Rethinking Behaviors and Activities of Base Stations in Mobile Cellular Networks Based on Big Data Analysis

This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 7; no. 1; pp. 80 - 90
Main Authors Jiang, Dingde, Huo, Liuwei, Song, Houbing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
DOI10.1109/TNSE.2018.2861388

Cover

Loading…
Abstract This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network managements and designs with larger challenges. How to use network big data to capture cellular network behavior and activity patterns and perform accurate predictions is recently one of main problems. To the end, first we exploit big data platform and technologies to analyze cellular network big data, i.e., Call Detail Records (CDRs). Our CDRs data set, which includes more than 1,000 cellular towers, more than million lines of CDRs, and several million users and sustains for more than 100 days, is collected from a national cellular network. Second, we propose our methodology to analyze these big data. The data pre-handling and cleaning approach is proposed to obtain the valuable big data sets for our further studies. The feature extraction and call predictability methods are presented to capture base stations' behaviors and dissect their predictability. Third, based on our method, we perform the detailed activity pattern analysis, including call distributions, cross correlation features, call behavior patterns, and daily activities. The detailed analysis approaches are also proposed to dig out base stations' activities. A series of findings are found and observed in the analysis process. Finally, a study case is proposed to validate the predictability of base stations' behaviors and activities. Our studies demonstrates that big data technologies can indeed be utilized to effectively capture network behaviors and predict network activities so that they can help perform highly effective network managements.
AbstractList This paper uses big data technologies to study base stations’ behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network managements and designs with larger challenges. How to use network big data to capture cellular network behavior and activity patterns and perform accurate predictions is recently one of main problems. To the end, first we exploit big data platform and technologies to analyze cellular network big data, i.e., Call Detail Records (CDRs). Our CDRs data set, which includes more than 1,000 cellular towers, more than million lines of CDRs, and several million users and sustains for more than 100 days, is collected from a national cellular network. Second, we propose our methodology to analyze these big data. The data pre-handling and cleaning approach is proposed to obtain the valuable big data sets for our further studies. The feature extraction and call predictability methods are presented to capture base stations’ behaviors and dissect their predictability. Third, based on our method, we perform the detailed activity pattern analysis, including call distributions, cross correlation features, call behavior patterns, and daily activities. The detailed analysis approaches are also proposed to dig out base stations’ activities. A series of findings are found and observed in the analysis process. Finally, a study case is proposed to validate the predictability of base stations’ behaviors and activities. Our studies demonstrates that big data technologies can indeed be utilized to effectively capture network behaviors and predict network activities so that they can help perform highly effective network managements.
Author Huo, Liuwei
Song, Houbing
Jiang, Dingde
Author_xml – sequence: 1
  givenname: Dingde
  orcidid: 0000-0003-0284-5624
  surname: Jiang
  fullname: Jiang, Dingde
  email: jiangdd@uestc.edu.cn
  organization: School of Astronautics and Aeronautic, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Liuwei
  surname: Huo
  fullname: Huo, Liuwei
  email: huoliuwei@163.com
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China
– sequence: 3
  givenname: Houbing
  orcidid: 0000-0003-2631-9223
  surname: Song
  fullname: Song, Houbing
  email: Houbing.Song@erau.edu
  organization: Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
BookMark eNp9kMtOAjEUQBujiYp-gHHTxPVgH9N5LAHxkSAmiom7SadzK4WxxbZg-HtBiAsXrnoX59zbnFN0aJ0FhC4o6VJKyuvJ-GXYZYQWXVZklBfFATphnKcJZ-Xb4XZmeZJmZX6MzkOYEULoBuScn6D5M8SpsXNj33EfpnJlnA9Y2gb3VDQrEw0E7DTuywD4JcponA3YWPzoatMCHkDbLlvp8Rjil_Pz8EM22FncN-_4RkaJe1a262DCGTrSsg1wvn876PV2OBncJ6Onu4dBb5QoVvKYFMAJKbK0yXVW1iDSWtRKaCUFA2CNVLLRueBcUS10RlhGBIFSaaoUqQVw3kFXu70L7z6XEGI1c0u_-USoGM_TnLKyEBuK7ijlXQgedLXw5kP6dUVJtc1abbNW26zVPuvGyf84yuyaRC9N-695uTMNAPxeKlLGaZnyb4fCh9Q
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TNSE_2020_3033938
crossref_primary_10_1109_TNSE_2022_3206353
crossref_primary_10_1155_2023_7146912
crossref_primary_10_1016_j_saa_2021_120373
crossref_primary_10_1109_JIOT_2024_3440332
crossref_primary_10_1109_JSAC_2020_2980919
crossref_primary_10_1007_s11276_021_02662_7
crossref_primary_10_1007_s11276_021_02663_6
crossref_primary_10_1007_s11276_021_02664_5
crossref_primary_10_1007_s11276_021_02668_1
crossref_primary_10_1007_s11276_021_02645_8
crossref_primary_10_1109_TNSE_2021_3086484
crossref_primary_10_1007_s11227_023_05139_w
crossref_primary_10_1016_j_dcan_2022_09_014
crossref_primary_10_1002_dac_4415
crossref_primary_10_1002_ett_4035
crossref_primary_10_1007_s11036_019_01414_4
crossref_primary_10_1002_ett_4172
crossref_primary_10_1109_TNSE_2020_3025529
crossref_primary_10_1016_j_comnet_2022_108906
crossref_primary_10_1007_s11276_019_02224_y
crossref_primary_10_1007_s11276_021_02755_3
crossref_primary_10_1007_s11276_021_02712_0
crossref_primary_10_1109_TNSM_2020_3040157
crossref_primary_10_1007_s12652_023_04605_w
crossref_primary_10_1109_TITS_2020_3029015
crossref_primary_10_1007_s11276_021_02653_8
crossref_primary_10_1007_s11276_021_02698_9
crossref_primary_10_1109_ACCESS_2020_3005808
crossref_primary_10_2478_amns_2023_1_00179
crossref_primary_10_1007_s11276_021_02674_3
crossref_primary_10_1007_s11276_021_02675_2
crossref_primary_10_1109_ACCESS_2023_3268533
crossref_primary_10_1109_TITS_2020_3029076
Cites_doi 10.1109/TNSM.2016.2558839
10.1016/j.trc.2017.12.002
10.1002/dac.2522
10.1109/TITS.2017.2695438
10.1016/j.ins.2017.04.042
10.1016/j.comnet.2016.10.016
10.1109/ICSN.2016.7501923
10.1145/2254756.2254767
10.1109/COMST.2016.2610963
10.1145/1993744.1993776
10.3390/s110504794
10.1109/MNET.2016.7389830
10.1109/MCOM.2016.7378435
10.1109/INFCOM.2011.5935313
10.1109/TSC.2016.2528246
10.1109/INFCOM.2012.6195497
10.1145/2465529.2465754
10.1109/ACCESS.2016.2540520
10.1016/j.comcom.2017.12.009
10.1109/TITS.2017.2727281
10.1109/TCC.2016.2551747
10.1109/MNET.2014.6863129
10.1109/MNET.2016.7437025
10.1109/GLOCOMW.2015.7413988
10.1109/MNET.2015.7293306
10.1109/INFOCOM.2014.6848068
10.1109/TMC.2017.2742953
10.1109/TMC.2016.2563429
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2018.2861388
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 90
ExternalDocumentID 10_1109_TNSE_2018_2861388
8423194
Genre orig-research
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2018JY0539
– fundername: National Natural Science Foundation of China
  grantid: 61571104
  funderid: 10.13039/501100001809
– fundername: General Project of Scientific Research of the Education Department of Liaoning Province
  grantid: L20150174
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2017KYQD170; N150402003
  funderid: 10.13039/501100012226
– fundername: Key projects of the Sichuan Provincial Education Department
  grantid: 18ZA0219
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-8e300864d7f69be54b5bc5fca52ee2dacadf7533c1f5f6026050e9cf1cc0b5e33
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:50:24 EDT 2025
Tue Jul 01 03:10:41 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Aug 27 02:35:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-8e300864d7f69be54b5bc5fca52ee2dacadf7533c1f5f6026050e9cf1cc0b5e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2631-9223
0000-0003-0284-5624
PQID 2374712985
PQPubID 2040409
PageCount 11
ParticipantIDs proquest_journals_2374712985
ieee_primary_8423194
crossref_primary_10_1109_TNSE_2018_2861388
crossref_citationtrail_10_1109_TNSE_2018_2861388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.-March-1
2020-1-1
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
yang (ref27) 2012; 8
ref12
ref15
ref14
ref30
ref11
ref10
song (ref23) 2017; 408
yong (ref25) 2011; 11
ref2
ref1
ref17
ref16
ref19
ref18
yang (ref26) 2012; 31
xu (ref24) 2014; 27
ref20
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
fan (ref22) 2018; 11
ref6
ref5
References_xml – ident: ref18
  doi: 10.1109/TNSM.2016.2558839
– ident: ref1
  doi: 10.1016/j.trc.2017.12.002
– volume: 27
  start-page: 3013
  year: 2014
  ident: ref24
  article-title: GI/Geom/1 queue based on communication model for mesh networks
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.2522
– ident: ref8
  doi: 10.1109/TITS.2017.2695438
– volume: 408
  start-page: 100
  year: 2017
  ident: ref23
  article-title: Gradient-driven parking navigation using a continuous information potential field based on wireless sensor network
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.04.042
– ident: ref4
  doi: 10.1016/j.comnet.2016.10.016
– ident: ref12
  doi: 10.1109/ICSN.2016.7501923
– ident: ref9
  doi: 10.1145/2254756.2254767
– ident: ref21
  doi: 10.1109/COMST.2016.2610963
– ident: ref11
  doi: 10.1145/1993744.1993776
– volume: 11
  start-page: 4794
  year: 2011
  ident: ref25
  article-title: Information potential fields navigation in wireless Ad-Hoc sensor networks
  publication-title: SENSORS
  doi: 10.3390/s110504794
– ident: ref13
  doi: 10.1109/MNET.2016.7389830
– ident: ref15
  doi: 10.1109/MCOM.2016.7378435
– volume: 31
  start-page: 1
  year: 2012
  ident: ref26
  article-title: Combined energy minimization for image reconstruction from few views
  publication-title: Math Problems Eng
– ident: ref3
  doi: 10.1109/INFCOM.2011.5935313
– volume: 11
  start-page: 78
  year: 2018
  ident: ref22
  article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing
  publication-title: IEEE Trans Services Comput
  doi: 10.1109/TSC.2016.2528246
– ident: ref5
  doi: 10.1109/INFCOM.2012.6195497
– ident: ref14
  doi: 10.1145/2465529.2465754
– ident: ref16
  doi: 10.1109/ACCESS.2016.2540520
– ident: ref6
  doi: 10.1016/j.comcom.2017.12.009
– volume: 8
  start-page: 1
  year: 2012
  ident: ref27
  article-title: Holes detection in anisotropic sensornets: Topological methods
  publication-title: Int J Distrib Sensor Netw
– ident: ref28
  doi: 10.1109/TITS.2017.2727281
– ident: ref29
  doi: 10.1109/TCC.2016.2551747
– ident: ref19
  doi: 10.1109/MNET.2014.6863129
– ident: ref20
  doi: 10.1109/MNET.2016.7437025
– ident: ref30
  doi: 10.1109/GLOCOMW.2015.7413988
– ident: ref17
  doi: 10.1109/MNET.2015.7293306
– ident: ref7
  doi: 10.1109/INFOCOM.2014.6848068
– ident: ref2
  doi: 10.1109/TMC.2017.2742953
– ident: ref10
  doi: 10.1109/TMC.2016.2563429
SSID ssj0001286333
Score 2.4070637
Snippet This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new...
This paper uses big data technologies to study base stations’ behaviors and activities and their predictability in mobile cellular networks. With new...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms Base stations
Behavior
Big Data
big data technologies
call detail records
Cellular communication
Cellular networks
Cleaning
Correlation analysis
Cross correlation
Data analysis
Data models
Datasets
Feature extraction
Network behaviors
New technology
Pattern analysis
Poles and towers
predictability
Radio equipment
Stations
Wireless networks
Title Rethinking Behaviors and Activities of Base Stations in Mobile Cellular Networks Based on Big Data Analysis
URI https://ieeexplore.ieee.org/document/8423194
https://www.proquest.com/docview/2374712985
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJXdOm6TZHn4iwe_AB3koeE5VdWnG7F3-9SdpdRUW8BTqBwJdm8s1M5gM4FIrKTKk8Ms79RCkzMhLMKjeKKVqWJ0r5eEd_kF0_pDeP_HEOjmdvYRAxFJ9h1w9DLt9UeuJDZSe58_2OdM_DvCNuzVutL_GUPGOMtYnLmIqT-8Hdpa_dyrvuU8yCtsqn6wlaKj8O4OBVrlagP11PU0wy7E5q1dXv31o1_nfBq7DcXi_JabMf1mAOy3VY-tJ0cAOGt1g_N4oJpO2O-DYmsjTkVAcpCcedSWXJmfNv5K7J1I_JS0n6lXJHCDnH0cjXrpJBU0E-DpaGVCU5e3kiF7KWZNrqZBMeri7vz6-jVnIh0s7v11GOzJOc1PRsJhTyVHGludWSJ4iJkVoa6wgO07Hl1qtXUU5RaBtrTRVHxrZgoaxK3Aai456hwvIcrUodD1Epdyw-6-lUJFJI3gE6RaPQbT9yL4sxKgIvoaLwABYewKIFsANHsymvTTOOv4w3PCAzwxaLDuxNIS_a33VcJMxz80TkfOf3WbuwmHiiHWIve7BQv01w391GanUQtuEHhFXdyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPRQOFEoRy1d96Ak1ixPH2fjIp7aF3UNZJG6RP8awYpUgNnvh12M72S2iVdWbpdiSpef4-Y3H8wC-CUVlplQeGUc_UcqMjASzyrViipbliVI-3jEYZv3b9Ocdv1uC74u3MIgYks-w65vhLt9UeuZDZce5434nupfhg-N9Hjevtd5EVPKMMdZeXcZUHI-GNxc-eyvvuk8xC-4qv8knuKn8sQUHXrn8BIP5jJp0ksfurFZd_fKuWOP_TnkD1tsDJjlpVsQmLGH5GdbelB3cgsdfWD80ngmkrY_4PCWyNOREBzMJp55JZcmpYzhy09zVT8m4JINKuU2EnOFk4rNXybDJIZ-GnoZUJTkd35NzWUsyL3byBW4vL0Zn_ag1XYi0Y_46ypF5mZOans2EQp4qrjS3WvIEMTFSS2OdxGE6ttx6_yrKKQptY62p4sjYNqyUVYk7QHTcM1RYnqNVqVMiKuVOx2c9nYpECsk7QOdoFLqtSO6NMSZFUCZUFB7AwgNYtAB24Ggx5Kkpx_GvzlsekEXHFosO7M8hL9ofdlokzKvzROR89--jvsLH_mhwXVz_GF7twWriZXeIxOzDSv08wwN3NqnVYViSrzys4RM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Behaviors+and+Activities+of+Base+Stations+in+Mobile+Cellular+Networks+Based+on+Big+Data+Analysis&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Jiang%2C+Dingde&rft.au=Huo%2C+Liuwei&rft.au=Song%2C+Houbing&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=7&rft.issue=1&rft.spage=80&rft_id=info:doi/10.1109%2FTNSE.2018.2861388&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon