Rethinking Behaviors and Activities of Base Stations in Mobile Cellular Networks Based on Big Data Analysis
This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network ma...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 7; no. 1; pp. 80 - 90 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4697 2334-329X |
DOI | 10.1109/TNSE.2018.2861388 |
Cover
Loading…
Abstract | This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network managements and designs with larger challenges. How to use network big data to capture cellular network behavior and activity patterns and perform accurate predictions is recently one of main problems. To the end, first we exploit big data platform and technologies to analyze cellular network big data, i.e., Call Detail Records (CDRs). Our CDRs data set, which includes more than 1,000 cellular towers, more than million lines of CDRs, and several million users and sustains for more than 100 days, is collected from a national cellular network. Second, we propose our methodology to analyze these big data. The data pre-handling and cleaning approach is proposed to obtain the valuable big data sets for our further studies. The feature extraction and call predictability methods are presented to capture base stations' behaviors and dissect their predictability. Third, based on our method, we perform the detailed activity pattern analysis, including call distributions, cross correlation features, call behavior patterns, and daily activities. The detailed analysis approaches are also proposed to dig out base stations' activities. A series of findings are found and observed in the analysis process. Finally, a study case is proposed to validate the predictability of base stations' behaviors and activities. Our studies demonstrates that big data technologies can indeed be utilized to effectively capture network behaviors and predict network activities so that they can help perform highly effective network managements. |
---|---|
AbstractList | This paper uses big data technologies to study base stations’ behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network managements and designs with larger challenges. How to use network big data to capture cellular network behavior and activity patterns and perform accurate predictions is recently one of main problems. To the end, first we exploit big data platform and technologies to analyze cellular network big data, i.e., Call Detail Records (CDRs). Our CDRs data set, which includes more than 1,000 cellular towers, more than million lines of CDRs, and several million users and sustains for more than 100 days, is collected from a national cellular network. Second, we propose our methodology to analyze these big data. The data pre-handling and cleaning approach is proposed to obtain the valuable big data sets for our further studies. The feature extraction and call predictability methods are presented to capture base stations’ behaviors and dissect their predictability. Third, based on our method, we perform the detailed activity pattern analysis, including call distributions, cross correlation features, call behavior patterns, and daily activities. The detailed analysis approaches are also proposed to dig out base stations’ activities. A series of findings are found and observed in the analysis process. Finally, a study case is proposed to validate the predictability of base stations’ behaviors and activities. Our studies demonstrates that big data technologies can indeed be utilized to effectively capture network behaviors and predict network activities so that they can help perform highly effective network managements. |
Author | Huo, Liuwei Song, Houbing Jiang, Dingde |
Author_xml | – sequence: 1 givenname: Dingde orcidid: 0000-0003-0284-5624 surname: Jiang fullname: Jiang, Dingde email: jiangdd@uestc.edu.cn organization: School of Astronautics and Aeronautic, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Liuwei surname: Huo fullname: Huo, Liuwei email: huoliuwei@163.com organization: School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China – sequence: 3 givenname: Houbing orcidid: 0000-0003-2631-9223 surname: Song fullname: Song, Houbing email: Houbing.Song@erau.edu organization: Department of Electrical, Computer, Software, and Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA |
BookMark | eNp9kMtOAjEUQBujiYp-gHHTxPVgH9N5LAHxkSAmiom7SadzK4WxxbZg-HtBiAsXrnoX59zbnFN0aJ0FhC4o6VJKyuvJ-GXYZYQWXVZklBfFATphnKcJZ-Xb4XZmeZJmZX6MzkOYEULoBuScn6D5M8SpsXNj33EfpnJlnA9Y2gb3VDQrEw0E7DTuywD4JcponA3YWPzoatMCHkDbLlvp8Rjil_Pz8EM22FncN-_4RkaJe1a262DCGTrSsg1wvn876PV2OBncJ6Onu4dBb5QoVvKYFMAJKbK0yXVW1iDSWtRKaCUFA2CNVLLRueBcUS10RlhGBIFSaaoUqQVw3kFXu70L7z6XEGI1c0u_-USoGM_TnLKyEBuK7ijlXQgedLXw5kP6dUVJtc1abbNW26zVPuvGyf84yuyaRC9N-695uTMNAPxeKlLGaZnyb4fCh9Q |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1109_TNSE_2020_3033938 crossref_primary_10_1109_TNSE_2022_3206353 crossref_primary_10_1155_2023_7146912 crossref_primary_10_1016_j_saa_2021_120373 crossref_primary_10_1109_JIOT_2024_3440332 crossref_primary_10_1109_JSAC_2020_2980919 crossref_primary_10_1007_s11276_021_02662_7 crossref_primary_10_1007_s11276_021_02663_6 crossref_primary_10_1007_s11276_021_02664_5 crossref_primary_10_1007_s11276_021_02668_1 crossref_primary_10_1007_s11276_021_02645_8 crossref_primary_10_1109_TNSE_2021_3086484 crossref_primary_10_1007_s11227_023_05139_w crossref_primary_10_1016_j_dcan_2022_09_014 crossref_primary_10_1002_dac_4415 crossref_primary_10_1002_ett_4035 crossref_primary_10_1007_s11036_019_01414_4 crossref_primary_10_1002_ett_4172 crossref_primary_10_1109_TNSE_2020_3025529 crossref_primary_10_1016_j_comnet_2022_108906 crossref_primary_10_1007_s11276_019_02224_y crossref_primary_10_1007_s11276_021_02755_3 crossref_primary_10_1007_s11276_021_02712_0 crossref_primary_10_1109_TNSM_2020_3040157 crossref_primary_10_1007_s12652_023_04605_w crossref_primary_10_1109_TITS_2020_3029015 crossref_primary_10_1007_s11276_021_02653_8 crossref_primary_10_1007_s11276_021_02698_9 crossref_primary_10_1109_ACCESS_2020_3005808 crossref_primary_10_2478_amns_2023_1_00179 crossref_primary_10_1007_s11276_021_02674_3 crossref_primary_10_1007_s11276_021_02675_2 crossref_primary_10_1109_ACCESS_2023_3268533 crossref_primary_10_1109_TITS_2020_3029076 |
Cites_doi | 10.1109/TNSM.2016.2558839 10.1016/j.trc.2017.12.002 10.1002/dac.2522 10.1109/TITS.2017.2695438 10.1016/j.ins.2017.04.042 10.1016/j.comnet.2016.10.016 10.1109/ICSN.2016.7501923 10.1145/2254756.2254767 10.1109/COMST.2016.2610963 10.1145/1993744.1993776 10.3390/s110504794 10.1109/MNET.2016.7389830 10.1109/MCOM.2016.7378435 10.1109/INFCOM.2011.5935313 10.1109/TSC.2016.2528246 10.1109/INFCOM.2012.6195497 10.1145/2465529.2465754 10.1109/ACCESS.2016.2540520 10.1016/j.comcom.2017.12.009 10.1109/TITS.2017.2727281 10.1109/TCC.2016.2551747 10.1109/MNET.2014.6863129 10.1109/MNET.2016.7437025 10.1109/GLOCOMW.2015.7413988 10.1109/MNET.2015.7293306 10.1109/INFOCOM.2014.6848068 10.1109/TMC.2017.2742953 10.1109/TMC.2016.2563429 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2018.2861388 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 90 |
ExternalDocumentID | 10_1109_TNSE_2018_2861388 8423194 |
Genre | orig-research |
GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2018JY0539 – fundername: National Natural Science Foundation of China grantid: 61571104 funderid: 10.13039/501100001809 – fundername: General Project of Scientific Research of the Education Department of Liaoning Province grantid: L20150174 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYGX2017KYQD170; N150402003 funderid: 10.13039/501100012226 – fundername: Key projects of the Sichuan Provincial Education Department grantid: 18ZA0219 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-8e300864d7f69be54b5bc5fca52ee2dacadf7533c1f5f6026050e9cf1cc0b5e33 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 09:50:24 EDT 2025 Tue Jul 01 03:10:41 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Aug 27 02:35:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-8e300864d7f69be54b5bc5fca52ee2dacadf7533c1f5f6026050e9cf1cc0b5e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2631-9223 0000-0003-0284-5624 |
PQID | 2374712985 |
PQPubID | 2040409 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2374712985 ieee_primary_8423194 crossref_primary_10_1109_TNSE_2018_2861388 crossref_citationtrail_10_1109_TNSE_2018_2861388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan.-March-1 2020-1-1 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan.-March-1 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 yang (ref27) 2012; 8 ref12 ref15 ref14 ref30 ref11 ref10 song (ref23) 2017; 408 yong (ref25) 2011; 11 ref2 ref1 ref17 ref16 ref19 ref18 yang (ref26) 2012; 31 xu (ref24) 2014; 27 ref20 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 fan (ref22) 2018; 11 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1109/TNSM.2016.2558839 – ident: ref1 doi: 10.1016/j.trc.2017.12.002 – volume: 27 start-page: 3013 year: 2014 ident: ref24 article-title: GI/Geom/1 queue based on communication model for mesh networks publication-title: Int J Commun Syst doi: 10.1002/dac.2522 – ident: ref8 doi: 10.1109/TITS.2017.2695438 – volume: 408 start-page: 100 year: 2017 ident: ref23 article-title: Gradient-driven parking navigation using a continuous information potential field based on wireless sensor network publication-title: Inf Sci doi: 10.1016/j.ins.2017.04.042 – ident: ref4 doi: 10.1016/j.comnet.2016.10.016 – ident: ref12 doi: 10.1109/ICSN.2016.7501923 – ident: ref9 doi: 10.1145/2254756.2254767 – ident: ref21 doi: 10.1109/COMST.2016.2610963 – ident: ref11 doi: 10.1145/1993744.1993776 – volume: 11 start-page: 4794 year: 2011 ident: ref25 article-title: Information potential fields navigation in wireless Ad-Hoc sensor networks publication-title: SENSORS doi: 10.3390/s110504794 – ident: ref13 doi: 10.1109/MNET.2016.7389830 – ident: ref15 doi: 10.1109/MCOM.2016.7378435 – volume: 31 start-page: 1 year: 2012 ident: ref26 article-title: Combined energy minimization for image reconstruction from few views publication-title: Math Problems Eng – ident: ref3 doi: 10.1109/INFCOM.2011.5935313 – volume: 11 start-page: 78 year: 2018 ident: ref22 article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing publication-title: IEEE Trans Services Comput doi: 10.1109/TSC.2016.2528246 – ident: ref5 doi: 10.1109/INFCOM.2012.6195497 – ident: ref14 doi: 10.1145/2465529.2465754 – ident: ref16 doi: 10.1109/ACCESS.2016.2540520 – ident: ref6 doi: 10.1016/j.comcom.2017.12.009 – volume: 8 start-page: 1 year: 2012 ident: ref27 article-title: Holes detection in anisotropic sensornets: Topological methods publication-title: Int J Distrib Sensor Netw – ident: ref28 doi: 10.1109/TITS.2017.2727281 – ident: ref29 doi: 10.1109/TCC.2016.2551747 – ident: ref19 doi: 10.1109/MNET.2014.6863129 – ident: ref20 doi: 10.1109/MNET.2016.7437025 – ident: ref30 doi: 10.1109/GLOCOMW.2015.7413988 – ident: ref17 doi: 10.1109/MNET.2015.7293306 – ident: ref7 doi: 10.1109/INFOCOM.2014.6848068 – ident: ref2 doi: 10.1109/TMC.2017.2742953 – ident: ref10 doi: 10.1109/TMC.2016.2563429 |
SSID | ssj0001286333 |
Score | 2.4070637 |
Snippet | This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new... This paper uses big data technologies to study base stations’ behaviors and activities and their predictability in mobile cellular networks. With new... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 80 |
SubjectTerms | Base stations Behavior Big Data big data technologies call detail records Cellular communication Cellular networks Cleaning Correlation analysis Cross correlation Data analysis Data models Datasets Feature extraction Network behaviors New technology Pattern analysis Poles and towers predictability Radio equipment Stations Wireless networks |
Title | Rethinking Behaviors and Activities of Base Stations in Mobile Cellular Networks Based on Big Data Analysis |
URI | https://ieeexplore.ieee.org/document/8423194 https://www.proquest.com/docview/2374712985 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i-uLHDyJXdOm6TZHn4iwe_AB3koeE5VdWnG7F3-9SdpdRUW8BTqBwJdm8s1M5gM4FIrKTKk8Ms79RCkzMhLMKjeKKVqWJ0r5eEd_kF0_pDeP_HEOjmdvYRAxFJ9h1w9DLt9UeuJDZSe58_2OdM_DvCNuzVutL_GUPGOMtYnLmIqT-8Hdpa_dyrvuU8yCtsqn6wlaKj8O4OBVrlagP11PU0wy7E5q1dXv31o1_nfBq7DcXi_JabMf1mAOy3VY-tJ0cAOGt1g_N4oJpO2O-DYmsjTkVAcpCcedSWXJmfNv5K7J1I_JS0n6lXJHCDnH0cjXrpJBU0E-DpaGVCU5e3kiF7KWZNrqZBMeri7vz6-jVnIh0s7v11GOzJOc1PRsJhTyVHGludWSJ4iJkVoa6wgO07Hl1qtXUU5RaBtrTRVHxrZgoaxK3Aai456hwvIcrUodD1Epdyw-6-lUJFJI3gE6RaPQbT9yL4sxKgIvoaLwABYewKIFsANHsymvTTOOv4w3PCAzwxaLDuxNIS_a33VcJMxz80TkfOf3WbuwmHiiHWIve7BQv01w391GanUQtuEHhFXdyg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPRQOFEoRy1d96Ak1ixPH2fjIp7aF3UNZJG6RP8awYpUgNnvh12M72S2iVdWbpdiSpef4-Y3H8wC-CUVlplQeGUc_UcqMjASzyrViipbliVI-3jEYZv3b9Ocdv1uC74u3MIgYks-w65vhLt9UeuZDZce5434nupfhg-N9Hjevtd5EVPKMMdZeXcZUHI-GNxc-eyvvuk8xC-4qv8knuKn8sQUHXrn8BIP5jJp0ksfurFZd_fKuWOP_TnkD1tsDJjlpVsQmLGH5GdbelB3cgsdfWD80ngmkrY_4PCWyNOREBzMJp55JZcmpYzhy09zVT8m4JINKuU2EnOFk4rNXybDJIZ-GnoZUJTkd35NzWUsyL3byBW4vL0Zn_ag1XYi0Y_46ypF5mZOans2EQp4qrjS3WvIEMTFSS2OdxGE6ttx6_yrKKQptY62p4sjYNqyUVYk7QHTcM1RYnqNVqVMiKuVOx2c9nYpECsk7QOdoFLqtSO6NMSZFUCZUFB7AwgNYtAB24Ggx5Kkpx_GvzlsekEXHFosO7M8hL9ofdlokzKvzROR89--jvsLH_mhwXVz_GF7twWriZXeIxOzDSv08wwN3NqnVYViSrzys4RM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Behaviors+and+Activities+of+Base+Stations+in+Mobile+Cellular+Networks+Based+on+Big+Data+Analysis&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Jiang%2C+Dingde&rft.au=Huo%2C+Liuwei&rft.au=Song%2C+Houbing&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=7&rft.issue=1&rft.spage=80&rft_id=info:doi/10.1109%2FTNSE.2018.2861388&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |