Global and Local Consistent Wavelet-Domain Age Synthesis
Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 14; no. 11; pp. 2943 - 2957 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for age synthesis. To address this issue, we propose a wavelet-domain global and local consistent age generative adversarial network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image domain, we adopt wavelet transform to depict the textual information in frequency domain. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; and 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph, and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts. |
---|---|
AbstractList | Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for age synthesis. To address this issue, we propose a wavelet-domain global and local consistent age generative adversarial network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image domain, we adopt wavelet transform to depict the textual information in frequency domain. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; and 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph, and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts. |
Author | Peipei Li Ran He Zhenan Sun Yibo Hu |
Author_xml | – sequence: 1 givenname: Peipei orcidid: 0000-0002-7963-991X surname: Li fullname: Li, Peipei – sequence: 2 givenname: Yibo surname: Hu fullname: Hu, Yibo – sequence: 3 givenname: Ran orcidid: 0000-0002-3807-991X surname: He fullname: He, Ran – sequence: 4 givenname: Zhenan orcidid: 0000-0003-4029-9935 surname: Sun fullname: Sun, Zhenan |
BookMark | eNp9kEtPAjEUhRuDiYD-AONmEteDfU0fS4KCJCQuwLhsyswdLRlanBYT_r1DICxcuLpncb57km-Aej54QOie4BEhWD-t5tPliGKiR1RjqSW7Qn1SFCIXmJLeJRN2gwYxbjDmnAjVR2rWhLVtMuurbBHKLk2Cjy4m8Cn7sD_QQMqfw9Y6n40_IVsefPqCrnCLrmvbRLg73yF6n76sJq_54m02n4wXeUk1S7lSqqZrThlhtZCc1lYVIJliFJi0sqoUrRgntlasUpVdgy4kUVqCsFBr4GyIHk9_d2343kNMZhP2re8mDaUF44WWnHUtcmqVbYixhdrsWre17cEQbI6CzFGQOQoyZ0EdI_8wpUs2ueBTa13zL_lwIh0AXJaUkAILyX4BD-Rzpw |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1109_JAS_2020_1003390 crossref_primary_10_1109_TBIOM_2019_2961926 crossref_primary_10_1109_TIP_2021_3084106 crossref_primary_10_1016_j_jvcir_2023_103884 crossref_primary_10_1145_3463475 crossref_primary_10_1109_TIP_2022_3181486 crossref_primary_10_1016_j_patrec_2020_08_021 crossref_primary_10_1109_TIFS_2020_3047753 crossref_primary_10_1016_j_neucom_2022_06_025 crossref_primary_10_1016_j_neucom_2024_129055 crossref_primary_10_1109_TBIOM_2024_3390570 crossref_primary_10_3390_electronics12112369 crossref_primary_10_1109_TIFS_2020_2975921 crossref_primary_10_1109_ACCESS_2021_3085835 crossref_primary_10_1016_j_image_2020_116127 crossref_primary_10_1016_j_patcog_2023_109791 crossref_primary_10_1007_s11704_023_2570_6 crossref_primary_10_1016_j_patcog_2019_107178 crossref_primary_10_1007_s12046_022_01807_4 crossref_primary_10_1109_ACCESS_2024_3493376 crossref_primary_10_1007_s00521_020_04748_3 crossref_primary_10_1109_TIFS_2021_3065499 crossref_primary_10_1109_ACCESS_2023_3338864 crossref_primary_10_1016_j_neucom_2021_04_068 crossref_primary_10_1007_s11042_024_19361_y crossref_primary_10_1109_TNNLS_2022_3153088 crossref_primary_10_1109_TIFS_2020_2980792 |
Cites_doi | 10.1109/LSP.2016.2603342 10.1109/CVPR.2017.241 10.1109/ICB2018.2018.00020 10.1109/CVPR.2006.187 10.1109/TIP.2016.2547587 10.1109/TMM.2015.2420374 10.1007/s11263-016-0940-3 10.1109/CVPR.2014.426 10.1109/ICCV.2015.452 10.1038/scientificamerican0280-132 10.1109/TPAMI.2012.22 10.1109/CVPR.2018.00876 10.1109/CVPR.2018.00012 10.1109/ICPR.2018.8545119 10.1007/s11042-013-1399-7 10.1109/CVPR.2016.622 10.1007/978-3-319-46487-9_6 10.1109/ICCV.2017.244 10.1109/TIFS.2018.2833032 10.1109/CVPR.2018.00011 10.1109/CVPR.2017.463 10.1109/38.946630 10.1109/TPAMI.2009.39 10.1109/ICCV.2017.403 10.1109/CVPR.2016.261 10.1145/3123266.3123431 10.1109/34.993553 10.1109/CVPR.2018.00916 10.1109/FGR.2006.78 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2019.2907973 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 2957 |
ExternalDocumentID | 10_1109_TIFS_2019_2907973 8676067 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 2016YFB1001001; 2017YFC0821602; 2016YFB1001000; 61427811; 61573360 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61622310 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Beijing Municipality grantid: JQ18017 funderid: 10.13039/501100004826 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-888f2b42313f6742fa85e73832e37a7dd82d341af83d8dabe9571897e6aef9e43 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Mon Jun 30 03:07:23 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 02:40:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-888f2b42313f6742fa85e73832e37a7dd82d341af83d8dabe9571897e6aef9e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7963-991X 0000-0002-3807-991X 0000-0003-4029-9935 |
PQID | 2253459743 |
PQPubID | 85506 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2253459743 crossref_citationtrail_10_1109_TIFS_2019_2907973 ieee_primary_8676067 crossref_primary_10_1109_TIFS_2019_2907973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref37 ref15 ref36 ref14 ref31 wang (ref5) 2018 ref33 ref32 mirza (ref13) 0 ref2 ref1 ref39 ref17 ref16 goodfellow (ref6) 2014 ref18 (ref41) 2019 liu (ref11) 2016 suo (ref21) 2012; 34 suo (ref19) 2010; 32 ref24 ref23 ref26 radford (ref30) 2015 ref25 ref20 simonyan (ref27) 2014 ref22 ref28 (ref38) 2018 ref29 ref8 ref7 (ref40) 2018 ref9 isola (ref12) 2016 ref3 zhou (ref4) 2017 liu (ref10) 2017 |
References_xml | – start-page: 1125 year: 2016 ident: ref12 article-title: image-to-image translation with conditional adversarial networks publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref36 doi: 10.1109/LSP.2016.2603342 – year: 2017 ident: ref4 publication-title: Personalized and occupational-aware age progression by generative adversarial networks – ident: ref28 doi: 10.1109/CVPR.2017.241 – ident: ref29 doi: 10.1109/ICB2018.2018.00020 – ident: ref22 doi: 10.1109/CVPR.2006.187 – ident: ref37 doi: 10.1109/TIP.2016.2547587 – year: 2014 ident: ref27 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – year: 2018 ident: ref40 publication-title: AgingBooth PiVi Co – ident: ref31 doi: 10.1109/TMM.2015.2420374 – ident: ref35 doi: 10.1007/s11263-016-0940-3 – year: 2018 ident: ref38 publication-title: Face Transformer (FT) demo – start-page: 7939 year: 2018 ident: ref5 article-title: Face aging with identity-preserved conditional generative adversarial networks publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – year: 0 ident: ref13 publication-title: Conditional generative adversarial nets – ident: ref24 doi: 10.1109/CVPR.2014.426 – ident: ref25 doi: 10.1109/ICCV.2015.452 – ident: ref20 doi: 10.1038/scientificamerican0280-132 – volume: 34 start-page: 2083 year: 2012 ident: ref21 article-title: A concatenational graph evolution aging model publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.22 – ident: ref16 doi: 10.1109/CVPR.2018.00876 – ident: ref17 doi: 10.1109/CVPR.2018.00012 – ident: ref9 doi: 10.1109/ICPR.2018.8545119 – year: 2019 ident: ref41 publication-title: Face++ Research Toolkit Megvii Inc – ident: ref18 doi: 10.1007/s11042-013-1399-7 – ident: ref7 doi: 10.1109/CVPR.2016.622 – ident: ref34 doi: 10.1007/978-3-319-46487-9_6 – ident: ref15 doi: 10.1109/ICCV.2017.244 – ident: ref26 doi: 10.1109/TIFS.2018.2833032 – ident: ref2 doi: 10.1109/CVPR.2018.00011 – ident: ref1 doi: 10.1109/CVPR.2017.463 – ident: ref23 doi: 10.1109/38.946630 – volume: 32 start-page: 385 year: 2010 ident: ref19 article-title: A compositional and dynamic model for face aging publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.39 – ident: ref3 doi: 10.1109/ICCV.2017.403 – ident: ref8 doi: 10.1109/CVPR.2016.261 – ident: ref39 doi: 10.1145/3123266.3123431 – ident: ref33 doi: 10.1109/34.993553 – ident: ref14 doi: 10.1109/CVPR.2018.00916 – ident: ref32 doi: 10.1109/FGR.2006.78 – start-page: 700 year: 2017 ident: ref10 article-title: Unsupervised image-to-image translation networks publication-title: Proc Adv Neural Inf Process Syst – start-page: 2672 year: 2014 ident: ref6 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref30 publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR – start-page: 469 year: 2016 ident: ref11 article-title: Coupled generative adversarial networks publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0044168 |
Score | 2.4582362 |
Snippet | Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2943 |
SubjectTerms | Age Age synthesis Aging generative adversarial network Generative adversarial networks global and local features Linear transformations Prototypes Regularization Synthesis Task analysis Topology Wavelet domain wavelet transform Wavelet transforms |
Title | Global and Local Consistent Wavelet-Domain Age Synthesis |
URI | https://ieeexplore.ieee.org/document/8676067 https://www.proquest.com/docview/2253459743 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwyUpygU5IEJ4dDGThyPCKgAUZZS0S1y4gtCQIogHeDXc86j4iXElsG2LJ_t77747j6A_UBZ7YqkcEK_gEtpJNeyl3LiIplIXDxj6pKTB9fh-UhejoPxHBzOcmEQsQw-Q899lm_5dpJO3a-yoyhU5G-reZgn4lblajW3LqF6lfYWBCEnkiHqF8xeVx_dXPSHLohLez5RQa3EFwwqRVV-3MQlvPRbMGgmVkWVPHjTIvHS9281G_878xVYrv1MdlxtjFWYw3wNWo2GA6uP9BosfSpIuA5RJQHATG7ZlUM5Vgp60k7IC3ZrnEhFwU8nT-Y-Z8d3yIZvOTmQ1GADRv2zm5NzXmsr8JQAvuBEfDM_IV-qJ7KQ6HFmogDJaMJHoYyyNvItAZzJImEjaxLUAaGYVhgazDRKsQkL-STHLWBC6ITsqzMfE6mIQUmFKG0QhbqXKKHb0G1WO07rwuNO_-IxLglIV8fOQLEzUFwbqA0Hsy7PVdWNvxqvuwWfNazXug2dxqRxfS5fY7q9hHQcSmz_3msHFt3YVbZhBxaKlynukttRJHvlfvsA27rQaw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPZQeoOWhLqWtD-2lkpfd2I7jQw-odLVbFi4sKrfgxBOEaLMIskLwW_pX-t86TpwVfYgbUm85jPPwfJqZL54HwDulnfFNUjh5P8WltJIb2c85cZFCZD6fMffFyQeH8fBYfjlRJwvwY14Lg4h18hl2_WV9lu-m-cz_KttJYk3xtg4plPt4e0ME7frjaI-0-T6KBp8nn4Y8zBDgOTmyihPBK6KMYoa-KGKigYVNFNLLiQiFttq5JHJkyG2RCJc4m6FRZK2NxthiYVAKuu8iPKE4Q0VNdVhr5ymOaArtlIo50RoRzkz7PbMzGQ2OfNqY6UZEPo0Wv3m9eozLX7a_dmiDVfjZbkWTx3LRnVVZN7_7o0vk_7pXz2ElRNJst4H-C1jAcg1W2ykVLBitNXh2r-XiOiTNkANmS8fG3o-zemQpYb2s2Ffrx3BUfG_63Z6XbPcM2dFtSSEyCWzA8aN8zSYsldMSXwITwmSEYFNEmElNHFFqROlUEpt-poXpQK_VbpqH1up-wse3tKZYPZN6QKQeEGkARAc-zJdcNn1FHhJe9wqeCwbddmC7hVAaLM91SvZZSM8Sxda_V72Fp8PJwTgdjw73X8Gyf05TW7kNS9XVDF9TkFVlb2qsMzh9bMD8AjEiLZY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Consistent+Wavelet-Domain+Age+Synthesis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Li%2C+Peipei&rft.au=Hu%2C+Yibo&rft.au=He%2C+Ran&rft.au=Sun%2C+Zhenan&rft.date=2019-11-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=14&rft.issue=11&rft.spage=2943&rft.epage=2957&rft_id=info:doi/10.1109%2FTIFS.2019.2907973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2019_2907973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |