Dynamic Spectrum Interaction of UAV Flight Formation Communication With Priority: A Deep Reinforcement Learning Approach
The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforce...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 6; no. 3; pp. 892 - 903 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2020.2973376 |
Cover
Abstract | The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforcement learning algorithm, UAVs can continuously obtain the optimal strategy by continuously interacting with the environment. In this paper, two types of UAV formation communication methods are studied. One method allows for information sharing between two UAVs in the same time slot. The other method is the adoption of a dynamic time slot allocation scheme to complete the alternate use of time slots by the UAV to realize information sharing. The quality of experience (QoE) is introduced to evaluate the results of UAV sharing, and the M/G/1 queuing model is used for priority and to evaluate the packet loss of UAV. In terms of algorithms, a combination of deep reinforcement learning (DRL) and the long-short-term memory (LSTM) network is adopted to accelerate the convergence speed of the algorithm. The experimental results show that, compared with the Q-learning and deep Q-network (DQN) methods, the proposed method achieves faster convergence and better performance with respect to the throughput rate. |
---|---|
AbstractList | The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the problem of the ordered communication of multiple UAVs with limited bandwidth via spectrum interaction between UAVs. By introducing reinforcement learning algorithm, UAVs can continuously obtain the optimal strategy by continuously interacting with the environment. In this paper, two types of UAV formation communication methods are studied. One method allows for information sharing between two UAVs in the same time slot. The other method is the adoption of a dynamic time slot allocation scheme to complete the alternate use of time slots by the UAV to realize information sharing. The quality of experience (QoE) is introduced to evaluate the results of UAV sharing, and the M/G/1 queuing model is used for priority and to evaluate the packet loss of UAV. In terms of algorithms, a combination of deep reinforcement learning (DRL) and the long-short-term memory (LSTM) network is adopted to accelerate the convergence speed of the algorithm. The experimental results show that, compared with the Q-learning and deep Q-network (DQN) methods, the proposed method achieves faster convergence and better performance with respect to the throughput rate. |
Author | Wang, Meiyu Mao, Shiwen Lin, Yun Zhou, Xianglong Ding, Guoru |
Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0003-1379-9301 surname: Lin fullname: Lin, Yun email: linyun@hrbeu.edu.cn organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Meiyu surname: Wang fullname: Wang, Meiyu email: hrbeumeiyu@hrbeu.edu.cn organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Xianglong surname: Zhou fullname: Zhou, Xianglong email: zhouxl@hrbeu.edu.cn organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, China – sequence: 4 givenname: Guoru orcidid: 0000-0003-1780-2547 surname: Ding fullname: Ding, Guoru email: dr.guoru.ding@ieee.org organization: College of Communications Engineering, Army Engineering University of PLA, Nanjing, China – sequence: 5 givenname: Shiwen orcidid: 0000-0002-7052-0007 surname: Mao fullname: Mao, Shiwen email: smao@ieee.org organization: Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA |
BookMark | eNp9kE1LAzEQhoMoWGt_gHgJeG7N137EW1mtFoqKVj0uaTppI91kzaZg_71bW0Q8OJf54H1mmPcEHTrvAKEzSgaUEnk5LYr7ASOMDJjMOM_SA9RhnLN-lnF6-Ks-Rr2meSeE0JSlaS466PN641RlNX6uQcewrvDYRQhKR-sd9ga_DF_xaGUXy4hHPlTqe174qlo7q3fdm41L_BisDzZurvAQXwPU-AmsMz5oqMBFPAEVnHULPKzr4JVenqIjo1YN9Pa5i15GN9Pirj95uB0Xw0lfM8ljP5dMknlmmAQxzxMxkwnPWRsyTcmMGAYmVTMizVwIBoobTWlOEyEkYUZqzbvoYre3PfuxhiaW734dXHuyZEJQnrCc81aV7VQ6-KYJYEpt4_d3MSi7Kikpt06XW6fLrdPl3umWpH_IOthKhc2_zPmOsQDwo8-lTEQr-AKifosr |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1016_j_comnet_2023_109804 crossref_primary_10_1109_COMST_2023_3312221 crossref_primary_10_3390_drones8080353 crossref_primary_10_1109_TITS_2021_3118557 crossref_primary_10_3390_drones8110693 crossref_primary_10_1109_TCDS_2023_3286465 crossref_primary_10_3390_s21206880 crossref_primary_10_1109_OJCOMS_2021_3075201 crossref_primary_10_1109_ACCESS_2021_3138048 crossref_primary_10_1016_j_phycom_2020_101199 crossref_primary_10_1109_TR_2021_3088132 crossref_primary_10_1109_TVT_2024_3382625 crossref_primary_10_3390_electronics10090999 crossref_primary_10_1016_j_phycom_2021_101428 crossref_primary_10_1109_TR_2022_3158279 crossref_primary_10_3390_info16010008 crossref_primary_10_1016_j_cja_2021_04_033 crossref_primary_10_1109_TFUZZ_2020_3006520 crossref_primary_10_1016_j_dcan_2021_07_007 crossref_primary_10_1109_TCCN_2020_3027297 crossref_primary_10_1109_JIOT_2024_3376635 crossref_primary_10_1109_TCCN_2021_3084409 crossref_primary_10_1007_s11036_021_01773_x crossref_primary_10_1109_JIOT_2023_3343590 crossref_primary_10_1016_j_phycom_2021_101462 crossref_primary_10_1155_2021_9504056 crossref_primary_10_1109_TVT_2021_3119070 crossref_primary_10_3390_app14188288 crossref_primary_10_1109_TR_2022_3148114 crossref_primary_10_1007_s12083_021_01172_9 crossref_primary_10_1016_j_vehcom_2021_100398 crossref_primary_10_1109_ACCESS_2024_3389104 crossref_primary_10_1109_JSYST_2022_3215279 crossref_primary_10_1109_TCCN_2024_3349452 crossref_primary_10_1109_OJCOMS_2024_3486459 crossref_primary_10_1109_TR_2022_3192020 crossref_primary_10_1007_s11036_024_02317_9 crossref_primary_10_1016_j_comnet_2021_108583 crossref_primary_10_1109_OJCOMS_2024_3429198 crossref_primary_10_1007_s11036_020_01610_7 crossref_primary_10_1007_s11036_020_01612_5 crossref_primary_10_1155_2022_2608885 crossref_primary_10_1109_TR_2021_3119068 crossref_primary_10_1016_j_phycom_2021_101370 crossref_primary_10_1016_j_comcom_2023_12_010 crossref_primary_10_1109_TR_2021_3062045 crossref_primary_10_1109_LWC_2021_3075467 crossref_primary_10_1016_j_phycom_2020_101250 crossref_primary_10_1109_ACCESS_2020_2988586 crossref_primary_10_1016_j_comcom_2025_108088 crossref_primary_10_1016_j_engappai_2023_107559 crossref_primary_10_1109_ACCESS_2022_3212741 crossref_primary_10_1109_JOE_2023_3278290 crossref_primary_10_1109_TWC_2024_3387980 crossref_primary_10_1109_JIOT_2023_3282640 crossref_primary_10_1155_2021_8241773 crossref_primary_10_1016_j_neunet_2023_02_027 crossref_primary_10_1109_MNET_011_2100068 crossref_primary_10_1109_ACCESS_2022_3174105 crossref_primary_10_1007_s11432_020_3133_x crossref_primary_10_1109_TCSII_2022_3194271 crossref_primary_10_1007_s11036_021_01876_5 crossref_primary_10_1007_s11036_024_02307_x crossref_primary_10_1109_TCCN_2020_2999479 crossref_primary_10_1007_s11276_021_02778_w crossref_primary_10_1016_j_phycom_2021_101364 crossref_primary_10_1109_ACCESS_2020_2983568 crossref_primary_10_1109_TR_2022_3161336 crossref_primary_10_1109_TR_2020_3010973 crossref_primary_10_1109_TNSE_2022_3217311 crossref_primary_10_1109_TGCN_2021_3073916 crossref_primary_10_1109_LWC_2021_3101908 crossref_primary_10_3233_JIFS_211009 crossref_primary_10_1109_ACCESS_2023_3236801 crossref_primary_10_1109_TCCN_2024_3373640 crossref_primary_10_1016_j_phycom_2021_101513 crossref_primary_10_1016_j_vehcom_2025_100899 crossref_primary_10_1109_TII_2022_3210139 crossref_primary_10_3390_drones7020141 crossref_primary_10_1016_j_cja_2023_07_006 crossref_primary_10_1109_TNNLS_2022_3174885 crossref_primary_10_1109_TR_2020_3032744 crossref_primary_10_1155_2022_4327380 crossref_primary_10_1016_j_comnet_2021_108682 crossref_primary_10_1109_ACCESS_2021_3054756 crossref_primary_10_3390_jmse9111166 crossref_primary_10_1007_s11036_020_01611_6 crossref_primary_10_1007_s11036_020_01613_4 |
Cites_doi | 10.1038/nature14236 10.1016/j.cja.2017.09.005 10.1109/MCOM.2017.1700452 10.1109/TWC.2019.2892131 10.1109/COMST.2015.2495297 10.1109/MCOM.2018.1701270 10.1109/ACCESS.2018.2849440 10.1109/JIOT.2019.2955503 10.1109/JSYST.2016.2535461 10.1109/TVT.2017.2725989 10.3182/20140824-6-ZA-1003.00890 10.1109/ACCESS.2019.2903207 10.1109/TASE.2012.2229978 10.1109/TWC.2018.2879433 10.1109/TMC.2017.2744620 10.1109/LWC.2018.2879842 10.1109/JIOT.2018.2872441 10.1007/s11227-017-2216-2 10.1109/JSTSP.2018.2798920 10.1109/TCOMM.2019.2924899 10.1016/j.acha.2018.02.002 10.1109/TMC.2018.2840143 10.1038/nature16961 10.1109/TCOMM.2019.2921022 10.1109/MNET.2019.1900172 10.1145/1394608.1382172 10.1109/TIT.2018.2868945 10.1109/TVT.2018.2876062 10.1016/j.cja.2017.01.007 10.1109/ACCESS.2016.2613122 10.1109/JSAC.2018.2824258 10.1109/JSTSP.2013.2259797 10.1109/MITS.2019.2903431 10.1109/LNET.2018.2883859 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2020.2973376 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 903 |
ExternalDocumentID | 10_1109_TCCN_2020_2973376 8995473 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: HEUCFG201830 funderid: 10.13039/501100012226 – fundername: International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation funderid: 10.13039/501100003471 – fundername: National Natural Science Foundation of China grantid: 61771154 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-89290d7f29e4d854b953822229660b0f2ef6ab09fd442ea3fc1181544902f9cc3 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Mon Jun 30 05:22:40 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Thu Apr 24 23:06:32 EDT 2025 Wed Aug 27 02:31:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-89290d7f29e4d854b953822229660b0f2ef6ab09fd442ea3fc1181544902f9cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7052-0007 0000-0003-1780-2547 0000-0003-1379-9301 |
PQID | 2441352833 |
PQPubID | 4437218 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2441352833 ieee_primary_8995473 crossref_primary_10_1109_TCCN_2020_2973376 crossref_citationtrail_10_1109_TCCN_2020_2973376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 xiao (ref3) 2019; 18 ref34 ref12 ref37 ref15 ref36 ref14 kober (ref6) 2014; 97 ref31 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 yang (ref4) 2011; 30 ref19 yun (ref30) 2016; 16 lillicrap (ref21) 2016; 8 koushik (ref24) 2018; 17 ref23 ref26 ref25 ref20 ref41 tu (ref29) 2018; 55 ref22 ref28 ref27 ref8 ref7 sutton (ref10) 2018; 4 oshri (ref18) 2019; 18 ref9 ming (ref5) 2014; 37 ref40 |
References_xml | – ident: ref25 doi: 10.1038/nature14236 – ident: ref2 doi: 10.1016/j.cja.2017.09.005 – ident: ref32 doi: 10.1109/MCOM.2017.1700452 – ident: ref12 doi: 10.1109/TWC.2019.2892131 – ident: ref8 doi: 10.1109/COMST.2015.2495297 – ident: ref22 doi: 10.1109/MCOM.2018.1701270 – ident: ref33 doi: 10.1109/ACCESS.2018.2849440 – ident: ref35 doi: 10.1109/JIOT.2019.2955503 – ident: ref13 doi: 10.1109/JSYST.2016.2535461 – volume: 37 start-page: 677 year: 2014 ident: ref5 article-title: A novel off policy Q($\lambda$ ) algorithm based on linear function approximation publication-title: Chin J Comput – ident: ref41 doi: 10.1109/TVT.2017.2725989 – volume: 16 start-page: 1 year: 2016 ident: ref30 article-title: A novel dynamic spectrum access framework based on reinforcement learning for cognitive radio sensor networks publication-title: SENSORS – volume: 30 start-page: 1372 year: 2011 ident: ref4 article-title: Study on an average reward reinforcement learning algorithm publication-title: Chin J Comput – ident: ref7 doi: 10.3182/20140824-6-ZA-1003.00890 – ident: ref31 doi: 10.1109/ACCESS.2019.2903207 – ident: ref14 doi: 10.1109/TASE.2012.2229978 – volume: 18 start-page: 310 year: 2019 ident: ref18 article-title: Deep multi-user reinforcement learning for distributed dynamic spectrum access publication-title: IEEE Trans Wireless Commun doi: 10.1109/TWC.2018.2879433 – volume: 17 start-page: 1204 year: 2018 ident: ref24 article-title: Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in cognitive radio networks publication-title: IEEE Trans Mobile Comput doi: 10.1109/TMC.2017.2744620 – ident: ref11 doi: 10.1109/LWC.2018.2879842 – ident: ref15 doi: 10.1109/JIOT.2018.2872441 – ident: ref28 doi: 10.1007/s11227-017-2216-2 – ident: ref17 doi: 10.1109/JSTSP.2018.2798920 – ident: ref38 doi: 10.1109/TCOMM.2019.2924899 – ident: ref27 doi: 10.1016/j.acha.2018.02.002 – volume: 18 start-page: 588 year: 2019 ident: ref3 article-title: Fast deployment of UAV networks for optimal wireless coverage publication-title: IEEE Trans Mobile Comput doi: 10.1109/TMC.2018.2840143 – ident: ref20 doi: 10.1038/nature16961 – ident: ref37 doi: 10.1109/TCOMM.2019.2921022 – ident: ref36 doi: 10.1109/MNET.2019.1900172 – ident: ref9 doi: 10.1145/1394608.1382172 – volume: 55 start-page: 243 year: 2018 ident: ref29 article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification publication-title: Comput Mater Continua – ident: ref26 doi: 10.1109/TIT.2018.2868945 – ident: ref39 doi: 10.1109/TVT.2018.2876062 – ident: ref1 doi: 10.1016/j.cja.2017.01.007 – volume: 8 start-page: 187 year: 2016 ident: ref21 article-title: Continuous control with deep reinforcement learning publication-title: Comput Sci – ident: ref16 doi: 10.1109/ACCESS.2016.2613122 – volume: 4 start-page: 362 year: 2018 ident: ref10 article-title: Reinforcement learning: An introduction publication-title: CSEE J Power Energy Syst – ident: ref40 doi: 10.1109/JSAC.2018.2824258 – volume: 97 start-page: 9 year: 2014 ident: ref6 article-title: Reinforcement learning in robotics: A survey publication-title: Int J Robot Res – ident: ref19 doi: 10.1109/JSTSP.2013.2259797 – ident: ref23 doi: 10.1109/MITS.2019.2903431 – ident: ref34 doi: 10.1109/LNET.2018.2883859 |
SSID | ssj0001626684 |
Score | 2.4842005 |
Snippet | The formation flights of multiple unmanned aerial vehicles (UAV) can improve the success probability of single-machine. Dynamic spectrum interaction solves the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 892 |
SubjectTerms | Algorithms Communication Convergence Deep learning deep reinforcement learning (DRL) Dynamic scheduling Information management Information sharing long-short-term memory (LSTM) Loss measurement M/G/1 queuing model Machine learning Multi-unmanned aerial vehicles (UAV) quality of experience(QoE) Queues Reinforcement learning Resource management self-determination Slot allocation Task analysis Unmanned aerial vehicles |
Title | Dynamic Spectrum Interaction of UAV Flight Formation Communication With Priority: A Deep Reinforcement Learning Approach |
URI | https://ieeexplore.ieee.org/document/8995473 https://www.proquest.com/docview/2441352833 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFL2oK134FscXWbgSO2bStE3dDaODCIqIo-5K81JRZ0Q7IH69uWlmfCLuukhK4ORx7k3uOQDbnGVWMKUj2TKlC1CkjgRX1K0rVqY8kUpoDBRPTtOjHj--Tq4nYHdcC2OM8Y_PTBM__V2-Hqghpsr2BIqXZfEkTLppVtdqfeRTHDNPBQ8Xly2a7110OqcuAGS0if5MMaqKfDp6vJfKjw3YnyrdOTgZjad-THLfHFayqd6-STX-d8DzMBvoJWnX82EBJkx_EWY-iQ4uwetBbUJP0Hq-eh4-Ep8VrAscyMCSXvuSdB8waCfdUWkj-VJIQq7uqlty9nw3QOu7fdImB8Y8kXPjZViVzziSoNx6Q9pBtnwZet3Di85RFPwXIuVIQBUJR52ozizLDdci4TJ3uyNDA_A0pZJaZmxaSppbzTkzZWwVVrEmnOeU2VypeAWm-oO-WQUitXTEmBuRyxbXGRc2Ll1jk6BeYBYnDaAjaAoVxMnRI-Oh8EEKzQtEs0A0i4BmA3bGXZ5qZY6_Gi8hOuOGAZgGbIzwL8LafSkc4Wl5zZt47fde6zCN_65fmm3AlIPKbDpqUsktPyffAfmp4RQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB1RegAOtOVDhFLqQ0-oGxyvd9fbWxQapS2JUJUUbqv1FyAgicJGQv319XidlNIK9bYHW2vp-ePN2PMewAfOMiuY0pFsmdIFKFJHgivq1hUrU55IJTQGiv1B2hvxrxfJxQp8XNbCGGP84zPTxE9_l68nao6psmOB4mVZ_AJeunOfJ3W11u-MiuPmqeDh6rJF8-NhpzNwISCjTXRoilFX5NHh491U_tqC_bnSfQX9xYjq5yQ3zXklm-rnE7HG_x3ya9gMBJO06xnxBlbMeAs2HskObsPDSW1DT9B8vprN74jPC9YlDmRiyaj9g3RvMWwn3UVxI_mjlIScX1dX5Gx2PUHzu0-kTU6MmZLvxguxKp9zJEG79ZK0g3D5Doy6n4edXhQcGCLlaEAVCUeeqM4syw3XIuEyd_sjQwvwNKWSWmZsWkqaW805M2VsFdaxJpznlNlcqXgXVseTsdkDIrV01JgbkcsW1xkXNi5dY5OgYmAWJw2gC2gKFeTJ0SXjtvBhCs0LRLNANIuAZgOOll2mtTbHc423EZ1lwwBMAw4W-Bdh9d4XjvK0vOpNvP_vXu9hrTfsnxanXwbf3sI6_qd-d3YAqw42884RlUoe-vn5C-iO5GE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Spectrum+Interaction+of+UAV+Flight+Formation+Communication+With+Priority%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Lin%2C+Yun&rft.au=Wang%2C+Meiyu&rft.au=Zhou%2C+Xianglong&rft.au=Ding%2C+Guoru&rft.date=2020-09-01&rft.issn=2332-7731&rft.eissn=2332-7731&rft.volume=6&rft.issue=3&rft.spage=892&rft.epage=903&rft_id=info:doi/10.1109%2FTCCN.2020.2973376&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCCN_2020_2973376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |