C-GLISp: Preference-Based Global Optimization Under Unknown Constraints With Applications to Controller Calibration
Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibrati...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 30; no. 5; pp. 2176 - 2187 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2021.3136711 |
Cover
Loading…
Abstract | Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibration of the parameters of control law. The calibrator can judge whether a particular combination of parameters leads to a better, worse, or similar closed-loop performance. Often, the search for the optimal parameters is also subject to unknown constraints. For example, the vector of calibration parameters must not lead to closed-loop instability. This article extends an active preference learning algorithm introduced recently to handle unknown constraints. The proposed method, called C-GLISp, looks for an optimizer of the problem only based on preferences expressed on pairs of candidate vectors and on whether a given vector is reported feasible and/or satisfactory. C-GLISp learns a surrogate of the underlying objective function based on the expressed preferences and a surrogate of the probability that a sample is feasible and/or satisfactory based on whether each of the tested vectors was judged as such. The surrogate functions are used iteratively to propose a new candidate vector to test and judge. Numerical benchmarks and a semiautomated control calibration task demonstrate the effectiveness of C-GLISp, showing that it can reach near-optimal solutions within a small number of iterations. |
---|---|
AbstractList | Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibration of the parameters of control law. The calibrator can judge whether a particular combination of parameters leads to a better, worse, or similar closed-loop performance. Often, the search for the optimal parameters is also subject to unknown constraints. For example, the vector of calibration parameters must not lead to closed-loop instability. This article extends an active preference learning algorithm introduced recently to handle unknown constraints. The proposed method, called C-GLISp, looks for an optimizer of the problem only based on preferences expressed on pairs of candidate vectors and on whether a given vector is reported feasible and/or satisfactory. C-GLISp learns a surrogate of the underlying objective function based on the expressed preferences and a surrogate of the probability that a sample is feasible and/or satisfactory based on whether each of the tested vectors was judged as such. The surrogate functions are used iteratively to propose a new candidate vector to test and judge. Numerical benchmarks and a semiautomated control calibration task demonstrate the effectiveness of C-GLISp, showing that it can reach near-optimal solutions within a small number of iterations. |
Author | Bemporad, Alberto Zhu, Mengjia Piga, Dario |
Author_xml | – sequence: 1 givenname: Mengjia orcidid: 0000-0002-7569-9886 surname: Zhu fullname: Zhu, Mengjia email: mengjia.zhu@imtlucca.it organization: IMT School for Advanced Studies Lucca, Lucca, Italy – sequence: 2 givenname: Dario orcidid: 0000-0001-7691-4886 surname: Piga fullname: Piga, Dario email: dario.piga@supsi.ch organization: IDSIA Dalle Molle Institute for Artificial Intelligence, SUPSI-USI, Lugano, Switzerland – sequence: 3 givenname: Alberto orcidid: 0000-0001-6761-0856 surname: Bemporad fullname: Bemporad, Alberto email: alberto.bemporad@imtlucca.it organization: IMT School for Advanced Studies Lucca, Lucca, Italy |
BookMark | eNp9kEFLwzAUx4MoqNMPIF4KnjuTpkkXb1p0DgYK2_BY0vQVM2tSkwzRT2-6DQ8evOQ9eL9_kvc7RYfGGkDoguAxIVhcL8vFcpzhjIwpobwg5ACdEMYmKZ5wdhh7zGnKGeXH6NT7NcYkZ1lxgnyZTuezRX-TPDtowYFRkN5JD00y7Wwtu-SpD_pdf8ugrUlWpgEXzzdjP01SWuODk9oEn7zo8Jrc9n2n1Rb1SbADEJztupgpZadrtx2doaNWdh7O93WEVg_3y_IxnT9NZ-XtPFWZoCEVFGqW162qWctqyCXnLVFYSMZorhQRVMQOc4ZzSaBuMZBMNlmTKQGTosF0hK529_bOfmzAh2ptN87EJ6uswDkWE8rySBU7SjnrfZRQKR22_xxW6yqCq8FwNRiuBsPV3nBMkj_J3ul36b7-zVzuMhoAfnnB41AI-gNpoooX |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2024_08_306 crossref_primary_10_1109_TCST_2024_3407582 crossref_primary_10_1109_LRA_2024_3455792 crossref_primary_10_1109_LCSYS_2023_3270347 crossref_primary_10_1016_j_eswa_2023_123070 crossref_primary_10_1016_j_automatica_2022_110598 crossref_primary_10_1515_auto_2023_0181 crossref_primary_10_1039_D4DD00113C crossref_primary_10_1016_j_automatica_2023_111110 crossref_primary_10_1109_TAI_2023_3267030 crossref_primary_10_1007_s10589_023_00491_2 |
Cites_doi | 10.1109/ICRA.2016.7487170 10.1007/s12532-018-0144-7 10.1214/ss/1177012413 10.2139/ssrn.926132 10.1109/ICRA.2017.7989111 10.1007/s10994-020-05935-y 10.1109/ICRA.2016.7487144 10.23919/ECC54610.2021.9654900 10.1016/j.robot.2020.103711 10.1023/B:STCO.0000035301.49549.88 10.24963/ijcai.2019/811 10.1023/A:1008306431147 10.1016/j.ifacol.2020.12.1188 10.2113/gsecongeo.58.8.1246 10.1080/10556780902909948 10.1007/s10898-019-00860-4 10.1109/LCSYS.2019.2913347 10.1016/j.apm.2006.08.008 10.1115/1.3653121 10.1198/TECH.2011.09154 10.1016/j.conengprac.2021.104826 10.1007/s13721-016-0125-6 10.1007/s10589-020-00215-w 10.1007/s10994-021-06019-1 10.1504/ijmmno.2013.055204 10.1109/CDC.2017.8264425 10.1007/s10898-004-0570-0 10.1111/j.2517-6161.1974.tb00994.x 10.1023/A:1011255519438 10.1137/S0363012902400713 10.1109/JPROC.2015.2494218 10.1109/LCSYS.2020.2981895 10.1007/978-3-319-09584-4_25 10.2307/1268522 10.1016/j.conengprac.2020.104488 10.1007/s10898-012-9951-y 10.1080/00207179.2016.1222553 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2021.3136711 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 2187 |
ExternalDocumentID | 10_1109_TCST_2021_3136711 9667199 |
Genre | orig-research |
GrantInformation_xml | – fundername: Italian Ministry of University and Research through the PRIN’17 Project “Data-Driven Learning of Constrained Control Systems” grantid: 2017J89ARP |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c293t-93eb54bfcb5f5be4a66f1c09a5534cc193955306504a1ebf0e12ad2d2c9e87d03 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 04:33:40 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Tue Jul 01 02:36:05 EDT 2025 Wed Aug 27 02:22:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-93eb54bfcb5f5be4a66f1c09a5534cc193955306504a1ebf0e12ad2d2c9e87d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7569-9886 0000-0001-7691-4886 0000-0001-6761-0856 |
PQID | 2704098354 |
PQPubID | 85425 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCST_2021_3136711 ieee_primary_9667199 crossref_citationtrail_10_1109_TCST_2021_3136711 proquest_journals_2704098354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Sept. 2022-9-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref15 ref37 Bemporad (ref8) 2020; 77 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Chu (ref20) ref38 ref19 ref18 Gelbart (ref30) (ref44) 2020 González (ref22) Mishra (ref41) 2006 ref46 ref26 ref47 ref43 Wirth (ref25) 2017; 18 Jones (ref4) 1998; 13 ref27 ref29 ref7 Brochu (ref21) Sui (ref28) Vaz (ref45) 2009; 24 ref9 ref3 Gutmann (ref34) 2001; 19 ref6 ref5 Abdolshah (ref23) 2019 ref40 Christiano (ref24) (ref42) 2016 |
References_xml | – ident: ref19 doi: 10.1109/ICRA.2016.7487170 – start-page: 409 volume-title: Proc. NIPS ident: ref21 article-title: Active preference learning with discrete choice data – ident: ref36 doi: 10.1007/s12532-018-0144-7 – ident: ref3 doi: 10.1214/ss/1177012413 – volume-title: Some new test functions for global optimization and performance of repulsive particle swarm method year: 2006 ident: ref41 doi: 10.2139/ssrn.926132 – ident: ref15 doi: 10.1109/ICRA.2017.7989111 – ident: ref26 doi: 10.1007/s10994-020-05935-y – ident: ref12 doi: 10.1109/ICRA.2016.7487144 – start-page: 1282 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref22 article-title: Preferential Bayesian optimization – volume: 18 start-page: 4945 issue: 1 year: 2017 ident: ref25 article-title: A survey of preference-based reinforcement learning methods publication-title: J. Mach. Learn. Res. – ident: ref27 doi: 10.23919/ECC54610.2021.9654900 – ident: ref16 doi: 10.1016/j.robot.2020.103711 – ident: ref33 doi: 10.1023/B:STCO.0000035301.49549.88 – start-page: 4781 volume-title: Proc. ICML ident: ref28 article-title: Stagewise safe Bayesian optimization with Gaussian processes – volume-title: Bird Problem (Constrained) year: 2016 ident: ref42 – ident: ref11 doi: 10.24963/ijcai.2019/811 – volume-title: Statistics and Machine Learning Toolbox (R2020b) year: 2020 ident: ref44 – start-page: 29 volume-title: Proc. Workshop Learn. Rank (NIPS) ident: ref20 article-title: Extensions of Gaussian processes for ranking: Semisupervised and active learning – volume: 13 start-page: 455 issue: 4 year: 1998 ident: ref4 article-title: Efficient global optimization of expensive black-box functions publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – ident: ref9 doi: 10.1016/j.ifacol.2020.12.1188 – ident: ref1 doi: 10.2113/gsecongeo.58.8.1246 – volume: 24 start-page: 669 issue: 4 year: 2009 ident: ref45 article-title: PSwarm: A hybrid solver for linearly constrained global derivative-free optimization publication-title: Optim. Methods Softw. doi: 10.1080/10556780902909948 – ident: ref31 doi: 10.1007/s10898-019-00860-4 – ident: ref13 doi: 10.1109/LCSYS.2019.2913347 – ident: ref35 doi: 10.1016/j.apm.2006.08.008 – ident: ref2 doi: 10.1115/1.3653121 – start-page: 4299 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Deep reinforcement learning from human preferences – ident: ref32 doi: 10.1198/TECH.2011.09154 – ident: ref6 doi: 10.1016/j.conengprac.2021.104826 – volume-title: arXiv:1902.04228 year: 2019 ident: ref23 article-title: Multi-objective Bayesian optimisation with preferences over objectives – ident: ref7 doi: 10.1007/s13721-016-0125-6 – volume: 77 start-page: 571 issue: 2 year: 2020 ident: ref8 article-title: Global optimization via inverse distance weighting and radial basis functions publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-020-00215-w – ident: ref29 doi: 10.1007/s10994-021-06019-1 – ident: ref43 doi: 10.1504/ijmmno.2013.055204 – start-page: 250 volume-title: Proc. 13th Conf. Uncertainty Artif. Intell. ident: ref30 article-title: Bayesian optimization with unknown constraints – ident: ref14 doi: 10.1109/CDC.2017.8264425 – ident: ref37 doi: 10.1007/s10898-004-0570-0 – ident: ref38 doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 19 start-page: 201 year: 2001 ident: ref34 article-title: A radial basis function method for global optimization publication-title: J. Global Optim. doi: 10.1023/A:1011255519438 – ident: ref47 doi: 10.1137/S0363012902400713 – ident: ref5 doi: 10.1109/JPROC.2015.2494218 – ident: ref10 doi: 10.1109/LCSYS.2020.2981895 – ident: ref18 doi: 10.1007/978-3-319-09584-4_25 – ident: ref40 doi: 10.2307/1268522 – ident: ref17 doi: 10.1016/j.conengprac.2020.104488 – ident: ref39 doi: 10.1007/s10898-012-9951-y – ident: ref46 doi: 10.1080/00207179.2016.1222553 |
SSID | ssj0014527 |
Score | 2.486627 |
Snippet | Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2176 |
SubjectTerms | Active preference learning Algorithms Benchmark testing Calibration Control theory Global optimization global optimization with unknown constraints Linear programming Machine learning model predictive control (MPC) Optimization Parameters Preferences Space exploration Task analysis Tuning |
Title | C-GLISp: Preference-Based Global Optimization Under Unknown Constraints With Applications to Controller Calibration |
URI | https://ieeexplore.ieee.org/document/9667199 https://www.proquest.com/docview/2704098354 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB3RnuDAjiibfOCEcMniLOYGFVAQm9RWcItsxxGIklY0vfD1jJ00YhPiEuVgW45mMp7nWR7APotCLnjkUOmnHAFKFtLYV5pqzqJA-J7DUpsgext2B-zqMXicg8O6FkZrbZPPdNu82lh-OlJTc1V2hK555HLegAYCt7JWq44YsJKeFRGOT0MbkmxV_TSP-p1eH5Gg5yJA9XEF98sZZElVflhie7ycL8HNbGNlVslLe1rItnr_1rPxvztfhsXKzyQnpWKswJzOV2HhU_fBNZh06MX1ZW98TO5rshF6iqdaSkomAHKH9uS1KtQkliEJn-YWLieG6NPSSxQT8vBcPJGTT5FwUozMAJMDP8Q5pv5Llpq2DoPzs36nSysOBqrQESgo97UMmMyUDLJAaibCMHOVw0UQ-EwpdP-4IR5CP48JV8vM0a4nUi_1FNdxlDr-BjTzUa43gcSOQHMR6CwUDFdksULvIRIqjV3tIlRugTOTSqKqBuXmQ4aJBSoOT4wgEyPIpBJkCw7qKeOyO8dfg9eMYOqBlUxasDMTfVL9v5PEi9C4cXMptvX7rG2Y90whhM0224Fm8TbVu-ieFHLP6uUH3U7hWQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CdgAObAwQhbL5sNOES5zYSbxbqcYKKx8SRXCLbMfRJkqLaHrhr-fZSSNgE-IS5WBbjn7O-_D7-AF840kslUwCqqNcooNSxDSNjKVW8kSoKAx47hNkz-L-FT-5ETcLsN_UwlhrffKZ7bhXH8vPJ2bmrsoO0DRPmJSL8AH1vmBVtVYTM-AVQSv6OBGNfVCyVXfUPBj2LofoC4YMXdQI12AvtJCnVflHFnsFc_QRTudbq_JKbjuzUnfM46uuje_d-ydYqy1N0q2Oxjos2PFnWH3Wf3ADpj36a3B8ef-DXDR0I_QQ9VpOKi4Aco4S5a4u1SSeIwmf7h5uTBzVpyeYKKfk-m_5h3SfxcJJOXEDXBb8COe4CjBdnbVNuDr6Oez1ac3CQA2aAiWVkdWC68JoUQhtuYrjgplAKiEibgwagNJRD6GlxxWzuggsC1Ue5qGRNk3yINqCpfFkbLeBpIFCgSFsESuOK_LUoP2QKJOnzDJ0llsQzFHJTN2i3H3IKPOuSiAzB2TmgMxqIFvwvZlyX_XneGvwhgOmGVhj0oL2HPqs_oOnWZigeJPuWmzn_7O-wnJ_eDrIBsdnv3dhJXRlET73rA1L5cPM7qGxUuov_ow-AcT-5KI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C-GLISp%3A+Preference-Based+Global+Optimization+Under+Unknown+Constraints+With+Applications+to+Controller+Calibration&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zhu%2C+Mengjia&rft.au=Piga%2C+Dario&rft.au=Bemporad%2C+Alberto&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=5&rft.spage=2176&rft_id=info:doi/10.1109%2FTCST.2021.3136711&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |