Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy
We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens...
Saved in:
Published in | Journal of the Optical Society of America. A, Optics, image science, and vision Vol. 21; no. 9; p. 1593 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2004
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth. |
---|---|
AbstractList | We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth. |
Author | Preza, Chrysanthe Conchello, José-Angel |
Author_xml | – sequence: 1 givenname: Chrysanthe surname: Preza fullname: Preza, Chrysanthe organization: Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA – sequence: 2 givenname: José-Angel surname: Conchello fullname: Conchello, José-Angel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15384425$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j0tLxDAYRbMYcR66dif9A6l5tulyGN8MzELduBnS5CuNNk1JU3H-vQV1deGey4G7Ros-9IDQFSU55YW4eT68bLc5ozkhVFZ8gVaUKIFLyaolWo_jByFEFKo8R0squRKCyRV6v4UhtfhLR6f7lHn97fzkcec-oXNtCDaLMKYQdXKhz5oQs9RGAGydh36cO91lTTeFeWWgN5B5Z2IYTRhOF-is0d0Il3-5QW_3d6-7R7w_PDzttntsWMUTVhWrDVVQWKstMxq0MbXgplEgS1mSuhQzMErqgstCqkpYW5SM00YxYhljG3T96x2m2oM9DtF5HU_H_5PsBxbmVtg |
CitedBy_id | crossref_primary_10_3103_S0146411619020111 crossref_primary_10_1137_130945776 crossref_primary_10_1038_s41596_020_0360_2 crossref_primary_10_1038_srep02523 crossref_primary_10_1109_TMECH_2020_2997083 crossref_primary_10_1117_1_JBO_23_3_036016 crossref_primary_10_1109_TIP_2017_2716843 crossref_primary_10_1364_OE_24_012905 crossref_primary_10_1364_OE_26_014375 crossref_primary_10_1364_AO_56_000D14 crossref_primary_10_1111_jmi_12534 crossref_primary_10_1137_18M1189324 crossref_primary_10_1109_TCI_2019_2897951 crossref_primary_10_1364_OE_26_026120 crossref_primary_10_1364_AO_54_008587 crossref_primary_10_1364_OE_25_001421 crossref_primary_10_1080_10255842_2014_903934 crossref_primary_10_1109_TIP_2011_2181528 crossref_primary_10_1109_ACCESS_2020_2993625 crossref_primary_10_1111_j_1365_2818_2012_03675_x crossref_primary_10_1002_mp_14880 crossref_primary_10_1109_TCI_2020_3048295 crossref_primary_10_1007_s10589_017_9901_1 crossref_primary_10_3390_cells10020397 crossref_primary_10_1007_s11263_015_0817_x crossref_primary_10_1364_JOSAA_28_001864 crossref_primary_10_1109_JPHOT_2020_2974766 crossref_primary_10_1364_OE_22_005875 crossref_primary_10_1109_LRA_2018_2886374 crossref_primary_10_1109_JSTSP_2015_2493884 crossref_primary_10_3724_SP_J_1087_2008_00205 crossref_primary_10_1364_AO_435543 crossref_primary_10_1364_OL_40_001671 crossref_primary_10_1364_JOSAA_23_002440 crossref_primary_10_1137_151003465 crossref_primary_10_1364_BOE_6_003826 crossref_primary_10_1117_1_JBO_21_4_046010 crossref_primary_10_1364_AO_56_000D60 crossref_primary_10_1038_s41598_018_29768_x crossref_primary_10_1111_j_1365_2818_2011_03486_x crossref_primary_10_1364_OE_19_023298 crossref_primary_10_1109_MSP_2006_1628875 crossref_primary_10_1002_jemt_22650 crossref_primary_10_1364_OE_18_006461 crossref_primary_10_1364_OE_17_013810 crossref_primary_10_3390_app10207308 crossref_primary_10_1088_1361_6420_acbdb9 crossref_primary_10_1364_JOSAA_34_001029 crossref_primary_10_1364_OE_20_006527 crossref_primary_10_1364_OE_21_027668 crossref_primary_10_1038_srep09894 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1364/JOSAA.21.001593 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 15384425 |
Genre | Evaluation Studies Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 5R01 GM4979808 – fundername: NIGMS NIH HHS grantid: R01 GM55708 |
GroupedDBID | --- -DZ -~X .55 29L 3O- 4.4 53G 5GY 6TJ 8WZ A6W AAWJZ AI. AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN CGR CS3 CUY CVF DSZJF EBS ECM EIF EJD F5P H~9 MVM NPM ODPQJ OFLFD OPJBK OPLUZ PZZ RNS ROL ROP ROS S10 TR6 UCJ VH1 WH7 WHG X7M XJT XSW ZCG ZE2 |
ID | FETCH-LOGICAL-c293t-892bc18e6ddad2caeaccb43cf8e57570b74dadc85a63565894dd67231f820d222 |
ISSN | 1084-7529 |
IngestDate | Sat Sep 28 08:40:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c293t-892bc18e6ddad2caeaccb43cf8e57570b74dadc85a63565894dd67231f820d222 |
PMID | 15384425 |
ParticipantIDs | pubmed_primary_15384425 |
PublicationCentury | 2000 |
PublicationDate | 2004-09-01 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the Optical Society of America. A, Optics, image science, and vision |
PublicationTitleAlternate | J Opt Soc Am A Opt Image Sci Vis |
PublicationYear | 2004 |
SSID | ssj0004687 |
Score | 2.1668768 |
Snippet | We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1593 |
SubjectTerms | Algorithms Computer Simulation Image Processing, Computer-Assisted Imaging, Three-Dimensional Microscopy, Fluorescence Models, Theoretical |
Title | Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/15384425 |
Volume | 21 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwR73fpg28j061pkz4WLwzB-eAE8UXaJMXhuo25ifpT_LWek7S1mxfUl1KaEtqcLydfcm6EHCQqinTkB5SpgFEsUUgDYPYUln7FYUGRXoDByRctv3nNzm-8m0rlreS1NB7FNfn6ZVzJf6QKz0CuGCX7B8kWncIDuAf5whUkDNdfyfhED0b39Am2uzA-1TR67qTjlHY7D7rbMemKh6ZuTNmfcKg1VZjR32bjqCbdcX9oUjrBBE_ROw_jVCZsvSXOiiz1cmCPv3N_T6Sy1uxTq4YoMfOCgUcnRY-gbJHN_URtNHuhkof6NcqyHLw8wm_cF0g77veMm2o_s1RYmz4Nczfc4rCCFd5YuX49EoxyLzvkyBRwo14CWlDSpkC13C_VvOszrGB9eRWGtUYdrUlTb4KcBqmROmp0xmxw9c-tU3m386YZMsMFatAWngMVEbem9GLxO1nSKPiuw6mvMnWfbE9TOxfDYNpLZDEToxNaHC2Tiu6tkHnjAiwfV8ntBJqcz2hySmhyAE3OJzQ5ZTQ5H2haI9dnp-3jJs0qb1AJ9G9ERdCIZV1oX6lINSTMZilj5spEaKD3_CjmDBqk8CJMb-iJgCnlc9gqJEAoFVDOdTLb6_f0JnG4knVXJ27sSY8ppgOB3SkpeSI412KLbNhBuRvY9Cp3-XBtf9uyQxY-wLVL5hKYz3oPyOEo3jdyegfhp2c1 |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depth-variant+maximum-likelihood+restoration+for+three-dimensional+fluorescence+microscopy&rft.jtitle=Journal+of+the+Optical+Society+of+America.+A%2C+Optics%2C+image+science%2C+and+vision&rft.au=Preza%2C+Chrysanthe&rft.au=Conchello%2C+Jos%C3%A9-Angel&rft.date=2004-09-01&rft.issn=1084-7529&rft.volume=21&rft.issue=9&rft.spage=1593&rft_id=info:doi/10.1364%2FJOSAA.21.001593&rft_id=info%3Apmid%2F15384425&rft_id=info%3Apmid%2F15384425&rft.externalDocID=15384425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-7529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-7529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-7529&client=summon |