
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc ICLR
– ident: ref7
  doi: 10.1038/nature24270
– ident: ref39
  doi: 10.1145/3317572
– start-page: 766
  year: 2018
  ident: ref9
  article-title: Cellular network traffic scheduling with deep reinforcement learning
  publication-title: Proc AAAI
– year: 2017
  ident: ref23
  article-title: Proximal policy optimization algorithms
– ident: ref33
  doi: 10.1109/TMC.2018.2815015
– year: 2018
  ident: ref14
  article-title: Meta-learning: A survey
– ident: ref34
  doi: 10.23919/CNSM.2017.8256026
– ident: ref3
  doi: 10.1109/LWC.2017.2696539
– ident: ref36
  doi: 10.1109/JIOT.2020.2978830
– start-page: 1
  year: 2015
  ident: ref20
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc ICLR
– start-page: 1
  year: 2016
  ident: ref24
  article-title: High-dimensional continuous control using generalized advantage estimation
  publication-title: Proc ICLR
– ident: ref30
  doi: 10.1109/JSAC.2018.2815360
– ident: ref5
  doi: 10.1109/TCOMM.2017.2699660
– ident: ref13
  doi: 10.1109/TMC.2019.2928811
– ident: ref31
  doi: 10.1109/TMC.2018.2871460
– ident: ref37
  doi: 10.1109/TVT.2018.2867191
– ident: ref18
  doi: 10.1109/TCC.2017.2701794
– start-page: 990
  year: 2017
  ident: ref35
  article-title: Automated offloading of android applications for computation/energy-usage optimizations
  publication-title: Proc IEEE Conf Comput Commun Workshops
– start-page: 1126
  year: 2017
  ident: ref16
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc ICML
– year: 2018
  ident: ref17
  article-title: On first-order meta-learning algorithms
– ident: ref40
  doi: 10.1109/TVT.2020.2966500
– ident: ref22
  doi: 10.1109/TCC.2016.2560808
– ident: ref27
  doi: 10.1109/TPDS.2013.57
– ident: ref32
  doi: 10.1109/ACCESS.2017.2665971
– ident: ref6
  doi: 10.1109/TPDS.2019.2891695
– year: 2015
  ident: ref8
  article-title: Continuous control with deep reinforcement learning
– start-page: 5331
  year: 2019
  ident: ref28
  article-title: Efficient off-policy meta-reinforcement learning via probabilistic context variables
– ident: ref29
  doi: 10.1109/COMST.2017.2745201
– ident: ref38
  doi: 10.1016/j.dcan.2018.10.003
– start-page: 2692
  year: 2015
  ident: ref21
  article-title: Pointer networks
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref2
  doi: 10.1145/1999995.2000000
– start-page: 1
  year: 2016
  ident: ref26
  article-title: Layer normalization
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref19
  doi: 10.1109/MobileCloud.2015.22
– ident: ref4
  doi: 10.1109/TSC.2014.2381227
– ident: ref15
  doi: 10.1016/j.tics.2019.02.006
– volume: 20
  start-page: 1
  year: 2019
  ident: ref1
  article-title: Developing software for multi-access edge computing
– ident: ref11
  doi: 10.1109/JIOT.2018.2876279
SSID ssj0014504
Score 2.6774404
Snippet Multi-access edge computing (MEC) aims to extend cloud service to the network edge to reduce network traffic and service latency. A fundamental problem in MEC...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Applications programs
Cloud computing
Communications traffic
Computation offloading
deep learning
Edge computing
Graph theory
Heuristic algorithms
Learning
Learning (artificial intelligence)
meta reinforcement learning
Mobile applications
Mobile computing
Multi-access edge computing
Network latency
Neural networks
Policies
Retraining
Task analysis
task offloading
Training
Title Fast Adaptive Task Offloading in Edge Computing Based on Meta Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9161406
https://www.proquest.com/docview/2438691011
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDp7ErftsN0dfRYSqaAVvyyaZiFS2YrcXf70z2bSIinhbliQEviQz32TyDcBhlkjUsrSBUknI0SoTKEucp6sJfKnCXEl-jdy_6Vw9ptdP2dMcHM_ewiCiSz7DNn-6u3wz0hMOlZ2QK0N8oDMP80TcmrdasxuDNHOlAoldZIGkbehvMKNQngzuLh6ICcZEUDl-xvr8X2yQK6ry4yR25qW3Av3pxJqskmF7Uqu2_vim2fjfma_CsvczxWmzMNZgDqt1WJnWcBB-S6_D0hdBwg0Y9MpxLU5N-canoBiU46G4tfZ15DLtxUslLs0zimYY_nNGRtCIUSX6WJfiHp0Oq3YhR-GlW5834bF3OTi_CnzdhUCT8a8DmcW2Y3TKwi3adLvaYGIz1CpHk-skLgndNMEylcbKNDKhZceGbD_mEnNyYbZgoRpVuA0iQ7QyyoxRoUpztn0l9U5Qs44YyqQF4RSJQntRcq6N8Vo4chLKgsErGLzCg9eCo1mXt0aR46_GGwzGrKHHoQV7U7gLv2fHRZwmeYe8pyja-b3XLizGnNHiAjB7sFC_T3CfXJJaHbi1-Al0Gdyx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RONAeSgutGj5aHzihbtgvJ-sjLUShJVC1i8RttbbHqAJtENlc-uuZ8ToRaivEbbWyLUvP9psZj98A7MtMoVG1i7TOYo5W2Ug78nmGhsBXOi604tfIk_PB-DL_diWvVuDz8i0MIvrkM-zzp7_Lt1Mz51DZIZky5A8MXsAa8b5MutdayzuDXPpigeRfyEjRRgx3mEmsDssfx7_IF0zJReUIGiv0P2IhX1bln7PYE8xoAyaLqXV5JTf9eav75s9fqo3PnfsbeB0sTXHULY23sILNJmwsqjiIsKk34dUjScItKEf1rBVHtr7jc1CU9exGXDh3O_W59uJ3I07sNYpuGP7zhWjQimkjJtjW4id6JVbjg44iiLdev4PL0Un5dRyFyguRIfpvIyVTN7AmZ-kWY4dDYzFzEo0u0BYmS2vCN8-wzpV1Kk9s7Ni0IfbHQmFBRsx7WG2mDX4AIRGdSqS1OtZ5wexXU-8MDSuJocp6EC-QqEyQJefqGLeVd09iVTF4FYNXBfB6cLDsctdpcjzVeIvBWDYMOPRgdwF3FXbtrErzrBiQ_ZQk2__v9QnWx-XkrDo7Pf--Ay9Tzm_x4ZhdWG3v57hHBkqrP_p1-QAhKd_6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Adaptive+Task+Offloading+in+Edge+Computing+Based+on+Meta+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Wang%2C+Jin&rft.au=Hu%2C+Jia&rft.au=Min%2C+Geyong&rft.au=Zomaya%2C+Albert+Y.&rft.date=2021-01-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=32&rft.issue=1&rft.spage=242&rft.epage=253&rft_id=info:doi/10.1109%2FTPDS.2020.3014896&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2020_3014896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon