GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy

By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a da...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 14; no. 9; pp. 2358 - 2371
Main Authors Xu, Chugui, Ren, Ju, Zhang, Deyu, Zhang, Yaoxue, Qin, Zhan, Ren, Kui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
DOI10.1109/TIFS.2019.2897874

Cover

Abstract By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets.
AbstractList By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets.
Author Deyu Zhang
Yaoxue Zhang
Ju Ren
Chugui Xu
Kui Ren
Zhan Qin
Author_xml – sequence: 1
  givenname: Chugui
  surname: Xu
  fullname: Xu, Chugui
– sequence: 2
  givenname: Ju
  orcidid: 0000-0003-2782-183X
  surname: Ren
  fullname: Ren, Ju
– sequence: 3
  givenname: Deyu
  orcidid: 0000-0002-5676-1285
  surname: Zhang
  fullname: Zhang, Deyu
– sequence: 4
  givenname: Yaoxue
  orcidid: 0000-0001-6717-461X
  surname: Zhang
  fullname: Zhang, Yaoxue
– sequence: 5
  givenname: Zhan
  surname: Qin
  fullname: Qin, Zhan
– sequence: 6
  givenname: Kui
  surname: Ren
  fullname: Ren, Kui
BookMark eNp9kE1PAjEURRujiYD-AOOmievBfgz9cEdQkASVRFg3nU5LitDBTiHh3zsIYeHC1bsvuee95LTBZaiCBeAOoy7GSD7OxsPPLkFYdomQXPD8ArRwr8cyhgi-PGdMr0G7rpcI5TlmogWmo_57VbhtbXSq4hN888kvdPJhAcfBVXHd5CrAidVfemHhPJQ2woaBO6_hs3fORhuS1ys4jX6nzf4GXDm9qu3taXbAfPgyG7xmk4_ReNCfZIZImjKZC1Jw3St5yRymztgybzakjWG64ELSkuWykLlBBZOWlMKKkheSy6aKqKMd8HC8u4nV99bWSS2rbQzNS0UIxYJJIlDTwseWiVVdR-vUJvq1jnuFkTqIUwdx6iBOncQ1DP_DGJ9-NaSo_epf8v5Iemvt-ZNglDX26Q-DdH2j
CODEN ITIFA6
CitedBy_id crossref_primary_10_1038_s41551_021_00751_8
crossref_primary_10_1007_s10462_023_10550_z
crossref_primary_10_1007_s10462_024_11024_6
crossref_primary_10_1109_TITS_2024_3504523
crossref_primary_10_1002_cpe_6367
crossref_primary_10_1002_ett_4073
crossref_primary_10_1109_TVT_2019_2950907
crossref_primary_10_1007_s11280_024_01246_7
crossref_primary_10_1109_TNET_2019_2947452
crossref_primary_10_1016_j_ins_2022_04_030
crossref_primary_10_3390_e23040467
crossref_primary_10_1002_cpe_6808
crossref_primary_10_1016_j_eswa_2024_125181
crossref_primary_10_1109_TCC_2024_3459789
crossref_primary_10_1007_s11042_020_09308_4
crossref_primary_10_1109_TIFS_2023_3342654
crossref_primary_10_1145_3459992
crossref_primary_10_1109_TII_2019_2960127
crossref_primary_10_1109_JBHI_2022_3157725
crossref_primary_10_1109_TII_2020_3036166
crossref_primary_10_1007_s10586_024_04740_9
crossref_primary_10_3389_frai_2022_813842
crossref_primary_10_1109_MWC_01_1900525
crossref_primary_10_1109_OJCOMS_2024_3386872
crossref_primary_10_1007_s10586_023_04063_1
crossref_primary_10_1109_JIOT_2024_3399226
crossref_primary_10_1109_ACCESS_2023_3315592
crossref_primary_10_1109_ACCESS_2024_3396210
crossref_primary_10_1016_j_eswa_2024_125646
crossref_primary_10_1109_JIOT_2019_2923261
crossref_primary_10_1109_JIOT_2020_2987958
crossref_primary_10_1016_j_neunet_2020_02_001
crossref_primary_10_1109_TBDATA_2023_3277716
crossref_primary_10_1109_TDSC_2020_3006287
crossref_primary_10_1109_TPAMI_2024_3362821
crossref_primary_10_1109_TMI_2021_3065727
crossref_primary_10_1371_journal_pone_0244409
crossref_primary_10_1109_ACCESS_2019_2909869
crossref_primary_10_1145_3712000
crossref_primary_10_1109_TDSC_2022_3233580
crossref_primary_10_1038_s42256_024_00926_3
crossref_primary_10_1109_TDSC_2021_3088480
crossref_primary_10_1016_j_eswa_2024_123582
crossref_primary_10_1145_3491231
crossref_primary_10_1109_JIOT_2020_3033171
crossref_primary_10_1016_j_jisa_2022_103204
crossref_primary_10_1109_TIFS_2022_3185770
crossref_primary_10_1007_s10796_021_10144_6
crossref_primary_10_1109_ACCESS_2021_3137278
crossref_primary_10_1016_j_patcog_2020_107327
crossref_primary_10_32604_csse_2023_025461
crossref_primary_10_1007_s41870_023_01352_1
crossref_primary_10_1016_j_knosys_2025_113339
crossref_primary_10_1016_j_ajpath_2021_02_024
crossref_primary_10_1155_2021_4376418
crossref_primary_10_1016_j_automatica_2023_111062
crossref_primary_10_1007_s10489_022_04378_3
crossref_primary_10_1049_ipr2_12784
crossref_primary_10_1016_j_cose_2021_102285
crossref_primary_10_1145_3523273
crossref_primary_10_1016_j_neucom_2021_10_027
crossref_primary_10_1145_3702980
crossref_primary_10_32604_cmc_2021_014984
crossref_primary_10_1109_TVT_2020_2973651
crossref_primary_10_1016_j_cose_2021_102322
crossref_primary_10_1016_j_preteyeres_2025_101353
crossref_primary_10_1016_j_neucom_2024_127663
crossref_primary_10_2478_amns_2022_2_0081
crossref_primary_10_1016_j_engappai_2024_108862
crossref_primary_10_1016_j_neucom_2023_127126
crossref_primary_10_1016_j_imavis_2023_104678
crossref_primary_10_2478_popets_2021_0040
crossref_primary_10_1016_j_knosys_2023_110576
crossref_primary_10_1109_TVT_2019_2952605
crossref_primary_10_1016_j_future_2023_06_010
crossref_primary_10_1007_s10489_022_03902_9
crossref_primary_10_1109_TKDE_2020_3014246
crossref_primary_10_1109_JSAIT_2024_3384183
crossref_primary_10_1016_j_cose_2021_102275
crossref_primary_10_1016_j_future_2024_107686
crossref_primary_10_1016_j_neunet_2024_106829
crossref_primary_10_18640_ubgmd_750310
crossref_primary_10_1109_TNSM_2023_3280916
crossref_primary_10_1109_ACCESS_2023_3235969
crossref_primary_10_1109_JIOT_2024_3496920
crossref_primary_10_1016_j_eswa_2023_120006
crossref_primary_10_1145_3623404
crossref_primary_10_1016_j_neucom_2020_09_073
crossref_primary_10_3390_s19040970
crossref_primary_10_1109_LSP_2024_3431951
crossref_primary_10_3390_electronics13173423
crossref_primary_10_32604_jihpp_2022_039284
crossref_primary_10_1016_j_jisa_2023_103478
crossref_primary_10_1109_TPDS_2021_3129612
crossref_primary_10_1109_ACCESS_2019_2918928
crossref_primary_10_1016_j_future_2021_11_032
crossref_primary_10_1017_dap_2022_10
crossref_primary_10_1016_j_jnca_2021_103066
crossref_primary_10_1109_MCI_2020_2976185
crossref_primary_10_1109_TIFS_2020_3032021
crossref_primary_10_1109_JIOT_2021_3057419
crossref_primary_10_1016_j_jiixd_2024_02_001
Cites_doi 10.1007/978-3-540-79228-4_1
10.1109/CVPRW.2017.174
10.1109/SP.2017.41
10.1109/TIFS.2017.2737966
10.1109/CVPR.2016.90
10.3390/e19120656
10.1561/0400000042
10.1145/2810103.2813687
10.1109/ICDM.2017.48
10.1007/11761679_29
10.1145/3134428
10.1109/ICCV.2017.405
10.1145/1559845.1559850
10.1145/2976749.2978318
10.1145/3133956.3134012
10.1145/3123266.3123326
10.1109/GlobalSIP.2013.6736861
10.1109/FOCS.2010.12
10.1007/s10994-017-5656-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2019.2897874
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 2371
ExternalDocumentID 10_1109_TIFS_2019_2897874
8636556
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702562; 61702561
  funderid: 10.13039/501100001809
– fundername: Young and Middle-Aged Scientific Research Project in the Department of Education of Fujian
  grantid: JAT160469/B201618
– fundername: Scientific Research Fund of the Hunan Education Department
  grantid: 17C0866
– fundername: National Science Foundation
  grantid: CNS-1262277
  funderid: 10.13039/100000001
– fundername: 111 Project
  grantid: B18059
– fundername: Central South University
  grantid: 2016CXS013
  funderid: 10.13039/501100002822
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-9482b7a5d7d6f13fced4a5d0acc6ab7893d649b94c0b69e2d8e8d7b979fce03f3
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Sun Jun 29 13:15:49 EDT 2025
Tue Jul 01 02:34:14 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Wed Aug 27 02:45:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-9482b7a5d7d6f13fced4a5d0acc6ab7893d649b94c0b69e2d8e8d7b979fce03f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2782-183X
0000-0001-6717-461X
0000-0002-5676-1285
PQID 2231869280
PQPubID 85506
PageCount 14
ParticipantIDs proquest_journals_2231869280
ieee_primary_8636556
crossref_primary_10_1109_TIFS_2019_2897874
crossref_citationtrail_10_1109_TIFS_2019_2897874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References alemi (ref35) 2016
dwork (ref7) 2014; 9
ref36
ref14
ref31
beaulieu-jones (ref30) 2017
ioffe (ref18) 2015
zhang (ref24) 2018
ref11
ref32
ref10
shokri (ref12) 2015
papernot (ref13) 2017
arjovsky (ref6) 2017
ref39
ref17
ref38
ref16
hamm (ref37) 2016
ref19
mogren (ref4) 2016
zhao (ref27) 2016
salimans (ref5) 2016
goodfellow (ref3) 2014
choi (ref33) 2017
dwork (ref9) 2006
triastcyn (ref44) 2018
hinton (ref20) 2012
ref26
ref42
edwards (ref34) 2015
ref21
phan (ref41) 2016
ref43
qi (ref29) 2017
mirza (ref15) 2014
ref8
makhzani (ref1) 2015
radford (ref23) 2015
berthelot (ref28) 2017
ref40
xie (ref25) 2018
mescheder (ref2) 2017
gulrajani (ref22) 2017
References_xml – ident: ref39
  doi: 10.1007/978-3-540-79228-4_1
– year: 2015
  ident: ref1
  publication-title: Adversarial autoencoders
– year: 2012
  ident: ref20
  publication-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent
– year: 2015
  ident: ref23
  publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR
– start-page: 5767
  year: 2017
  ident: ref22
  article-title: Improved training of wasserstein GANs
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1309
  year: 2016
  ident: ref41
  article-title: Differential privacy preservation for deep auto-encoders: an application of human behavior prediction
  publication-title: Proc 13rd AAAI Conf Artif Intell
– year: 2018
  ident: ref44
  publication-title: Generating artificial data for private deep learning
– ident: ref36
  doi: 10.1109/CVPRW.2017.174
– start-page: 1
  year: 2017
  ident: ref13
  article-title: Semi-supervised knowledge transfer for deep learning from private training data
  publication-title: Proc Int Conf Learn Represent
– year: 2017
  ident: ref2
  publication-title: Adversarial variational bayes Unifying variational autoencoders and generative adversarial networks
– ident: ref26
  doi: 10.1109/SP.2017.41
– ident: ref40
  doi: 10.1109/TIFS.2017.2737966
– ident: ref19
  doi: 10.1109/CVPR.2016.90
– ident: ref38
  doi: 10.3390/e19120656
– start-page: 214
  year: 2017
  ident: ref6
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc 34th Int Conf Mach Learn
– volume: 9
  start-page: 211
  year: 2014
  ident: ref7
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found Trends Theor Comput Sci
  doi: 10.1561/0400000042
– year: 2017
  ident: ref30
  publication-title: Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing
– start-page: 448
  year: 2015
  ident: ref18
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd Intl Conf on Machine Learning
– year: 2014
  ident: ref15
  publication-title: Conditional generative adversarial nets
– year: 2017
  ident: ref33
  publication-title: Generating multi-label discrete patient records using generative adversarial networks
– start-page: 1310
  year: 2015
  ident: ref12
  article-title: Privacy-preserving deep learning
  publication-title: Proc 22nd ACM SIGSAC Conf Comput Commun Secur
  doi: 10.1145/2810103.2813687
– year: 2016
  ident: ref35
  publication-title: Deep variational information bottleneck
– year: 2018
  ident: ref25
  publication-title: Differentially private generative adversarial network
– ident: ref42
  doi: 10.1109/ICDM.2017.48
– ident: ref14
  doi: 10.1007/11761679_29
– year: 2016
  ident: ref4
  publication-title: C-RNN-GAN Continuous recurrent neural networks with adversarial training
– year: 2017
  ident: ref29
  publication-title: Loss-sensitive generative adversarial networks on lipschitz densities
– ident: ref10
  doi: 10.1145/3134428
– ident: ref31
  doi: 10.1109/ICCV.2017.405
– year: 2018
  ident: ref24
  publication-title: Differentially private releasing via deep generative model
– start-page: 2234
  year: 2016
  ident: ref5
  article-title: Improved techniques for training GANs
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2672
  year: 2014
  ident: ref3
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref21
  doi: 10.1145/1559845.1559850
– ident: ref11
  doi: 10.1145/2976749.2978318
– ident: ref8
  doi: 10.1145/3133956.3134012
– year: 2017
  ident: ref28
  publication-title: BEGAN Boundary Equilibrium Generative Adversarial Networks
– year: 2016
  ident: ref27
  publication-title: Energy-based Generative Adversarial Network
– year: 2015
  ident: ref34
  publication-title: Censoring representations with an adversary
– year: 2016
  ident: ref37
  publication-title: Minimax filter Learning to preserve privacy from inference attacks
– ident: ref32
  doi: 10.1145/3123266.3123326
– ident: ref17
  doi: 10.1109/GlobalSIP.2013.6736861
– ident: ref16
  doi: 10.1109/FOCS.2010.12
– ident: ref43
  doi: 10.1007/s10994-017-5656-2
– start-page: 265
  year: 2006
  ident: ref9
  article-title: Calibrating noise to sensitivity in private data analysis
  publication-title: Cryptography
SSID ssj0044168
Score 2.6287973
Snippet By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2358
SubjectTerms Data models
deep learning
Differential privacy
Empirical analysis
Gallium nitride
generative adversarial network
Generative adversarial networks
Information leakage
Leakage
Learning
Privacy
Pruning
Stability analysis
Training
Title GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy
URI https://ieeexplore.ieee.org/document/8636556
https://www.proquest.com/docview/2231869280
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD5Mn_TB6VScTsmDT2JqbNK08U3UecGJoIJvpblUxmQTtw7015u06fCG-NbSnBL4knNJzjkfwG5EjHZt6rD1HXLMaKixkFRgI3ikMuOMujsa6N3wiwd29Rg9NmB_VgtjjCmTz0zgHsu7fD1ShTsqO0g45VHE52DOLrOqVqvWutaqV2Vv9ju2QQb1N5iHRBzcX3bvXBKXCGx0YSXZFxtUkqr80MSleek2oVdPrMoqGQTFRAbq_VvPxv_OfBmWvJ-JjquFsQINM2xBs-ZwQH5Lt2DxU0PCVbg9P74ZybwYKxeLH6Fev2rBMXxCvm7J4YiuTTawegiVpEnIyqBpP0OnnmvF6oxndPvan2bqbQ0eumf3JxfYcy5gZQ3_BAuWhDLOIh1rnh_SXBnN7BvJlOKZjK13ozkTUjBFJBcm1IlJdCxFLHLHPJbTdZgfjoZmAxANpTX_OmZcu7aESsSRITnJdBwpKmjSBlKjkCrfkNzxYjynZWBCROqASx1wqQeuDXszkZeqG8dfg1cdELOBHoM2dGqoU79fx6l1khw3V5iQzd-ltmDB_bvKLuvA_OS1MNvWHZnInXIdfgALktrU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7ofFAfvIvzmgefxM6subTxTdQ5dRuCE3wrzaUylE10G-ivN2nT4Q3xrYWEBr7kXNJzvg9gn2GjHU1dYGOHLKAk1IGQRARGcKZS45y6uxpod3jzjl7ds_spOJz0whhj8uIzU3OP-b98PVAjd1V2FHPCGePTMGP9PmVFt1Zpd61fLxrf7IjAphnE_8OsY3HUvWzcujIuUbP5hd2i9IsXymVVftji3ME0FqFdLq2oK3msjYaypt6_sTb-d-1LsOAjTXRSbI1lmDL9FVgsVRyQP9QrMP-JknAVbi5OOgOZjV6Vy8aPUbtXkHD0H5DvXHJIopZJH60lQrlsErJz0LiXojOvtmKtxhO6eemNU_W2BneN8-5pM_CqC4Gyrn8YCBqHMkqZjjTP6iRTRlP7hlOleCojG99oToUUVGHJhQl1bGIdSRGJzGmPZWQdKv1B32wAIqG0AYCOKNeOmFCJiBmc4VRHTBFB4irgEoVEeUpyp4zxlOSpCRaJAy5xwCUeuCocTKY8F3wcfw1edUBMBnoMqrBdQp34E_ua2DDJqXOFMd78fdYezDa77VbSuuxcb8Gc-05Ra7YNleHLyOzY4GQod_M9-QGpBt4h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GANobfuscator%3A+Mitigating+Information+Leakage+Under+GAN+via+Differential+Privacy&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Chugui+Xu&rft.au=Ju+Ren&rft.au=Deyu+Zhang&rft.au=Yaoxue+Zhang&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=14&rft.issue=9&rft.spage=2358&rft.epage=2371&rft_id=info:doi/10.1109%2FTIFS.2019.2897874&rft.externalDocID=8636556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon