GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy
By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a da...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 14; no. 9; pp. 2358 - 2371 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1556-6013 1556-6021 |
DOI | 10.1109/TIFS.2019.2897874 |
Cover
Abstract | By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets. |
---|---|
AbstractList | By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets. |
Author | Deyu Zhang Yaoxue Zhang Ju Ren Chugui Xu Kui Ren Zhan Qin |
Author_xml | – sequence: 1 givenname: Chugui surname: Xu fullname: Xu, Chugui – sequence: 2 givenname: Ju orcidid: 0000-0003-2782-183X surname: Ren fullname: Ren, Ju – sequence: 3 givenname: Deyu orcidid: 0000-0002-5676-1285 surname: Zhang fullname: Zhang, Deyu – sequence: 4 givenname: Yaoxue orcidid: 0000-0001-6717-461X surname: Zhang fullname: Zhang, Yaoxue – sequence: 5 givenname: Zhan surname: Qin fullname: Qin, Zhan – sequence: 6 givenname: Kui surname: Ren fullname: Ren, Kui |
BookMark | eNp9kE1PAjEURRujiYD-AOOmievBfgz9cEdQkASVRFg3nU5LitDBTiHh3zsIYeHC1bsvuee95LTBZaiCBeAOoy7GSD7OxsPPLkFYdomQXPD8ArRwr8cyhgi-PGdMr0G7rpcI5TlmogWmo_57VbhtbXSq4hN888kvdPJhAcfBVXHd5CrAidVfemHhPJQ2woaBO6_hs3fORhuS1ys4jX6nzf4GXDm9qu3taXbAfPgyG7xmk4_ReNCfZIZImjKZC1Jw3St5yRymztgybzakjWG64ELSkuWykLlBBZOWlMKKkheSy6aKqKMd8HC8u4nV99bWSS2rbQzNS0UIxYJJIlDTwseWiVVdR-vUJvq1jnuFkTqIUwdx6iBOncQ1DP_DGJ9-NaSo_epf8v5Iemvt-ZNglDX26Q-DdH2j |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1038_s41551_021_00751_8 crossref_primary_10_1007_s10462_023_10550_z crossref_primary_10_1007_s10462_024_11024_6 crossref_primary_10_1109_TITS_2024_3504523 crossref_primary_10_1002_cpe_6367 crossref_primary_10_1002_ett_4073 crossref_primary_10_1109_TVT_2019_2950907 crossref_primary_10_1007_s11280_024_01246_7 crossref_primary_10_1109_TNET_2019_2947452 crossref_primary_10_1016_j_ins_2022_04_030 crossref_primary_10_3390_e23040467 crossref_primary_10_1002_cpe_6808 crossref_primary_10_1016_j_eswa_2024_125181 crossref_primary_10_1109_TCC_2024_3459789 crossref_primary_10_1007_s11042_020_09308_4 crossref_primary_10_1109_TIFS_2023_3342654 crossref_primary_10_1145_3459992 crossref_primary_10_1109_TII_2019_2960127 crossref_primary_10_1109_JBHI_2022_3157725 crossref_primary_10_1109_TII_2020_3036166 crossref_primary_10_1007_s10586_024_04740_9 crossref_primary_10_3389_frai_2022_813842 crossref_primary_10_1109_MWC_01_1900525 crossref_primary_10_1109_OJCOMS_2024_3386872 crossref_primary_10_1007_s10586_023_04063_1 crossref_primary_10_1109_JIOT_2024_3399226 crossref_primary_10_1109_ACCESS_2023_3315592 crossref_primary_10_1109_ACCESS_2024_3396210 crossref_primary_10_1016_j_eswa_2024_125646 crossref_primary_10_1109_JIOT_2019_2923261 crossref_primary_10_1109_JIOT_2020_2987958 crossref_primary_10_1016_j_neunet_2020_02_001 crossref_primary_10_1109_TBDATA_2023_3277716 crossref_primary_10_1109_TDSC_2020_3006287 crossref_primary_10_1109_TPAMI_2024_3362821 crossref_primary_10_1109_TMI_2021_3065727 crossref_primary_10_1371_journal_pone_0244409 crossref_primary_10_1109_ACCESS_2019_2909869 crossref_primary_10_1145_3712000 crossref_primary_10_1109_TDSC_2022_3233580 crossref_primary_10_1038_s42256_024_00926_3 crossref_primary_10_1109_TDSC_2021_3088480 crossref_primary_10_1016_j_eswa_2024_123582 crossref_primary_10_1145_3491231 crossref_primary_10_1109_JIOT_2020_3033171 crossref_primary_10_1016_j_jisa_2022_103204 crossref_primary_10_1109_TIFS_2022_3185770 crossref_primary_10_1007_s10796_021_10144_6 crossref_primary_10_1109_ACCESS_2021_3137278 crossref_primary_10_1016_j_patcog_2020_107327 crossref_primary_10_32604_csse_2023_025461 crossref_primary_10_1007_s41870_023_01352_1 crossref_primary_10_1016_j_knosys_2025_113339 crossref_primary_10_1016_j_ajpath_2021_02_024 crossref_primary_10_1155_2021_4376418 crossref_primary_10_1016_j_automatica_2023_111062 crossref_primary_10_1007_s10489_022_04378_3 crossref_primary_10_1049_ipr2_12784 crossref_primary_10_1016_j_cose_2021_102285 crossref_primary_10_1145_3523273 crossref_primary_10_1016_j_neucom_2021_10_027 crossref_primary_10_1145_3702980 crossref_primary_10_32604_cmc_2021_014984 crossref_primary_10_1109_TVT_2020_2973651 crossref_primary_10_1016_j_cose_2021_102322 crossref_primary_10_1016_j_preteyeres_2025_101353 crossref_primary_10_1016_j_neucom_2024_127663 crossref_primary_10_2478_amns_2022_2_0081 crossref_primary_10_1016_j_engappai_2024_108862 crossref_primary_10_1016_j_neucom_2023_127126 crossref_primary_10_1016_j_imavis_2023_104678 crossref_primary_10_2478_popets_2021_0040 crossref_primary_10_1016_j_knosys_2023_110576 crossref_primary_10_1109_TVT_2019_2952605 crossref_primary_10_1016_j_future_2023_06_010 crossref_primary_10_1007_s10489_022_03902_9 crossref_primary_10_1109_TKDE_2020_3014246 crossref_primary_10_1109_JSAIT_2024_3384183 crossref_primary_10_1016_j_cose_2021_102275 crossref_primary_10_1016_j_future_2024_107686 crossref_primary_10_1016_j_neunet_2024_106829 crossref_primary_10_18640_ubgmd_750310 crossref_primary_10_1109_TNSM_2023_3280916 crossref_primary_10_1109_ACCESS_2023_3235969 crossref_primary_10_1109_JIOT_2024_3496920 crossref_primary_10_1016_j_eswa_2023_120006 crossref_primary_10_1145_3623404 crossref_primary_10_1016_j_neucom_2020_09_073 crossref_primary_10_3390_s19040970 crossref_primary_10_1109_LSP_2024_3431951 crossref_primary_10_3390_electronics13173423 crossref_primary_10_32604_jihpp_2022_039284 crossref_primary_10_1016_j_jisa_2023_103478 crossref_primary_10_1109_TPDS_2021_3129612 crossref_primary_10_1109_ACCESS_2019_2918928 crossref_primary_10_1016_j_future_2021_11_032 crossref_primary_10_1017_dap_2022_10 crossref_primary_10_1016_j_jnca_2021_103066 crossref_primary_10_1109_MCI_2020_2976185 crossref_primary_10_1109_TIFS_2020_3032021 crossref_primary_10_1109_JIOT_2021_3057419 crossref_primary_10_1016_j_jiixd_2024_02_001 |
Cites_doi | 10.1007/978-3-540-79228-4_1 10.1109/CVPRW.2017.174 10.1109/SP.2017.41 10.1109/TIFS.2017.2737966 10.1109/CVPR.2016.90 10.3390/e19120656 10.1561/0400000042 10.1145/2810103.2813687 10.1109/ICDM.2017.48 10.1007/11761679_29 10.1145/3134428 10.1109/ICCV.2017.405 10.1145/1559845.1559850 10.1145/2976749.2978318 10.1145/3133956.3134012 10.1145/3123266.3123326 10.1109/GlobalSIP.2013.6736861 10.1109/FOCS.2010.12 10.1007/s10994-017-5656-2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2019.2897874 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 2371 |
ExternalDocumentID | 10_1109_TIFS_2019_2897874 8636556 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61702562; 61702561 funderid: 10.13039/501100001809 – fundername: Young and Middle-Aged Scientific Research Project in the Department of Education of Fujian grantid: JAT160469/B201618 – fundername: Scientific Research Fund of the Hunan Education Department grantid: 17C0866 – fundername: National Science Foundation grantid: CNS-1262277 funderid: 10.13039/100000001 – fundername: 111 Project grantid: B18059 – fundername: Central South University grantid: 2016CXS013 funderid: 10.13039/501100002822 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-9482b7a5d7d6f13fced4a5d0acc6ab7893d649b94c0b69e2d8e8d7b979fce03f3 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Sun Jun 29 13:15:49 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Wed Aug 27 02:45:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-9482b7a5d7d6f13fced4a5d0acc6ab7893d649b94c0b69e2d8e8d7b979fce03f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2782-183X 0000-0001-6717-461X 0000-0002-5676-1285 |
PQID | 2231869280 |
PQPubID | 85506 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2231869280 ieee_primary_8636556 crossref_primary_10_1109_TIFS_2019_2897874 crossref_citationtrail_10_1109_TIFS_2019_2897874 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | alemi (ref35) 2016 dwork (ref7) 2014; 9 ref36 ref14 ref31 beaulieu-jones (ref30) 2017 ioffe (ref18) 2015 zhang (ref24) 2018 ref11 ref32 ref10 shokri (ref12) 2015 papernot (ref13) 2017 arjovsky (ref6) 2017 ref39 ref17 ref38 ref16 hamm (ref37) 2016 ref19 mogren (ref4) 2016 zhao (ref27) 2016 salimans (ref5) 2016 goodfellow (ref3) 2014 choi (ref33) 2017 dwork (ref9) 2006 triastcyn (ref44) 2018 hinton (ref20) 2012 ref26 ref42 edwards (ref34) 2015 ref21 phan (ref41) 2016 ref43 qi (ref29) 2017 mirza (ref15) 2014 ref8 makhzani (ref1) 2015 radford (ref23) 2015 berthelot (ref28) 2017 ref40 xie (ref25) 2018 mescheder (ref2) 2017 gulrajani (ref22) 2017 |
References_xml | – ident: ref39 doi: 10.1007/978-3-540-79228-4_1 – year: 2015 ident: ref1 publication-title: Adversarial autoencoders – year: 2012 ident: ref20 publication-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent – year: 2015 ident: ref23 publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR – start-page: 5767 year: 2017 ident: ref22 article-title: Improved training of wasserstein GANs publication-title: Proc Adv Neural Inf Process Syst – start-page: 1309 year: 2016 ident: ref41 article-title: Differential privacy preservation for deep auto-encoders: an application of human behavior prediction publication-title: Proc 13rd AAAI Conf Artif Intell – year: 2018 ident: ref44 publication-title: Generating artificial data for private deep learning – ident: ref36 doi: 10.1109/CVPRW.2017.174 – start-page: 1 year: 2017 ident: ref13 article-title: Semi-supervised knowledge transfer for deep learning from private training data publication-title: Proc Int Conf Learn Represent – year: 2017 ident: ref2 publication-title: Adversarial variational bayes Unifying variational autoencoders and generative adversarial networks – ident: ref26 doi: 10.1109/SP.2017.41 – ident: ref40 doi: 10.1109/TIFS.2017.2737966 – ident: ref19 doi: 10.1109/CVPR.2016.90 – ident: ref38 doi: 10.3390/e19120656 – start-page: 214 year: 2017 ident: ref6 article-title: Wasserstein generative adversarial networks publication-title: Proc 34th Int Conf Mach Learn – volume: 9 start-page: 211 year: 2014 ident: ref7 article-title: The algorithmic foundations of differential privacy publication-title: Found Trends Theor Comput Sci doi: 10.1561/0400000042 – year: 2017 ident: ref30 publication-title: Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing – start-page: 448 year: 2015 ident: ref18 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the 32nd Intl Conf on Machine Learning – year: 2014 ident: ref15 publication-title: Conditional generative adversarial nets – year: 2017 ident: ref33 publication-title: Generating multi-label discrete patient records using generative adversarial networks – start-page: 1310 year: 2015 ident: ref12 article-title: Privacy-preserving deep learning publication-title: Proc 22nd ACM SIGSAC Conf Comput Commun Secur doi: 10.1145/2810103.2813687 – year: 2016 ident: ref35 publication-title: Deep variational information bottleneck – year: 2018 ident: ref25 publication-title: Differentially private generative adversarial network – ident: ref42 doi: 10.1109/ICDM.2017.48 – ident: ref14 doi: 10.1007/11761679_29 – year: 2016 ident: ref4 publication-title: C-RNN-GAN Continuous recurrent neural networks with adversarial training – year: 2017 ident: ref29 publication-title: Loss-sensitive generative adversarial networks on lipschitz densities – ident: ref10 doi: 10.1145/3134428 – ident: ref31 doi: 10.1109/ICCV.2017.405 – year: 2018 ident: ref24 publication-title: Differentially private releasing via deep generative model – start-page: 2234 year: 2016 ident: ref5 article-title: Improved techniques for training GANs publication-title: Proc Adv Neural Inf Process Syst – start-page: 2672 year: 2014 ident: ref3 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref21 doi: 10.1145/1559845.1559850 – ident: ref11 doi: 10.1145/2976749.2978318 – ident: ref8 doi: 10.1145/3133956.3134012 – year: 2017 ident: ref28 publication-title: BEGAN Boundary Equilibrium Generative Adversarial Networks – year: 2016 ident: ref27 publication-title: Energy-based Generative Adversarial Network – year: 2015 ident: ref34 publication-title: Censoring representations with an adversary – year: 2016 ident: ref37 publication-title: Minimax filter Learning to preserve privacy from inference attacks – ident: ref32 doi: 10.1145/3123266.3123326 – ident: ref17 doi: 10.1109/GlobalSIP.2013.6736861 – ident: ref16 doi: 10.1109/FOCS.2010.12 – ident: ref43 doi: 10.1007/s10994-017-5656-2 – start-page: 265 year: 2006 ident: ref9 article-title: Calibrating noise to sensitivity in private data analysis publication-title: Cryptography |
SSID | ssj0044168 |
Score | 2.6287973 |
Snippet | By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2358 |
SubjectTerms | Data models deep learning Differential privacy Empirical analysis Gallium nitride generative adversarial network Generative adversarial networks Information leakage Leakage Learning Privacy Pruning Stability analysis Training |
Title | GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy |
URI | https://ieeexplore.ieee.org/document/8636556 https://www.proquest.com/docview/2231869280 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5Mn_TB6VScTsmDT2JqbNK08U3UecGJoIJvpblUxmQTtw7015u06fCG-NbSnBL4knNJzjkfwG5EjHZt6rD1HXLMaKixkFRgI3ikMuOMujsa6N3wiwd29Rg9NmB_VgtjjCmTz0zgHsu7fD1ShTsqO0g45VHE52DOLrOqVqvWutaqV2Vv9ju2QQb1N5iHRBzcX3bvXBKXCGx0YSXZFxtUkqr80MSleek2oVdPrMoqGQTFRAbq_VvPxv_OfBmWvJ-JjquFsQINM2xBs-ZwQH5Lt2DxU0PCVbg9P74ZybwYKxeLH6Fev2rBMXxCvm7J4YiuTTawegiVpEnIyqBpP0OnnmvF6oxndPvan2bqbQ0eumf3JxfYcy5gZQ3_BAuWhDLOIh1rnh_SXBnN7BvJlOKZjK13ozkTUjBFJBcm1IlJdCxFLHLHPJbTdZgfjoZmAxANpTX_OmZcu7aESsSRITnJdBwpKmjSBlKjkCrfkNzxYjynZWBCROqASx1wqQeuDXszkZeqG8dfg1cdELOBHoM2dGqoU79fx6l1khw3V5iQzd-ltmDB_bvKLuvA_OS1MNvWHZnInXIdfgALktrU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvIvzmgefxM6subTxTdQ5dRuCE3wrzaUylE10G-ivN2nT4Q3xrYWEBr7kXNJzvg9gn2GjHU1dYGOHLKAk1IGQRARGcKZS45y6uxpod3jzjl7ds_spOJz0whhj8uIzU3OP-b98PVAjd1V2FHPCGePTMGP9PmVFt1Zpd61fLxrf7IjAphnE_8OsY3HUvWzcujIuUbP5hd2i9IsXymVVftji3ME0FqFdLq2oK3msjYaypt6_sTb-d-1LsOAjTXRSbI1lmDL9FVgsVRyQP9QrMP-JknAVbi5OOgOZjV6Vy8aPUbtXkHD0H5DvXHJIopZJH60lQrlsErJz0LiXojOvtmKtxhO6eemNU_W2BneN8-5pM_CqC4Gyrn8YCBqHMkqZjjTP6iRTRlP7hlOleCojG99oToUUVGHJhQl1bGIdSRGJzGmPZWQdKv1B32wAIqG0AYCOKNeOmFCJiBmc4VRHTBFB4irgEoVEeUpyp4zxlOSpCRaJAy5xwCUeuCocTKY8F3wcfw1edUBMBnoMqrBdQp34E_ua2DDJqXOFMd78fdYezDa77VbSuuxcb8Gc-05Ra7YNleHLyOzY4GQod_M9-QGpBt4h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GANobfuscator%3A+Mitigating+Information+Leakage+Under+GAN+via+Differential+Privacy&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Chugui+Xu&rft.au=Ju+Ren&rft.au=Deyu+Zhang&rft.au=Yaoxue+Zhang&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=14&rft.issue=9&rft.spage=2358&rft.epage=2371&rft_id=info:doi/10.1109%2FTIFS.2019.2897874&rft.externalDocID=8636556 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |