CASTRA: Seamless and Unobtrusive Authentication of Users to Diverse Mobile Services

This paper presents context-aware security technology for responsive and adaptive protection (CASTRA), an "always-on" context-aware authentication and access control framework that seamlessly and unobtrusively authenticate users to mobile applications of varying sensitivity levels. CASTRA...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 5; no. 5; pp. 4042 - 4057
Main Authors Shila, Devu Manikantan, Srivastava, Kunal
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents context-aware security technology for responsive and adaptive protection (CASTRA), an "always-on" context-aware authentication and access control framework that seamlessly and unobtrusively authenticate users to mobile applications of varying sensitivity levels. CASTRA uses a continuous and multifaceted behavioral biometrics authentication that passively authenticates the user in the background while the device is being in contact with the user, and a context-aware risk assessment and access control that provides access to applications based on the perceived threat level around the device. The behavioral authentication module is constructed by exploiting a combination of supervised and unsupervised learning techniques on raw sensor and GPS data passively gathered from the mobile device. Multiple inferences about the user (or user behavioral traits ) such as frequently visited locations, location transition patterns, physical proximity of user with the device (e.g., device in the pocket or placed on the table), and walking patterns are automatically inferred and extracted. Analytical studies were conducted to derive optimal thresholds to fuse these multiple traits and an adaptive trust score is generated every user-defined time period to determine the degree to which the user is trustworthy to access the applications. CASTRA is implemented in a client-server mode, utilizing the Android and the Amazon Cloud computing platform. The novelty of CASTRA stems from the design and fusion of multiple behavioral biometric-based authentication factors and the development and deployment of a practical end-to-end architecture that enables real-time data acquisition, automatic training and learning of user behavioral patterns, and context-aware risk assessment and access control. The performance of CASTRA was evaluated under natural settings, on 15 subjects, using different variants of the Samsung devices. Multiple realistic attack scenarios (e.g., stolen, lost, and shared devices) targeting mobile devices were designed to prove the security and user-friendliness of the proposed scheme. We also present techniques to reduce energy and bandwidth consumption and ways to unobtrusively acquire data for supervised learning algorithms without requiring explicit user annotation.
AbstractList This paper presents context-aware security technology for responsive and adaptive protection (CASTRA), an “always-on” context-aware authentication and access control framework that seamlessly and unobtrusively authenticate users to mobile applications of varying sensitivity levels. CASTRA uses a continuous and multifaceted behavioral biometrics authentication that passively authenticates the user in the background while the device is being in contact with the user, and a context-aware risk assessment and access control that provides access to applications based on the perceived threat level around the device. The behavioral authentication module is constructed by exploiting a combination of supervised and unsupervised learning techniques on raw sensor and GPS data passively gathered from the mobile device. Multiple inferences about the user (or user behavioral traits ) such as frequently visited locations, location transition patterns, physical proximity of user with the device (e.g., device in the pocket or placed on the table), and walking patterns are automatically inferred and extracted. Analytical studies were conducted to derive optimal thresholds to fuse these multiple traits and an adaptive trust score is generated every user-defined time period to determine the degree to which the user is trustworthy to access the applications. CASTRA is implemented in a client-server mode, utilizing the Android and the Amazon Cloud computing platform. The novelty of CASTRA stems from the design and fusion of multiple behavioral biometric-based authentication factors and the development and deployment of a practical end-to-end architecture that enables real-time data acquisition, automatic training and learning of user behavioral patterns, and context-aware risk assessment and access control. The performance of CASTRA was evaluated under natural settings, on 15 subjects, using different variants of the Samsung devices. Multiple realistic attack scenarios (e.g., stolen, lost, and shared devices) targeting mobile devices were designed to prove the security and user-friendliness of the proposed scheme. We also present techniques to reduce energy and bandwidth consumption and ways to unobtrusively acquire data for supervised learning algorithms without requiring explicit user annotation.
Author Srivastava, Kunal
Shila, Devu Manikantan
Author_xml – sequence: 1
  givenname: Devu Manikantan
  orcidid: 0000-0001-9882-147X
  surname: Shila
  fullname: Shila, Devu Manikantan
  email: manikad@utrc.utc.com
  organization: System Dynamics and Optimization Group, United Technologies Research Center, Hartford, CT, USA
– sequence: 2
  givenname: Kunal
  surname: Srivastava
  fullname: Srivastava, Kunal
  email: srivask@utrc.utc.com
  organization: System Dynamics and Optimization Group, United Technologies Research Center, Hartford, CT, USA
BookMark eNp9kEtLAzEUhYNUsNb-AHETcN2aTOaRuBvqm0rBtushk9zBlOmkJpmC_94ZW0RcuLoXzvnO5Z5zNGhsAwhdUjKllIibl-fFahoRyqcRT2hC6AkaRizKJnGaRoNf-xkae78hhHRYQkU6RMtZvly95bd4CXJbg_dYNhqvG1sG13qzB5y34R2aYJQMxjbYVnjtwXkcLL7rdOcBv9rS1NBFuL1R4C_QaSVrD-PjHKH1w_1q9jSZLx6fZ_l8oiLBwkTQUjPBaaoqLnRMgVWcZIIlWaxLrqTUaSmBxIlOSVapKuKCCal5olVGSBmzEbo-5O6c_WjBh2JjW9d0J4uIMpbFPElp58oOLuWs9w6qQpnw_Utw0tQFJUVfYtGXWPQlFscSO5L-IXfObKX7_Je5OjAGAH78nAnRq19cen4s
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3061589
crossref_primary_10_1007_s11036_020_01706_0
crossref_primary_10_1109_TMC_2024_3353209
crossref_primary_10_1186_s40537_023_00807_3
crossref_primary_10_3390_rs11091026
crossref_primary_10_1109_ACCESS_2023_3286376
crossref_primary_10_1109_JIOT_2019_2922979
crossref_primary_10_1109_ACCESS_2022_3148537
crossref_primary_10_1007_s11265_021_01654_2
crossref_primary_10_1109_ACCESS_2024_3411783
crossref_primary_10_1007_s11042_022_13245_9
Cites_doi 10.1109/TIFS.2012.2225048
10.1145/3052973.3053032
10.1109/UEMCON.2016.7777911
10.1145/2501604.2501607
10.1145/1653662.1653691
10.1145/1755688.1755732
10.1145/2857705.2857748
10.1109/SAHCN.2013.6644973
10.1145/2590296.2590337
10.14722/ndss.2017.23130
10.1109/WiMOB.2011.6085412
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2018.2851501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 4057
ExternalDocumentID 10_1109_JIOT_2018_2851501
8399501
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Homeland Security
  grantid: D15PC00155
  funderid: 10.13039/100000180
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-91bd39816cf89d41e3f80793574db8caad6bae045d607fcf28939ad85dc700b43
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 05:23:02 EDT 2025
Tue Jul 01 04:07:56 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Aug 27 03:02:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-91bd39816cf89d41e3f80793574db8caad6bae045d607fcf28939ad85dc700b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9882-147X
PQID 2133748561
PQPubID 2040421
PageCount 16
ParticipantIDs proquest_journals_2133748561
crossref_primary_10_1109_JIOT_2018_2851501
ieee_primary_8399501
crossref_citationtrail_10_1109_JIOT_2018_2851501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ye (ref14) 2017
bo (ref5) 2013
bhagavatula (ref4) 2014
fridman (ref12) 2015
giuffrida (ref23) 2014
ref31
clarke (ref9) 2007; 6
ref10
hastie (ref13) 2011
riva (ref1) 2012
shila (ref16) 2016
ref18
(ref21) 2016
(ref2) 2016
yang (ref27) 0
ref24
conti (ref15) 2011
ref26
ref25
attaullah (ref30) 2015
jakobsson (ref11) 2017
ref28
(ref20) 2016
conti (ref7) 2010
ref29
ref8
(ref17) 2017
(ref3) 2016
ref6
ross (ref22) 2003
shila (ref19) 2017
(ref32) 2017
References_xml – start-page: 15
  year: 2012
  ident: ref1
  article-title: Progressive authentication: Deciding when to authenticate on mobile phones
  publication-title: Proc 21st USENIX Conf Secur Symp (Security)
– year: 0
  ident: ref27
  article-title: PersonalA: A lightweight implicit authentication system based on customized user behavior selection
  publication-title: IEEE Trans Depend Secure Comput
– ident: ref10
  doi: 10.1109/TIFS.2012.2225048
– year: 2016
  ident: ref20
  publication-title: Your Phone's Biggest Vulnerability is Your Fingerprint
– ident: ref29
  doi: 10.1145/3052973.3053032
– start-page: 249
  year: 2011
  ident: ref15
  article-title: Mind how you answer me: Transparently authenticating the user of a smartphone when answering or placing a call
  publication-title: Proc ASIACCS
– year: 2016
  ident: ref21
  publication-title: Owasp mobile security project
– year: 2003
  ident: ref22
  publication-title: Introduction to Probability Models
– ident: ref26
  doi: 10.1109/UEMCON.2016.7777911
– ident: ref25
  doi: 10.1145/2501604.2501607
– start-page: 1
  year: 2014
  ident: ref4
  article-title: Usability analysis of biometric authentication systems on mobile phones
  publication-title: Proc SOUPS
– year: 2011
  ident: ref13
  publication-title: The Elements of Statistical Learning Data Mining Inference and Prediction
– ident: ref8
  doi: 10.1145/1653662.1653691
– start-page: 1
  year: 2015
  ident: ref12
  article-title: Active authentication on mobile devices via stylometry, application usage, Web browsing, and GPS location
  publication-title: arXiv preprint arXiv 150308479
– ident: ref6
  doi: 10.1145/1755688.1755732
– year: 2016
  ident: ref3
  publication-title: 67 Percent of Consumers Don't Have Password Protection on Their Mobile Phones
– year: 2017
  ident: ref17
  publication-title: Smart Lock
– volume: 6
  start-page: 1
  year: 2007
  ident: ref9
  article-title: Authenticating mobile phone users using keystroke analysis
  publication-title: Int J Inf Security
– ident: ref24
  doi: 10.1145/2857705.2857748
– year: 2016
  ident: ref2
  publication-title: One in every six users suffer loss or theft of mobile devices
– year: 2017
  ident: ref11
  publication-title: Implicit authentication for mobile devices HotSec
– start-page: 1
  year: 2016
  ident: ref16
  article-title: A multi-faceted approach to user authentication for mobile devices-Using human movement, usage, and location patterns
  publication-title: Proc IEEE HST
– ident: ref18
  doi: 10.1109/SAHCN.2013.6644973
– ident: ref28
  doi: 10.1145/2590296.2590337
– start-page: 45
  year: 2015
  ident: ref30
  article-title: ITSME: Multi-modal and unobtrusive behavioural user authentication for smartphones
  publication-title: Proc 9th Int Conf Technol Pract Passwords (PASSWORDS)
– year: 2017
  ident: ref19
  publication-title: System and method of mobile based user authentication for an access controlled environment
– start-page: 331
  year: 2010
  ident: ref7
  article-title: CRePE: Context-related policy enforcement for Android
  publication-title: Proc ISCAS
– year: 2017
  ident: ref14
  article-title: Cracking Android pattern lock in five attempts
  publication-title: Proc Network and Distributed System Security Symp (NDSS)
  doi: 10.14722/ndss.2017.23130
– start-page: 1
  year: 2014
  ident: ref23
  article-title: I sensed it was you: Authenticating mobile users with sensor-enhanced keystroke dynamics
  publication-title: Proc 11th Conf DIMVA
– year: 2017
  ident: ref32
  publication-title: Google activity recognition api
– ident: ref31
  doi: 10.1109/WiMOB.2011.6085412
– start-page: 187
  year: 2013
  ident: ref5
  article-title: SilentSense: Silent user identification via touch and movement behavioral biometrics
  publication-title: Proc Mobicom
SSID ssj0001105196
Score 2.1927373
Snippet This paper presents context-aware security technology for responsive and adaptive protection (CASTRA), an "always-on" context-aware authentication and access...
This paper presents context-aware security technology for responsive and adaptive protection (CASTRA), an “always-on” context-aware authentication and access...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4042
SubjectTerms Access control
Adaptive control
Ambient intelligence
Android
Annotations
Applications programs
Authentication
Biometrics
Biometrics (access control)
Cloud computing
context-aware services
Cybersecurity
Electronic devices
Internet of Things
internet of Things (IoT)
Legged locomotion
Machine learning
Mobile communication systems
Mobile computing
Mobile handsets
Performance evaluation
Risk assessment
Risk management
Trustworthiness
Title CASTRA: Seamless and Unobtrusive Authentication of Users to Diverse Mobile Services
URI https://ieeexplore.ieee.org/document/8399501
https://www.proquest.com/docview/2133748561
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJxYKFEShIA9MiLRJ4zgJW1WoSqXC0FbqFvlzoSRItAu_nrvEKRIgxJbBjqw7-_zufHePkOvAch4D7Pf0QA08ZuGki8hXHkD9JNVcBLJsuzh74pMlm66iVYPc7mphjDFl8pnp4Wf5lq8LtcVQWT_BOkws1toDx62q1fqKpwQIRrh7uAz8tD99fF5g7lbSGwCsiBztS331lFwqPwxweauMW2RWr6dKJnnpbTeypz6-tWr874IPyYGDl3RY7Ycj0jD5MWnV1A3UneQ2mY-GyJZ8R-dGvK7B2lGRa7rMC4lFGGABKcbOMJOoCunRwtIlFmbSTUHvy1wOQ2eFBJtCa3NzQpbjh8Vo4jl-BU_BJb8BOyd1mCYBVxb0wgIT2gT75UUx0zJRQmguhQHMp7kfW2XBNwtToZNIq9j3JQtPSTMvcnNGaBCHXBprFIsYY1aJ1FQ0wABAlQnDDvFr0WfKNR9HDox1VjohfpqhtjLUVua01SE3uylvVeeNvwa3Ufq7gU7wHdKt9Zu5s_meDcAtj1kCwPH891kXZB__XaXsdUkTBG8uAXps5FW55z4B9eTVIg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLYQDLDwRhzPDEyIHn2kacuGeOh4HAzcSWxVngvQInEs_HrsNj0kQIitQ6JGcWx_cWx_AAeREyJD2B-YWMcBd6jpMg11gFA_L4yQkWraLg7vxGDMrx_Txxk4mtbCWGub5DPbp8_mLd_U-p1CZcc51WFSsdYc-v00bqu1viIqEcER4Z8uo7A4vr66H1H2Vt6PEViknvilcz4Nm8oPE9z4lcslGHYratNJnvrvE9XXH9-aNf53ycuw6AEmO21PxArM2GoVljryBuZ1eQ0ezk6JL_mEPVj58oz2jsnKsHFVKyrDQBvIKHpGuURtUI_Vjo2pNJNNanbeZHNYNqwVWhXWGZx1GF9ejM4GgWdYCDS6-QlaOmWSIo-EdigZHtnE5dQxL824UbmW0gglLaI-I8LMaYe3s6SQJk-NzsJQ8WQDZqu6spvAoiwRyjqreco5d1oWtiUCRgiqbZL0IOy2vtS-_TixYDyXzTUkLEqSVknSKr20enA4nfLa9t74a_Aa7f50oN_4Hux08i29dr6VMV7MM54jdNz6fdY-zA9Gw9vy9uruZhsW6D9tAt8OzKIQ7C4CkYnaa87fJ0AP2Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CASTRA%3A+Seamless+and+Unobtrusive+Authentication+of+Users+to+Diverse+Mobile+Services&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Shila%2C+Devu+Manikantan&rft.au=Srivastava%2C+Kunal&rft.date=2018-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=5&rft.issue=5&rft.spage=4042&rft.epage=4057&rft_id=info:doi/10.1109%2FJIOT.2018.2851501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2018_2851501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon