Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy

We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Optical Society of America. A, Optics, image science, and vision Vol. 21; no. 9; p. 1593
Main Authors Preza, Chrysanthe, Conchello, José-Angel
Format Journal Article
LanguageEnglish
Published United States 01.09.2004
Subjects
Online AccessGet more information

Cover

Loading…
Abstract We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth.
AbstractList We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for depth-varying image formation for optical sectioning microscopy. This new strata-based model incorporates spherical aberration that worsens as the microscope is focused deeper under the cover slip and is the result of the refractive-index mismatch between the immersion medium and the mounting medium of the specimen. Images of a specimen with known geometry and refractive index show that the model captures the main features of the image. We analyze the performance of the depth-variant EM algorithm with simulations, which show that the algorithm can compensate for image degradation changing with depth.
Author Preza, Chrysanthe
Conchello, José-Angel
Author_xml – sequence: 1
  givenname: Chrysanthe
  surname: Preza
  fullname: Preza, Chrysanthe
  organization: Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
– sequence: 2
  givenname: José-Angel
  surname: Conchello
  fullname: Conchello, José-Angel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15384425$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAYRbMYcR66dif9A6l5tulyGN8MzELduBnS5CuNNk1JU3H-vQV1deGey4G7Ros-9IDQFSU55YW4eT68bLc5ozkhVFZ8gVaUKIFLyaolWo_jByFEFKo8R0squRKCyRV6v4UhtfhLR6f7lHn97fzkcec-oXNtCDaLMKYQdXKhz5oQs9RGAGydh36cO91lTTeFeWWgN5B5Z2IYTRhOF-is0d0Il3-5QW_3d6-7R7w_PDzttntsWMUTVhWrDVVQWKstMxq0MbXgplEgS1mSuhQzMErqgstCqkpYW5SM00YxYhljG3T96x2m2oM9DtF5HU_H_5PsBxbmVtg
CitedBy_id crossref_primary_10_3103_S0146411619020111
crossref_primary_10_1137_130945776
crossref_primary_10_1038_s41596_020_0360_2
crossref_primary_10_1038_srep02523
crossref_primary_10_1109_TMECH_2020_2997083
crossref_primary_10_1117_1_JBO_23_3_036016
crossref_primary_10_1109_TIP_2017_2716843
crossref_primary_10_1364_OE_24_012905
crossref_primary_10_1364_OE_26_014375
crossref_primary_10_1364_AO_56_000D14
crossref_primary_10_1111_jmi_12534
crossref_primary_10_1137_18M1189324
crossref_primary_10_1109_TCI_2019_2897951
crossref_primary_10_1364_OE_26_026120
crossref_primary_10_1364_AO_54_008587
crossref_primary_10_1364_OE_25_001421
crossref_primary_10_1080_10255842_2014_903934
crossref_primary_10_1109_TIP_2011_2181528
crossref_primary_10_1109_ACCESS_2020_2993625
crossref_primary_10_1111_j_1365_2818_2012_03675_x
crossref_primary_10_1002_mp_14880
crossref_primary_10_1109_TCI_2020_3048295
crossref_primary_10_1007_s10589_017_9901_1
crossref_primary_10_3390_cells10020397
crossref_primary_10_1007_s11263_015_0817_x
crossref_primary_10_1364_JOSAA_28_001864
crossref_primary_10_1109_JPHOT_2020_2974766
crossref_primary_10_1364_OE_22_005875
crossref_primary_10_1109_LRA_2018_2886374
crossref_primary_10_1109_JSTSP_2015_2493884
crossref_primary_10_3724_SP_J_1087_2008_00205
crossref_primary_10_1364_AO_435543
crossref_primary_10_1364_OL_40_001671
crossref_primary_10_1364_JOSAA_23_002440
crossref_primary_10_1137_151003465
crossref_primary_10_1364_BOE_6_003826
crossref_primary_10_1117_1_JBO_21_4_046010
crossref_primary_10_1364_AO_56_000D60
crossref_primary_10_1038_s41598_018_29768_x
crossref_primary_10_1111_j_1365_2818_2011_03486_x
crossref_primary_10_1364_OE_19_023298
crossref_primary_10_1109_MSP_2006_1628875
crossref_primary_10_1002_jemt_22650
crossref_primary_10_1364_OE_18_006461
crossref_primary_10_1364_OE_17_013810
crossref_primary_10_3390_app10207308
crossref_primary_10_1088_1361_6420_acbdb9
crossref_primary_10_1364_JOSAA_34_001029
crossref_primary_10_1364_OE_20_006527
crossref_primary_10_1364_OE_21_027668
crossref_primary_10_1038_srep09894
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1364/JOSAA.21.001593
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 15384425
Genre Evaluation Studies
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 5R01 GM4979808
– fundername: NIGMS NIH HHS
  grantid: R01 GM55708
GroupedDBID ---
-DZ
-~X
.55
29L
3O-
4.4
53G
5GY
6TJ
8WZ
A6W
AAWJZ
AI.
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
CGR
CS3
CUY
CVF
DSZJF
EBS
ECM
EIF
EJD
F5P
H~9
MVM
NPM
ODPQJ
OFLFD
OPJBK
OPLUZ
PZZ
RNS
ROL
ROP
ROS
S10
TR6
UCJ
VH1
WH7
WHG
X7M
XJT
XSW
ZCG
ZE2
ID FETCH-LOGICAL-c293t-892bc18e6ddad2caeaccb43cf8e57570b74dadc85a63565894dd67231f820d222
ISSN 1084-7529
IngestDate Sat Sep 28 08:40:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c293t-892bc18e6ddad2caeaccb43cf8e57570b74dadc85a63565894dd67231f820d222
PMID 15384425
ParticipantIDs pubmed_primary_15384425
PublicationCentury 2000
PublicationDate 2004-09-01
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the Optical Society of America. A, Optics, image science, and vision
PublicationTitleAlternate J Opt Soc Am A Opt Image Sci Vis
PublicationYear 2004
SSID ssj0004687
Score 2.1668768
Snippet We derive an algorithm for maximum-likelihood image estimation on the basis of the expectation-maximization (EM) formalism by using a new approximate model for...
SourceID pubmed
SourceType Index Database
StartPage 1593
SubjectTerms Algorithms
Computer Simulation
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Microscopy, Fluorescence
Models, Theoretical
Title Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/15384425
Volume 21
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5TEXwR73fpg28j061pkz4WLwzB-eAE8UXaJMXhuo25ifpT_LWek7S1mxfUl1KaEtqcLydfcm6EHCQqinTkB5SpgFEsUUgDYPYUln7FYUGRXoDByRctv3nNzm-8m0rlreS1NB7FNfn6ZVzJf6QKz0CuGCX7B8kWncIDuAf5whUkDNdfyfhED0b39Am2uzA-1TR67qTjlHY7D7rbMemKh6ZuTNmfcKg1VZjR32bjqCbdcX9oUjrBBE_ROw_jVCZsvSXOiiz1cmCPv3N_T6Sy1uxTq4YoMfOCgUcnRY-gbJHN_URtNHuhkof6NcqyHLw8wm_cF0g77veMm2o_s1RYmz4Nczfc4rCCFd5YuX49EoxyLzvkyBRwo14CWlDSpkC13C_VvOszrGB9eRWGtUYdrUlTb4KcBqmROmp0xmxw9c-tU3m386YZMsMFatAWngMVEbem9GLxO1nSKPiuw6mvMnWfbE9TOxfDYNpLZDEToxNaHC2Tiu6tkHnjAiwfV8ntBJqcz2hySmhyAE3OJzQ5ZTQ5H2haI9dnp-3jJs0qb1AJ9G9ERdCIZV1oX6lINSTMZilj5spEaKD3_CjmDBqk8CJMb-iJgCnlc9gqJEAoFVDOdTLb6_f0JnG4knVXJ27sSY8ppgOB3SkpeSI412KLbNhBuRvY9Cp3-XBtf9uyQxY-wLVL5hKYz3oPyOEo3jdyegfhp2c1
link.rule.ids 783
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depth-variant+maximum-likelihood+restoration+for+three-dimensional+fluorescence+microscopy&rft.jtitle=Journal+of+the+Optical+Society+of+America.+A%2C+Optics%2C+image+science%2C+and+vision&rft.au=Preza%2C+Chrysanthe&rft.au=Conchello%2C+Jos%C3%A9-Angel&rft.date=2004-09-01&rft.issn=1084-7529&rft.volume=21&rft.issue=9&rft.spage=1593&rft_id=info:doi/10.1364%2FJOSAA.21.001593&rft_id=info%3Apmid%2F15384425&rft_id=info%3Apmid%2F15384425&rft.externalDocID=15384425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1084-7529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1084-7529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1084-7529&client=summon