C-GLISp: Preference-Based Global Optimization Under Unknown Constraints With Applications to Controller Calibration

Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibrati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 30; no. 5; pp. 2176 - 2187
Main Authors Zhu, Mengjia, Piga, Dario, Bemporad, Alberto
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2021.3136711

Cover

Loading…
Abstract Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibration of the parameters of control law. The calibrator can judge whether a particular combination of parameters leads to a better, worse, or similar closed-loop performance. Often, the search for the optimal parameters is also subject to unknown constraints. For example, the vector of calibration parameters must not lead to closed-loop instability. This article extends an active preference learning algorithm introduced recently to handle unknown constraints. The proposed method, called C-GLISp, looks for an optimizer of the problem only based on preferences expressed on pairs of candidate vectors and on whether a given vector is reported feasible and/or satisfactory. C-GLISp learns a surrogate of the underlying objective function based on the expressed preferences and a surrogate of the probability that a sample is feasible and/or satisfactory based on whether each of the tested vectors was judged as such. The surrogate functions are used iteratively to propose a new candidate vector to test and judge. Numerical benchmarks and a semiautomated control calibration task demonstrate the effectiveness of C-GLISp, showing that it can reach near-optimal solutions within a small number of iterations.
AbstractList Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for given pairs of candidate optimization vectors. Such optimization problems arise in many real-life examples, such as finding the optimal calibration of the parameters of control law. The calibrator can judge whether a particular combination of parameters leads to a better, worse, or similar closed-loop performance. Often, the search for the optimal parameters is also subject to unknown constraints. For example, the vector of calibration parameters must not lead to closed-loop instability. This article extends an active preference learning algorithm introduced recently to handle unknown constraints. The proposed method, called C-GLISp, looks for an optimizer of the problem only based on preferences expressed on pairs of candidate vectors and on whether a given vector is reported feasible and/or satisfactory. C-GLISp learns a surrogate of the underlying objective function based on the expressed preferences and a surrogate of the probability that a sample is feasible and/or satisfactory based on whether each of the tested vectors was judged as such. The surrogate functions are used iteratively to propose a new candidate vector to test and judge. Numerical benchmarks and a semiautomated control calibration task demonstrate the effectiveness of C-GLISp, showing that it can reach near-optimal solutions within a small number of iterations.
Author Bemporad, Alberto
Zhu, Mengjia
Piga, Dario
Author_xml – sequence: 1
  givenname: Mengjia
  orcidid: 0000-0002-7569-9886
  surname: Zhu
  fullname: Zhu, Mengjia
  email: mengjia.zhu@imtlucca.it
  organization: IMT School for Advanced Studies Lucca, Lucca, Italy
– sequence: 2
  givenname: Dario
  orcidid: 0000-0001-7691-4886
  surname: Piga
  fullname: Piga, Dario
  email: dario.piga@supsi.ch
  organization: IDSIA Dalle Molle Institute for Artificial Intelligence, SUPSI-USI, Lugano, Switzerland
– sequence: 3
  givenname: Alberto
  orcidid: 0000-0001-6761-0856
  surname: Bemporad
  fullname: Bemporad, Alberto
  email: alberto.bemporad@imtlucca.it
  organization: IMT School for Advanced Studies Lucca, Lucca, Italy
BookMark eNp9kEFLwzAUx4MoqNMPIF4KnjuTpkkXb1p0DgYK2_BY0vQVM2tSkwzRT2-6DQ8evOQ9eL9_kvc7RYfGGkDoguAxIVhcL8vFcpzhjIwpobwg5ACdEMYmKZ5wdhh7zGnKGeXH6NT7NcYkZ1lxgnyZTuezRX-TPDtowYFRkN5JD00y7Wwtu-SpD_pdf8ugrUlWpgEXzzdjP01SWuODk9oEn7zo8Jrc9n2n1Rb1SbADEJztupgpZadrtx2doaNWdh7O93WEVg_3y_IxnT9NZ-XtPFWZoCEVFGqW162qWctqyCXnLVFYSMZorhQRVMQOc4ZzSaBuMZBMNlmTKQGTosF0hK529_bOfmzAh2ptN87EJ6uswDkWE8rySBU7SjnrfZRQKR22_xxW6yqCq8FwNRiuBsPV3nBMkj_J3ul36b7-zVzuMhoAfnnB41AI-gNpoooX
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_08_306
crossref_primary_10_1109_TCST_2024_3407582
crossref_primary_10_1109_LRA_2024_3455792
crossref_primary_10_1109_LCSYS_2023_3270347
crossref_primary_10_1016_j_eswa_2023_123070
crossref_primary_10_1016_j_automatica_2022_110598
crossref_primary_10_1515_auto_2023_0181
crossref_primary_10_1039_D4DD00113C
crossref_primary_10_1016_j_automatica_2023_111110
crossref_primary_10_1109_TAI_2023_3267030
crossref_primary_10_1007_s10589_023_00491_2
Cites_doi 10.1109/ICRA.2016.7487170
10.1007/s12532-018-0144-7
10.1214/ss/1177012413
10.2139/ssrn.926132
10.1109/ICRA.2017.7989111
10.1007/s10994-020-05935-y
10.1109/ICRA.2016.7487144
10.23919/ECC54610.2021.9654900
10.1016/j.robot.2020.103711
10.1023/B:STCO.0000035301.49549.88
10.24963/ijcai.2019/811
10.1023/A:1008306431147
10.1016/j.ifacol.2020.12.1188
10.2113/gsecongeo.58.8.1246
10.1080/10556780902909948
10.1007/s10898-019-00860-4
10.1109/LCSYS.2019.2913347
10.1016/j.apm.2006.08.008
10.1115/1.3653121
10.1198/TECH.2011.09154
10.1016/j.conengprac.2021.104826
10.1007/s13721-016-0125-6
10.1007/s10589-020-00215-w
10.1007/s10994-021-06019-1
10.1504/ijmmno.2013.055204
10.1109/CDC.2017.8264425
10.1007/s10898-004-0570-0
10.1111/j.2517-6161.1974.tb00994.x
10.1023/A:1011255519438
10.1137/S0363012902400713
10.1109/JPROC.2015.2494218
10.1109/LCSYS.2020.2981895
10.1007/978-3-319-09584-4_25
10.2307/1268522
10.1016/j.conengprac.2020.104488
10.1007/s10898-012-9951-y
10.1080/00207179.2016.1222553
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2021.3136711
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 2187
ExternalDocumentID 10_1109_TCST_2021_3136711
9667199
Genre orig-research
GrantInformation_xml – fundername: Italian Ministry of University and Research through the PRIN’17 Project “Data-Driven Learning of Constrained Control Systems”
  grantid: 2017J89ARP
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c293t-93eb54bfcb5f5be4a66f1c09a5534cc193955306504a1ebf0e12ad2d2c9e87d03
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Mon Jun 30 04:33:40 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Tue Jul 01 02:36:05 EDT 2025
Wed Aug 27 02:22:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-93eb54bfcb5f5be4a66f1c09a5534cc193955306504a1ebf0e12ad2d2c9e87d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7569-9886
0000-0001-7691-4886
0000-0001-6761-0856
PQID 2704098354
PQPubID 85425
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCST_2021_3136711
ieee_primary_9667199
crossref_citationtrail_10_1109_TCST_2021_3136711
proquest_journals_2704098354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Sept.
2022-9-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
Bemporad (ref8) 2020; 77
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Chu (ref20)
ref38
ref19
ref18
Gelbart (ref30)
(ref44) 2020
González (ref22)
Mishra (ref41) 2006
ref46
ref26
ref47
ref43
Wirth (ref25) 2017; 18
Jones (ref4) 1998; 13
ref27
ref29
ref7
Brochu (ref21)
Sui (ref28)
Vaz (ref45) 2009; 24
ref9
ref3
Gutmann (ref34) 2001; 19
ref6
ref5
Abdolshah (ref23) 2019
ref40
Christiano (ref24)
(ref42) 2016
References_xml – ident: ref19
  doi: 10.1109/ICRA.2016.7487170
– start-page: 409
  volume-title: Proc. NIPS
  ident: ref21
  article-title: Active preference learning with discrete choice data
– ident: ref36
  doi: 10.1007/s12532-018-0144-7
– ident: ref3
  doi: 10.1214/ss/1177012413
– volume-title: Some new test functions for global optimization and performance of repulsive particle swarm method
  year: 2006
  ident: ref41
  doi: 10.2139/ssrn.926132
– ident: ref15
  doi: 10.1109/ICRA.2017.7989111
– ident: ref26
  doi: 10.1007/s10994-020-05935-y
– ident: ref12
  doi: 10.1109/ICRA.2016.7487144
– start-page: 1282
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref22
  article-title: Preferential Bayesian optimization
– volume: 18
  start-page: 4945
  issue: 1
  year: 2017
  ident: ref25
  article-title: A survey of preference-based reinforcement learning methods
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.23919/ECC54610.2021.9654900
– ident: ref16
  doi: 10.1016/j.robot.2020.103711
– ident: ref33
  doi: 10.1023/B:STCO.0000035301.49549.88
– start-page: 4781
  volume-title: Proc. ICML
  ident: ref28
  article-title: Stagewise safe Bayesian optimization with Gaussian processes
– volume-title: Bird Problem (Constrained)
  year: 2016
  ident: ref42
– ident: ref11
  doi: 10.24963/ijcai.2019/811
– volume-title: Statistics and Machine Learning Toolbox (R2020b)
  year: 2020
  ident: ref44
– start-page: 29
  volume-title: Proc. Workshop Learn. Rank (NIPS)
  ident: ref20
  article-title: Extensions of Gaussian processes for ranking: Semisupervised and active learning
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: ref4
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– ident: ref9
  doi: 10.1016/j.ifacol.2020.12.1188
– ident: ref1
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 24
  start-page: 669
  issue: 4
  year: 2009
  ident: ref45
  article-title: PSwarm: A hybrid solver for linearly constrained global derivative-free optimization
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780902909948
– ident: ref31
  doi: 10.1007/s10898-019-00860-4
– ident: ref13
  doi: 10.1109/LCSYS.2019.2913347
– ident: ref35
  doi: 10.1016/j.apm.2006.08.008
– ident: ref2
  doi: 10.1115/1.3653121
– start-page: 4299
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Deep reinforcement learning from human preferences
– ident: ref32
  doi: 10.1198/TECH.2011.09154
– ident: ref6
  doi: 10.1016/j.conengprac.2021.104826
– volume-title: arXiv:1902.04228
  year: 2019
  ident: ref23
  article-title: Multi-objective Bayesian optimisation with preferences over objectives
– ident: ref7
  doi: 10.1007/s13721-016-0125-6
– volume: 77
  start-page: 571
  issue: 2
  year: 2020
  ident: ref8
  article-title: Global optimization via inverse distance weighting and radial basis functions
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-020-00215-w
– ident: ref29
  doi: 10.1007/s10994-021-06019-1
– ident: ref43
  doi: 10.1504/ijmmno.2013.055204
– start-page: 250
  volume-title: Proc. 13th Conf. Uncertainty Artif. Intell.
  ident: ref30
  article-title: Bayesian optimization with unknown constraints
– ident: ref14
  doi: 10.1109/CDC.2017.8264425
– ident: ref37
  doi: 10.1007/s10898-004-0570-0
– ident: ref38
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 19
  start-page: 201
  year: 2001
  ident: ref34
  article-title: A radial basis function method for global optimization
  publication-title: J. Global Optim.
  doi: 10.1023/A:1011255519438
– ident: ref47
  doi: 10.1137/S0363012902400713
– ident: ref5
  doi: 10.1109/JPROC.2015.2494218
– ident: ref10
  doi: 10.1109/LCSYS.2020.2981895
– ident: ref18
  doi: 10.1007/978-3-319-09584-4_25
– ident: ref40
  doi: 10.2307/1268522
– ident: ref17
  doi: 10.1016/j.conengprac.2020.104488
– ident: ref39
  doi: 10.1007/s10898-012-9951-y
– ident: ref46
  doi: 10.1080/00207179.2016.1222553
SSID ssj0014527
Score 2.486627
Snippet Preference-based global optimization algorithms minimize an unknown objective function only based on whether the function is better, worse, or similar for...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2176
SubjectTerms Active preference learning
Algorithms
Benchmark testing
Calibration
Control theory
Global optimization
global optimization with unknown constraints
Linear programming
Machine learning
model predictive control (MPC)
Optimization
Parameters
Preferences
Space exploration
Task analysis
Tuning
Title C-GLISp: Preference-Based Global Optimization Under Unknown Constraints With Applications to Controller Calibration
URI https://ieeexplore.ieee.org/document/9667199
https://www.proquest.com/docview/2704098354
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB3RnuDAjiibfOCEcMniLOYGFVAQm9RWcItsxxGIklY0vfD1jJ00YhPiEuVgW45mMp7nWR7APotCLnjkUOmnHAFKFtLYV5pqzqJA-J7DUpsgext2B-zqMXicg8O6FkZrbZPPdNu82lh-OlJTc1V2hK555HLegAYCt7JWq44YsJKeFRGOT0MbkmxV_TSP-p1eH5Gg5yJA9XEF98sZZElVflhie7ycL8HNbGNlVslLe1rItnr_1rPxvztfhsXKzyQnpWKswJzOV2HhU_fBNZh06MX1ZW98TO5rshF6iqdaSkomAHKH9uS1KtQkliEJn-YWLieG6NPSSxQT8vBcPJGTT5FwUozMAJMDP8Q5pv5Llpq2DoPzs36nSysOBqrQESgo97UMmMyUDLJAaibCMHOVw0UQ-EwpdP-4IR5CP48JV8vM0a4nUi_1FNdxlDr-BjTzUa43gcSOQHMR6CwUDFdksULvIRIqjV3tIlRugTOTSqKqBuXmQ4aJBSoOT4wgEyPIpBJkCw7qKeOyO8dfg9eMYOqBlUxasDMTfVL9v5PEi9C4cXMptvX7rG2Y90whhM0224Fm8TbVu-ieFHLP6uUH3U7hWQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CdgAObAwQhbL5sNOES5zYSbxbqcYKKx8SRXCLbMfRJkqLaHrhr-fZSSNgE-IS5WBbjn7O-_D7-AF840kslUwCqqNcooNSxDSNjKVW8kSoKAx47hNkz-L-FT-5ETcLsN_UwlhrffKZ7bhXH8vPJ2bmrsoO0DRPmJSL8AH1vmBVtVYTM-AVQSv6OBGNfVCyVXfUPBj2LofoC4YMXdQI12AvtJCnVflHFnsFc_QRTudbq_JKbjuzUnfM46uuje_d-ydYqy1N0q2Oxjos2PFnWH3Wf3ADpj36a3B8ef-DXDR0I_QQ9VpOKi4Aco4S5a4u1SSeIwmf7h5uTBzVpyeYKKfk-m_5h3SfxcJJOXEDXBb8COe4CjBdnbVNuDr6Oez1ac3CQA2aAiWVkdWC68JoUQhtuYrjgplAKiEibgwagNJRD6GlxxWzuggsC1Ue5qGRNk3yINqCpfFkbLeBpIFCgSFsESuOK_LUoP2QKJOnzDJ0llsQzFHJTN2i3H3IKPOuSiAzB2TmgMxqIFvwvZlyX_XneGvwhgOmGVhj0oL2HPqs_oOnWZigeJPuWmzn_7O-wnJ_eDrIBsdnv3dhJXRlET73rA1L5cPM7qGxUuov_ow-AcT-5KI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C-GLISp%3A+Preference-Based+Global+Optimization+Under+Unknown+Constraints+With+Applications+to+Controller+Calibration&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Zhu%2C+Mengjia&rft.au=Piga%2C+Dario&rft.au=Bemporad%2C+Alberto&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=30&rft.issue=5&rft.spage=2176&rft_id=info:doi/10.1109%2FTCST.2021.3136711&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon