Global and Local Consistent Wavelet-Domain Age Synthesis

Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 14; no. 11; pp. 2943 - 2957
Main Authors Li, Peipei, Hu, Yibo, He, Ran, Sun, Zhenan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for age synthesis. To address this issue, we propose a wavelet-domain global and local consistent age generative adversarial network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image domain, we adopt wavelet transform to depict the textual information in frequency domain. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; and 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph, and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts.
AbstractList Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in local facial parts, such as wrinkles at the eye corners. However, these local facial parts contribute less in previous GAN-based methods for age synthesis. To address this issue, we propose a wavelet-domain global and local consistent age generative adversarial network (WaveletGLCA-GAN), in which one global specific network and three local specific networks are integrated together to capture both global topology information and local texture details of human faces. Different from the most existing methods that modeling age synthesis in image domain, we adopt wavelet transform to depict the textual information in frequency domain. Moreover, five types of losses are adopted: 1) adversarial loss aims to generate realistic wavelets; 2) identity preserving loss aims to better preserve identity information; 3) age preserving loss aims to enhance the accuracy of age synthesis; 4) pixel-wise loss aims to preserve the background information of the input face; and 5) the total variation regularization aims to remove ghosting artifacts. Our method is evaluated on three face aging datasets, including CACD2000, Morph, and FG-NET. Qualitative and quantitative experiments show the superiority of the proposed method over other state-of-the-arts.
Author Peipei Li
Ran He
Zhenan Sun
Yibo Hu
Author_xml – sequence: 1
  givenname: Peipei
  orcidid: 0000-0002-7963-991X
  surname: Li
  fullname: Li, Peipei
– sequence: 2
  givenname: Yibo
  surname: Hu
  fullname: Hu, Yibo
– sequence: 3
  givenname: Ran
  orcidid: 0000-0002-3807-991X
  surname: He
  fullname: He, Ran
– sequence: 4
  givenname: Zhenan
  orcidid: 0000-0003-4029-9935
  surname: Sun
  fullname: Sun, Zhenan
BookMark eNp9kEtPAjEUhRuDiYD-AONmEteDfU0fS4KCJCQuwLhsyswdLRlanBYT_r1DICxcuLpncb57km-Aej54QOie4BEhWD-t5tPliGKiR1RjqSW7Qn1SFCIXmJLeJRN2gwYxbjDmnAjVR2rWhLVtMuurbBHKLk2Cjy4m8Cn7sD_QQMqfw9Y6n40_IVsefPqCrnCLrmvbRLg73yF6n76sJq_54m02n4wXeUk1S7lSqqZrThlhtZCc1lYVIJliFJi0sqoUrRgntlasUpVdgy4kUVqCsFBr4GyIHk9_d2343kNMZhP2re8mDaUF44WWnHUtcmqVbYixhdrsWre17cEQbI6CzFGQOQoyZ0EdI_8wpUs2ueBTa13zL_lwIh0AXJaUkAILyX4BD-Rzpw
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_JAS_2020_1003390
crossref_primary_10_1109_TBIOM_2019_2961926
crossref_primary_10_1109_TIP_2021_3084106
crossref_primary_10_1016_j_jvcir_2023_103884
crossref_primary_10_1145_3463475
crossref_primary_10_1109_TIP_2022_3181486
crossref_primary_10_1016_j_patrec_2020_08_021
crossref_primary_10_1109_TIFS_2020_3047753
crossref_primary_10_1016_j_neucom_2022_06_025
crossref_primary_10_1016_j_neucom_2024_129055
crossref_primary_10_1109_TBIOM_2024_3390570
crossref_primary_10_3390_electronics12112369
crossref_primary_10_1109_TIFS_2020_2975921
crossref_primary_10_1109_ACCESS_2021_3085835
crossref_primary_10_1016_j_image_2020_116127
crossref_primary_10_1016_j_patcog_2023_109791
crossref_primary_10_1007_s11704_023_2570_6
crossref_primary_10_1016_j_patcog_2019_107178
crossref_primary_10_1007_s12046_022_01807_4
crossref_primary_10_1109_ACCESS_2024_3493376
crossref_primary_10_1007_s00521_020_04748_3
crossref_primary_10_1109_TIFS_2021_3065499
crossref_primary_10_1109_ACCESS_2023_3338864
crossref_primary_10_1016_j_neucom_2021_04_068
crossref_primary_10_1007_s11042_024_19361_y
crossref_primary_10_1109_TNNLS_2022_3153088
crossref_primary_10_1109_TIFS_2020_2980792
Cites_doi 10.1109/LSP.2016.2603342
10.1109/CVPR.2017.241
10.1109/ICB2018.2018.00020
10.1109/CVPR.2006.187
10.1109/TIP.2016.2547587
10.1109/TMM.2015.2420374
10.1007/s11263-016-0940-3
10.1109/CVPR.2014.426
10.1109/ICCV.2015.452
10.1038/scientificamerican0280-132
10.1109/TPAMI.2012.22
10.1109/CVPR.2018.00876
10.1109/CVPR.2018.00012
10.1109/ICPR.2018.8545119
10.1007/s11042-013-1399-7
10.1109/CVPR.2016.622
10.1007/978-3-319-46487-9_6
10.1109/ICCV.2017.244
10.1109/TIFS.2018.2833032
10.1109/CVPR.2018.00011
10.1109/CVPR.2017.463
10.1109/38.946630
10.1109/TPAMI.2009.39
10.1109/ICCV.2017.403
10.1109/CVPR.2016.261
10.1145/3123266.3123431
10.1109/34.993553
10.1109/CVPR.2018.00916
10.1109/FGR.2006.78
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2019.2907973
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 2957
ExternalDocumentID 10_1109_TIFS_2019_2907973
8676067
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 2016YFB1001001; 2017YFC0821602; 2016YFB1001000; 61427811; 61573360
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61622310
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: JQ18017
  funderid: 10.13039/501100004826
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-888f2b42313f6742fa85e73832e37a7dd82d341af83d8dabe9571897e6aef9e43
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Mon Jun 30 03:07:23 EDT 2025
Tue Jul 01 02:34:14 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-888f2b42313f6742fa85e73832e37a7dd82d341af83d8dabe9571897e6aef9e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7963-991X
0000-0002-3807-991X
0000-0003-4029-9935
PQID 2253459743
PQPubID 85506
PageCount 15
ParticipantIDs proquest_journals_2253459743
crossref_citationtrail_10_1109_TIFS_2019_2907973
ieee_primary_8676067
crossref_primary_10_1109_TIFS_2019_2907973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref37
ref15
ref36
ref14
ref31
wang (ref5) 2018
ref33
ref32
mirza (ref13) 0
ref2
ref1
ref39
ref17
ref16
goodfellow (ref6) 2014
ref18
(ref41) 2019
liu (ref11) 2016
suo (ref21) 2012; 34
suo (ref19) 2010; 32
ref24
ref23
ref26
radford (ref30) 2015
ref25
ref20
simonyan (ref27) 2014
ref22
ref28
(ref38) 2018
ref29
ref8
ref7
(ref40) 2018
ref9
isola (ref12) 2016
ref3
zhou (ref4) 2017
liu (ref10) 2017
References_xml – start-page: 1125
  year: 2016
  ident: ref12
  article-title: image-to-image translation with conditional adversarial networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref36
  doi: 10.1109/LSP.2016.2603342
– year: 2017
  ident: ref4
  publication-title: Personalized and occupational-aware age progression by generative adversarial networks
– ident: ref28
  doi: 10.1109/CVPR.2017.241
– ident: ref29
  doi: 10.1109/ICB2018.2018.00020
– ident: ref22
  doi: 10.1109/CVPR.2006.187
– ident: ref37
  doi: 10.1109/TIP.2016.2547587
– year: 2014
  ident: ref27
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– year: 2018
  ident: ref40
  publication-title: AgingBooth PiVi Co
– ident: ref31
  doi: 10.1109/TMM.2015.2420374
– ident: ref35
  doi: 10.1007/s11263-016-0940-3
– year: 2018
  ident: ref38
  publication-title: Face Transformer (FT) demo
– start-page: 7939
  year: 2018
  ident: ref5
  article-title: Face aging with identity-preserved conditional generative adversarial networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– year: 0
  ident: ref13
  publication-title: Conditional generative adversarial nets
– ident: ref24
  doi: 10.1109/CVPR.2014.426
– ident: ref25
  doi: 10.1109/ICCV.2015.452
– ident: ref20
  doi: 10.1038/scientificamerican0280-132
– volume: 34
  start-page: 2083
  year: 2012
  ident: ref21
  article-title: A concatenational graph evolution aging model
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.22
– ident: ref16
  doi: 10.1109/CVPR.2018.00876
– ident: ref17
  doi: 10.1109/CVPR.2018.00012
– ident: ref9
  doi: 10.1109/ICPR.2018.8545119
– year: 2019
  ident: ref41
  publication-title: Face++ Research Toolkit Megvii Inc
– ident: ref18
  doi: 10.1007/s11042-013-1399-7
– ident: ref7
  doi: 10.1109/CVPR.2016.622
– ident: ref34
  doi: 10.1007/978-3-319-46487-9_6
– ident: ref15
  doi: 10.1109/ICCV.2017.244
– ident: ref26
  doi: 10.1109/TIFS.2018.2833032
– ident: ref2
  doi: 10.1109/CVPR.2018.00011
– ident: ref1
  doi: 10.1109/CVPR.2017.463
– ident: ref23
  doi: 10.1109/38.946630
– volume: 32
  start-page: 385
  year: 2010
  ident: ref19
  article-title: A compositional and dynamic model for face aging
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.39
– ident: ref3
  doi: 10.1109/ICCV.2017.403
– ident: ref8
  doi: 10.1109/CVPR.2016.261
– ident: ref39
  doi: 10.1145/3123266.3123431
– ident: ref33
  doi: 10.1109/34.993553
– ident: ref14
  doi: 10.1109/CVPR.2018.00916
– ident: ref32
  doi: 10.1109/FGR.2006.78
– start-page: 700
  year: 2017
  ident: ref10
  article-title: Unsupervised image-to-image translation networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2672
  year: 2014
  ident: ref6
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref30
  publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR
– start-page: 469
  year: 2016
  ident: ref11
  article-title: Coupled generative adversarial networks
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0044168
Score 2.4582362
Snippet Age synthesis is a challenging task due to the complicated and non-linear transformation in the human aging process. Aging information is usually reflected in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2943
SubjectTerms Age
Age synthesis
Aging
generative adversarial network
Generative adversarial networks
global and local features
Linear transformations
Prototypes
Regularization
Synthesis
Task analysis
Topology
Wavelet domain
wavelet transform
Wavelet transforms
Title Global and Local Consistent Wavelet-Domain Age Synthesis
URI https://ieeexplore.ieee.org/document/8676067
https://www.proquest.com/docview/2253459743
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwyUpygU5IEJ4dDGThyPCKgAUZZS0S1y4gtCQIogHeDXc86j4iXElsG2LJ_t77747j6A_UBZ7YqkcEK_gEtpJNeyl3LiIplIXDxj6pKTB9fh-UhejoPxHBzOcmEQsQw-Q899lm_5dpJO3a-yoyhU5G-reZgn4lblajW3LqF6lfYWBCEnkiHqF8xeVx_dXPSHLohLez5RQa3EFwwqRVV-3MQlvPRbMGgmVkWVPHjTIvHS9281G_878xVYrv1MdlxtjFWYw3wNWo2GA6uP9BosfSpIuA5RJQHATG7ZlUM5Vgp60k7IC3ZrnEhFwU8nT-Y-Z8d3yIZvOTmQ1GADRv2zm5NzXmsr8JQAvuBEfDM_IV-qJ7KQ6HFmogDJaMJHoYyyNvItAZzJImEjaxLUAaGYVhgazDRKsQkL-STHLWBC6ITsqzMfE6mIQUmFKG0QhbqXKKHb0G1WO07rwuNO_-IxLglIV8fOQLEzUFwbqA0Hsy7PVdWNvxqvuwWfNazXug2dxqRxfS5fY7q9hHQcSmz_3msHFt3YVbZhBxaKlynukttRJHvlfvsA27rQaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4BPZQeoOWhLqWtD-2lkpfd2I7jQw-odLVbFi4sKrfgxBOEaLMIskLwW_pX-t86TpwVfYgbUm85jPPwfJqZL54HwDulnfFNUjh5P8WltJIb2c85cZFCZD6fMffFyQeH8fBYfjlRJwvwY14Lg4h18hl2_WV9lu-m-cz_KttJYk3xtg4plPt4e0ME7frjaI-0-T6KBp8nn4Y8zBDgOTmyihPBK6KMYoa-KGKigYVNFNLLiQiFttq5JHJkyG2RCJc4m6FRZK2NxthiYVAKuu8iPKE4Q0VNdVhr5ymOaArtlIo50RoRzkz7PbMzGQ2OfNqY6UZEPo0Wv3m9eozLX7a_dmiDVfjZbkWTx3LRnVVZN7_7o0vk_7pXz2ElRNJst4H-C1jAcg1W2ykVLBitNXh2r-XiOiTNkANmS8fG3o-zemQpYb2s2Ffrx3BUfG_63Z6XbPcM2dFtSSEyCWzA8aN8zSYsldMSXwITwmSEYFNEmElNHFFqROlUEpt-poXpQK_VbpqH1up-wse3tKZYPZN6QKQeEGkARAc-zJdcNn1FHhJe9wqeCwbddmC7hVAaLM91SvZZSM8Sxda_V72Fp8PJwTgdjw73X8Gyf05TW7kNS9XVDF9TkFVlb2qsMzh9bMD8AjEiLZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Consistent+Wavelet-Domain+Age+Synthesis&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Li%2C+Peipei&rft.au=Hu%2C+Yibo&rft.au=He%2C+Ran&rft.au=Sun%2C+Zhenan&rft.date=2019-11-01&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=14&rft.issue=11&rft.spage=2943&rft.epage=2957&rft_id=info:doi/10.1109%2FTIFS.2019.2907973&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIFS_2019_2907973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon