Dynamic Spectrum Interaction of UAV Flight Formation Communication With Priority: A Deep Reinforcement Learning Approach

The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforce...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 6; no. 3; pp. 892 - 903
Main Authors Lin, Yun, Wang, Meiyu, Zhou, Xianglong, Ding, Guoru, Mao, Shiwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2020.2973376

Cover

Abstract The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforcement learning algorithm, UAVs can continuously obtain the optimal strategy by continuously interacting with the environment. In this paper, two types of UAV formation communication methods are studied. One method allows for information sharing between two UAVs in the same time slot. The other method is the adoption of a dynamic time slot allocation scheme to complete the alternate use of time slots by the UAV to realize information sharing. The quality of experience (QoE) is introduced to evaluate the results of UAV sharing, and the M/G/1 queuing model is used for priority and to evaluate the packet loss of UAV. In terms of algorithms, a combination of deep reinforcement learning (DRL) and the long-short-term memory (LSTM) network is adopted to accelerate the convergence speed of the algorithm. The experimental results show that, compared with the Q-learning and deep Q-network (DQN) methods, the proposed method achieves faster convergence and better performance with respect to the throughput rate.
AbstractList The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforcement learning algorithm, UAVs can continuously obtain the optimal strategy by continuously interacting with the environment. In this paper, two types of UAV formation communication methods are studied. One method allows for information sharing between two UAVs in the same time slot. The other method is the adoption of a dynamic time slot allocation scheme to complete the alternate use of time slots by the UAV to realize information sharing. The quality of experience (QoE) is introduced to evaluate the results of UAV sharing, and the M/G/1 queuing model is used for priority and to evaluate the packet loss of UAV. In terms of algorithms, a combination of deep reinforcement learning (DRL) and the long-short-term memory (LSTM) network is adopted to accelerate the convergence speed of the algorithm. The experimental results show that, compared with the Q-learning and deep Q-network (DQN) methods, the proposed method achieves faster convergence and better performance with respect to the throughput rate.
Author Wang, Meiyu
Mao, Shiwen
Lin, Yun
Zhou, Xianglong
Ding, Guoru
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0003-1379-9301
  surname: Lin
  fullname: Lin, Yun
  email: linyun@hrbeu.edu.cn
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Meiyu
  surname: Wang
  fullname: Wang, Meiyu
  email: hrbeumeiyu@hrbeu.edu.cn
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Xianglong
  surname: Zhou
  fullname: Zhou, Xianglong
  email: zhouxl@hrbeu.edu.cn
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
– sequence: 4
  givenname: Guoru
  orcidid: 0000-0003-1780-2547
  surname: Ding
  fullname: Ding, Guoru
  email: dr.guoru.ding@ieee.org
  organization: College of Communications Engineering, Army Engineering University of PLA, Nanjing, China
– sequence: 5
  givenname: Shiwen
  orcidid: 0000-0002-7052-0007
  surname: Mao
  fullname: Mao, Shiwen
  email: smao@ieee.org
  organization: Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
BookMark eNp9kE1LAzEQhoMoWGt_gHgJeG7N137EW1mtFoqKVj0uaTppI91kzaZg_71bW0Q8OJf54H1mmPcEHTrvAKEzSgaUEnk5LYr7ASOMDJjMOM_SA9RhnLN-lnF6-Ks-Rr2meSeE0JSlaS466PN641RlNX6uQcewrvDYRQhKR-sd9ga_DF_xaGUXy4hHPlTqe174qlo7q3fdm41L_BisDzZurvAQXwPU-AmsMz5oqMBFPAEVnHULPKzr4JVenqIjo1YN9Pa5i15GN9Pirj95uB0Xw0lfM8ljP5dMknlmmAQxzxMxkwnPWRsyTcmMGAYmVTMizVwIBoobTWlOEyEkYUZqzbvoYre3PfuxhiaW734dXHuyZEJQnrCc81aV7VQ6-KYJYEpt4_d3MSi7Kikpt06XW6fLrdPl3umWpH_IOthKhc2_zPmOsQDwo8-lTEQr-AKifosr
CODEN ITCCG7
CitedBy_id crossref_primary_10_1016_j_comnet_2023_109804
crossref_primary_10_1109_COMST_2023_3312221
crossref_primary_10_3390_drones8080353
crossref_primary_10_1109_TITS_2021_3118557
crossref_primary_10_3390_drones8110693
crossref_primary_10_1109_TCDS_2023_3286465
crossref_primary_10_3390_s21206880
crossref_primary_10_1109_OJCOMS_2021_3075201
crossref_primary_10_1109_ACCESS_2021_3138048
crossref_primary_10_1016_j_phycom_2020_101199
crossref_primary_10_1109_TR_2021_3088132
crossref_primary_10_1109_TVT_2024_3382625
crossref_primary_10_3390_electronics10090999
crossref_primary_10_1016_j_phycom_2021_101428
crossref_primary_10_1109_TR_2022_3158279
crossref_primary_10_3390_info16010008
crossref_primary_10_1016_j_cja_2021_04_033
crossref_primary_10_1109_TFUZZ_2020_3006520
crossref_primary_10_1016_j_dcan_2021_07_007
crossref_primary_10_1109_TCCN_2020_3027297
crossref_primary_10_1109_JIOT_2024_3376635
crossref_primary_10_1109_TCCN_2021_3084409
crossref_primary_10_1007_s11036_021_01773_x
crossref_primary_10_1109_JIOT_2023_3343590
crossref_primary_10_1016_j_phycom_2021_101462
crossref_primary_10_1155_2021_9504056
crossref_primary_10_1109_TVT_2021_3119070
crossref_primary_10_3390_app14188288
crossref_primary_10_1109_TR_2022_3148114
crossref_primary_10_1007_s12083_021_01172_9
crossref_primary_10_1016_j_vehcom_2021_100398
crossref_primary_10_1109_ACCESS_2024_3389104
crossref_primary_10_1109_JSYST_2022_3215279
crossref_primary_10_1109_TCCN_2024_3349452
crossref_primary_10_1109_OJCOMS_2024_3486459
crossref_primary_10_1109_TR_2022_3192020
crossref_primary_10_1007_s11036_024_02317_9
crossref_primary_10_1016_j_comnet_2021_108583
crossref_primary_10_1109_OJCOMS_2024_3429198
crossref_primary_10_1007_s11036_020_01610_7
crossref_primary_10_1007_s11036_020_01612_5
crossref_primary_10_1155_2022_2608885
crossref_primary_10_1109_TR_2021_3119068
crossref_primary_10_1016_j_phycom_2021_101370
crossref_primary_10_1016_j_comcom_2023_12_010
crossref_primary_10_1109_TR_2021_3062045
crossref_primary_10_1109_LWC_2021_3075467
crossref_primary_10_1016_j_phycom_2020_101250
crossref_primary_10_1109_ACCESS_2020_2988586
crossref_primary_10_1016_j_comcom_2025_108088
crossref_primary_10_1016_j_engappai_2023_107559
crossref_primary_10_1109_ACCESS_2022_3212741
crossref_primary_10_1109_JOE_2023_3278290
crossref_primary_10_1109_TWC_2024_3387980
crossref_primary_10_1109_JIOT_2023_3282640
crossref_primary_10_1155_2021_8241773
crossref_primary_10_1016_j_neunet_2023_02_027
crossref_primary_10_1109_MNET_011_2100068
crossref_primary_10_1109_ACCESS_2022_3174105
crossref_primary_10_1007_s11432_020_3133_x
crossref_primary_10_1109_TCSII_2022_3194271
crossref_primary_10_1007_s11036_021_01876_5
crossref_primary_10_1007_s11036_024_02307_x
crossref_primary_10_1109_TCCN_2020_2999479
crossref_primary_10_1007_s11276_021_02778_w
crossref_primary_10_1016_j_phycom_2021_101364
crossref_primary_10_1109_ACCESS_2020_2983568
crossref_primary_10_1109_TR_2022_3161336
crossref_primary_10_1109_TR_2020_3010973
crossref_primary_10_1109_TNSE_2022_3217311
crossref_primary_10_1109_TGCN_2021_3073916
crossref_primary_10_1109_LWC_2021_3101908
crossref_primary_10_3233_JIFS_211009
crossref_primary_10_1109_ACCESS_2023_3236801
crossref_primary_10_1109_TCCN_2024_3373640
crossref_primary_10_1016_j_phycom_2021_101513
crossref_primary_10_1016_j_vehcom_2025_100899
crossref_primary_10_1109_TII_2022_3210139
crossref_primary_10_3390_drones7020141
crossref_primary_10_1016_j_cja_2023_07_006
crossref_primary_10_1109_TNNLS_2022_3174885
crossref_primary_10_1109_TR_2020_3032744
crossref_primary_10_1155_2022_4327380
crossref_primary_10_1016_j_comnet_2021_108682
crossref_primary_10_1109_ACCESS_2021_3054756
crossref_primary_10_3390_jmse9111166
crossref_primary_10_1007_s11036_020_01611_6
crossref_primary_10_1007_s11036_020_01613_4
Cites_doi 10.1038/nature14236
10.1016/j.cja.2017.09.005
10.1109/MCOM.2017.1700452
10.1109/TWC.2019.2892131
10.1109/COMST.2015.2495297
10.1109/MCOM.2018.1701270
10.1109/ACCESS.2018.2849440
10.1109/JIOT.2019.2955503
10.1109/JSYST.2016.2535461
10.1109/TVT.2017.2725989
10.3182/20140824-6-ZA-1003.00890
10.1109/ACCESS.2019.2903207
10.1109/TASE.2012.2229978
10.1109/TWC.2018.2879433
10.1109/TMC.2017.2744620
10.1109/LWC.2018.2879842
10.1109/JIOT.2018.2872441
10.1007/s11227-017-2216-2
10.1109/JSTSP.2018.2798920
10.1109/TCOMM.2019.2924899
10.1016/j.acha.2018.02.002
10.1109/TMC.2018.2840143
10.1038/nature16961
10.1109/TCOMM.2019.2921022
10.1109/MNET.2019.1900172
10.1145/1394608.1382172
10.1109/TIT.2018.2868945
10.1109/TVT.2018.2876062
10.1016/j.cja.2017.01.007
10.1109/ACCESS.2016.2613122
10.1109/JSAC.2018.2824258
10.1109/JSTSP.2013.2259797
10.1109/MITS.2019.2903431
10.1109/LNET.2018.2883859
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2020.2973376
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 903
ExternalDocumentID 10_1109_TCCN_2020_2973376
8995473
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: HEUCFG201830
  funderid: 10.13039/501100012226
– fundername: International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation
  funderid: 10.13039/501100003471
– fundername: National Natural Science Foundation of China
  grantid: 61771154
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-89290d7f29e4d854b953822229660b0f2ef6ab09fd442ea3fc1181544902f9cc3
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Mon Jun 30 05:22:40 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Thu Apr 24 23:06:32 EDT 2025
Wed Aug 27 02:31:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-89290d7f29e4d854b953822229660b0f2ef6ab09fd442ea3fc1181544902f9cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7052-0007
0000-0003-1780-2547
0000-0003-1379-9301
PQID 2441352833
PQPubID 4437218
PageCount 12
ParticipantIDs proquest_journals_2441352833
ieee_primary_8995473
crossref_primary_10_1109_TCCN_2020_2973376
crossref_citationtrail_10_1109_TCCN_2020_2973376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
xiao (ref3) 2019; 18
ref34
ref12
ref37
ref15
ref36
ref14
kober (ref6) 2014; 97
ref31
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
yang (ref4) 2011; 30
ref19
yun (ref30) 2016; 16
lillicrap (ref21) 2016; 8
koushik (ref24) 2018; 17
ref23
ref26
ref25
ref20
ref41
tu (ref29) 2018; 55
ref22
ref28
ref27
ref8
ref7
sutton (ref10) 2018; 4
oshri (ref18) 2019; 18
ref9
ming (ref5) 2014; 37
ref40
References_xml – ident: ref25
  doi: 10.1038/nature14236
– ident: ref2
  doi: 10.1016/j.cja.2017.09.005
– ident: ref32
  doi: 10.1109/MCOM.2017.1700452
– ident: ref12
  doi: 10.1109/TWC.2019.2892131
– ident: ref8
  doi: 10.1109/COMST.2015.2495297
– ident: ref22
  doi: 10.1109/MCOM.2018.1701270
– ident: ref33
  doi: 10.1109/ACCESS.2018.2849440
– ident: ref35
  doi: 10.1109/JIOT.2019.2955503
– ident: ref13
  doi: 10.1109/JSYST.2016.2535461
– volume: 37
  start-page: 677
  year: 2014
  ident: ref5
  article-title: A novel off policy Q($\lambda$ ) algorithm based on linear function approximation
  publication-title: Chin J Comput
– ident: ref41
  doi: 10.1109/TVT.2017.2725989
– volume: 16
  start-page: 1
  year: 2016
  ident: ref30
  article-title: A novel dynamic spectrum access framework based on reinforcement learning for cognitive radio sensor networks
  publication-title: SENSORS
– volume: 30
  start-page: 1372
  year: 2011
  ident: ref4
  article-title: Study on an average reward reinforcement learning algorithm
  publication-title: Chin J Comput
– ident: ref7
  doi: 10.3182/20140824-6-ZA-1003.00890
– ident: ref31
  doi: 10.1109/ACCESS.2019.2903207
– ident: ref14
  doi: 10.1109/TASE.2012.2229978
– volume: 18
  start-page: 310
  year: 2019
  ident: ref18
  article-title: Deep multi-user reinforcement learning for distributed dynamic spectrum access
  publication-title: IEEE Trans Wireless Commun
  doi: 10.1109/TWC.2018.2879433
– volume: 17
  start-page: 1204
  year: 2018
  ident: ref24
  article-title: Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2017.2744620
– ident: ref11
  doi: 10.1109/LWC.2018.2879842
– ident: ref15
  doi: 10.1109/JIOT.2018.2872441
– ident: ref28
  doi: 10.1007/s11227-017-2216-2
– ident: ref17
  doi: 10.1109/JSTSP.2018.2798920
– ident: ref38
  doi: 10.1109/TCOMM.2019.2924899
– ident: ref27
  doi: 10.1016/j.acha.2018.02.002
– volume: 18
  start-page: 588
  year: 2019
  ident: ref3
  article-title: Fast deployment of UAV networks for optimal wireless coverage
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2018.2840143
– ident: ref20
  doi: 10.1038/nature16961
– ident: ref37
  doi: 10.1109/TCOMM.2019.2921022
– ident: ref36
  doi: 10.1109/MNET.2019.1900172
– ident: ref9
  doi: 10.1145/1394608.1382172
– volume: 55
  start-page: 243
  year: 2018
  ident: ref29
  article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification
  publication-title: Comput Mater Continua
– ident: ref26
  doi: 10.1109/TIT.2018.2868945
– ident: ref39
  doi: 10.1109/TVT.2018.2876062
– ident: ref1
  doi: 10.1016/j.cja.2017.01.007
– volume: 8
  start-page: 187
  year: 2016
  ident: ref21
  article-title: Continuous control with deep reinforcement learning
  publication-title: Comput Sci
– ident: ref16
  doi: 10.1109/ACCESS.2016.2613122
– volume: 4
  start-page: 362
  year: 2018
  ident: ref10
  article-title: Reinforcement learning: An introduction
  publication-title: CSEE J Power Energy Syst
– ident: ref40
  doi: 10.1109/JSAC.2018.2824258
– volume: 97
  start-page: 9
  year: 2014
  ident: ref6
  article-title: Reinforcement learning in robotics: A survey
  publication-title: Int J Robot Res
– ident: ref19
  doi: 10.1109/JSTSP.2013.2259797
– ident: ref23
  doi: 10.1109/MITS.2019.2903431
– ident: ref34
  doi: 10.1109/LNET.2018.2883859
SSID ssj0001626684
Score 2.4842005
Snippet The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 892
SubjectTerms Algorithms
Communication
Convergence
Deep learning
deep reinforcement learning (DRL)
Dynamic scheduling
Information management
Information sharing
long-short-term memory (LSTM)
Loss measurement
M/G/1 queuing model
Machine learning
Multi-unmanned aerial vehicles (UAV)
quality of experience(QoE)
Queues
Reinforcement learning
Resource management
self-determination
Slot allocation
Task analysis
Unmanned aerial vehicles
Title Dynamic Spectrum Interaction of UAV Flight Formation Communication With Priority: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/8995473
https://www.proquest.com/docview/2441352833
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2oK134FscXWbgSO2bStE3dDaODCIqIo-5K81JRZ0Q7IH69uWlmfCLuukhK4ORx7k3uOQDbnGVWMKUj2TKlC1CkjgRX1K0rVqY8kUpoDBRPTtOjHj--Tq4nYHdcC2OM8Y_PTBM__V2-Hqghpsr2BIqXZfEkTLppVtdqfeRTHDNPBQ8Xly2a7110OqcuAGS0if5MMaqKfDp6vJfKjw3YnyrdOTgZjad-THLfHFayqd6-STX-d8DzMBvoJWnX82EBJkx_EWY-iQ4uwetBbUJP0Hq-eh4-Ep8VrAscyMCSXvuSdB8waCfdUWkj-VJIQq7uqlty9nw3QOu7fdImB8Y8kXPjZViVzziSoNx6Q9pBtnwZet3Di85RFPwXIuVIQBUJR52ozizLDdci4TJ3uyNDA_A0pZJaZmxaSppbzTkzZWwVVrEmnOeU2VypeAWm-oO-WQUitXTEmBuRyxbXGRc2Ll1jk6BeYBYnDaAjaAoVxMnRI-Oh8EEKzQtEs0A0i4BmA3bGXZ5qZY6_Gi8hOuOGAZgGbIzwL8LafSkc4Wl5zZt47fde6zCN_65fmm3AlIPKbDpqUsktPyffAfmp4RQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RegAOtOVDhFLqQ0-oGxyvd9fbWxQapS2JUJUUbqv1FyAgicJGQv319XidlNIK9bYHW2vp-ePN2PMewAfOMiuY0pFsmdIFKFJHgivq1hUrU55IJTQGiv1B2hvxrxfJxQp8XNbCGGP84zPTxE9_l68nao6psmOB4mVZ_AJeunOfJ3W11u-MiuPmqeDh6rJF8-NhpzNwISCjTXRoilFX5NHh491U_tqC_bnSfQX9xYjq5yQ3zXklm-rnE7HG_x3ya9gMBJO06xnxBlbMeAs2HskObsPDSW1DT9B8vprN74jPC9YlDmRiyaj9g3RvMWwn3UVxI_mjlIScX1dX5Gx2PUHzu0-kTU6MmZLvxguxKp9zJEG79ZK0g3D5Doy6n4edXhQcGCLlaEAVCUeeqM4syw3XIuEyd_sjQwvwNKWSWmZsWkqaW805M2VsFdaxJpznlNlcqXgXVseTsdkDIrV01JgbkcsW1xkXNi5dY5OgYmAWJw2gC2gKFeTJ0SXjtvBhCs0LRLNANIuAZgOOll2mtTbHc423EZ1lwwBMAw4W-Bdh9d4XjvK0vOpNvP_vXu9hrTfsnxanXwbf3sI6_qd-d3YAqw42884RlUoe-vn5C-iO5GE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Spectrum+Interaction+of+UAV+Flight+Formation+Communication+With+Priority%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Lin%2C+Yun&rft.au=Wang%2C+Meiyu&rft.au=Zhou%2C+Xianglong&rft.au=Ding%2C+Guoru&rft.date=2020-09-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=6&rft.issue=3&rft.spage=892&rft.epage=903&rft_id=info:doi/10.1109%2FTCCN.2020.2973376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2020_2973376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon