Low-Rank Tensor Based Proximity Learning for Multi-View Clustering
Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise c...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 35; no. 5; pp. 5076 - 5090 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods. |
---|---|
AbstractList | Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods. |
Author | Wang, Chang-Dong Lai, Jian-Huang Chen, Man-Sheng |
Author_xml | – sequence: 1 givenname: Man-Sheng orcidid: 0000-0001-6578-0616 surname: Chen fullname: Chen, Man-Sheng email: chenmsh27@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China – sequence: 2 givenname: Chang-Dong orcidid: 0000-0001-5972-559X surname: Wang fullname: Wang, Chang-Dong email: changdongwang@hotmail.com organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China – sequence: 3 givenname: Jian-Huang orcidid: 0000-0003-3883-2024 surname: Lai fullname: Lai, Jian-Huang email: stsljh@mail.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China |
BookMark | eNp9kE1PwzAMhiM0JLbBD0BcKnHuSNKkTY5sjA9RBEKDa5W2LsrokpGkGvv3dNrEgQMn2_L72NIzQgNjDSB0TvCEECyvFo838wnFlE4SwolIyREaEs5FTIkkg77HjMQsYdkJGnm_xBiLTJAhmuZ2E78q8xktwHjroqnyUEcvzn7rlQ7bKAfljDYfUdMvn7o26PhdwyaatZ0P4PrNKTpuVOvh7FDH6O12vpjdx_nz3cPsOo8rKpMQCyFKoRpJUy7SVClgkjJe86SfyrrhqiI1VIrWtIQampSzTAlOaMlSSGspkzG63N9dO_vVgQ_F0nbO9C8LmkkuMKOY9alsn6qc9d5BU1Q6qKCtCU7ptiC42AkrdsKKnbDiIKwnyR9y7fRKue2_zMWe0QDwm5cZYVnGkx8qtXey |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_patcog_2024_110772 crossref_primary_10_1109_TETCI_2024_3409724 crossref_primary_10_1007_s00530_023_01234_3 crossref_primary_10_1109_TMM_2024_3521754 crossref_primary_10_1007_s00521_022_08137_w crossref_primary_10_1109_TETCI_2023_3306027 crossref_primary_10_1177_1088467X251315633 crossref_primary_10_1016_j_engappai_2025_110387 crossref_primary_10_1142_S0219649224501053 crossref_primary_10_1016_j_eswa_2023_122765 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1016_j_neucom_2024_128266 crossref_primary_10_1016_j_eswa_2024_125151 crossref_primary_10_1016_j_eswa_2025_126488 crossref_primary_10_1016_j_ipm_2024_103735 crossref_primary_10_1016_j_eswa_2023_121152 crossref_primary_10_1016_j_inffus_2023_102025 crossref_primary_10_1109_TIP_2024_3393291 crossref_primary_10_1109_ACCESS_2023_3274837 crossref_primary_10_1109_TCSVT_2023_3291821 crossref_primary_10_1016_j_neunet_2024_106748 crossref_primary_10_1007_s10115_024_02197_1 crossref_primary_10_1109_TCSVT_2024_3430041 crossref_primary_10_1007_s10462_024_10785_4 crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1109_TNNLS_2023_3271623 crossref_primary_10_1016_j_eswa_2025_127118 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_1145_3694689 crossref_primary_10_1109_TBDATA_2024_3433525 crossref_primary_10_1109_TETCI_2022_3221491 crossref_primary_10_1016_j_patcog_2024_110839 crossref_primary_10_1109_TCSVT_2023_3276362 crossref_primary_10_1109_TKDE_2024_3392209 crossref_primary_10_1109_TNSE_2024_3485646 crossref_primary_10_1007_s10489_022_03518_z crossref_primary_10_1109_TPAMI_2024_3386828 crossref_primary_10_1016_j_iot_2024_101203 crossref_primary_10_1016_j_knosys_2024_112902 crossref_primary_10_1016_j_neunet_2024_106282 crossref_primary_10_1109_TKDE_2023_3253244 crossref_primary_10_1016_j_ins_2023_119719 crossref_primary_10_1109_TKDE_2024_3391627 crossref_primary_10_1016_j_ijar_2025_109402 crossref_primary_10_1109_TKDE_2024_3399707 crossref_primary_10_1016_j_neunet_2024_106965 crossref_primary_10_1007_s10994_023_06474_y crossref_primary_10_1109_TCSVT_2024_3492814 crossref_primary_10_1016_j_neunet_2024_106842 |
Cites_doi | 10.1109/CVPR.2017.461 10.1016/j.knosys.2018.09.009 10.1007/s11263-018-1086-2 10.1109/TIP.2015.2463223 10.1109/ICDM.2012.43 10.1109/TIP.2019.2916740 10.1017/CBO9780511804441 10.1109/TCYB.2019.2918495 10.1007/978-981-13-3029-2 10.1109/TKDE.2017.2681670 10.1109/TIP.2014.2305840 10.1109/CVPR.2014.485 10.1109/TKDE.2011.222 10.1016/j.laa.2010.09.020 10.1109/TKDE.2017.2725263 10.1109/CVPR.2009.5206547 10.1109/CVPR.2017.8 10.1073/pnas.35.11.652 10.1109/ICCV.2015.185 10.1109/CVPR.2013.450 10.1109/CVPR.2015.7298657 10.1609/aaai.v34i04.5807 10.1016/j.patcog.2020.107441 10.1609/aaai.v33i01.33015508 10.1109/TMM.2019.2952984 10.1109/TPAMI.2012.88 10.24963/ijcai.2017/357 10.1016/j.patcog.2018.09.016 10.1109/MSP.2010.939739 10.1109/TNNLS.2020.2984814 10.1016/j.knosys.2020.105482 10.1016/j.patcog.2018.09.009 10.1609/aaai.v31i1.10909 10.1109/TKDE.2015.2503743 10.1109/TNNLS.2019.2944851 10.1609/aaai.v32i1.11617 10.1109/TIP.2017.2754939 10.1109/TCYB.2017.2751646 10.1016/j.patcog.2015.12.007 10.1109/TKDE.2019.2903810 10.1137/110837711 10.1609/aaai.v28i1.8950 10.1609/aaai.v34i04.6109 10.24963/ijcai.2019/404 10.1109/TMM.2018.2889560 10.1126/science.290.5500.2323 10.1016/j.knosys.2019.105126 10.1093/biomet/ast036 10.1109/ICCV.2015.482 10.1016/j.neunet.2020.08.019 10.1109/TCYB.2018.2836804 10.1109/TPAMI.2018.2879108 10.1109/TPAMI.2018.2877660 10.1609/aaai.v35i11.17231 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2022.3151861 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 5090 |
ExternalDocumentID | 10_1109_TKDE_2022_3151861 9714775 |
Genre | orig-research |
GrantInformation_xml | – fundername: Sun Yat-sen University grantid: 2020B1212060032 funderid: 10.13039/501100002402 – fundername: National Key Research and Development Program of China grantid: 2021YFF1201200 – fundername: Guangdong Province Key Laboratory of Computational Science funderid: 10.13039/501100019318 – fundername: National Natural Science Foundation of China; NSFC grantid: 61876193 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-888b8af9265866aae49245d53866bdf5ac1deca2d2bedef6547a8512b46e6d993 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 02:30:41 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Jul 01 01:19:40 EDT 2025 Wed Aug 27 02:14:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-888b8af9265866aae49245d53866bdf5ac1deca2d2bedef6547a8512b46e6d993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3883-2024 0000-0001-5972-559X 0000-0001-6578-0616 |
PQID | 2795804204 |
PQPubID | 85438 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TKDE_2022_3151861 ieee_primary_9714775 proquest_journals_2795804204 crossref_primary_10_1109_TKDE_2022_3151861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 he (ref17) 2003 ng (ref66) 2002 fan (ref57) 1949; 35 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 kumar (ref14) 2011 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 kumar (ref31) 2011 ref35 ref37 ref36 ref33 ref32 de sa (ref28) 2005 ref2 he (ref18) 2005 ref39 nene (ref63) 1996 nie (ref62) 2010 ref24 ref23 ref26 ref25 ref20 ref64 ref22 ref21 ref65 ref27 ref29 peng (ref34) 2019 shu (ref30) 2015 ref60 gönen (ref38) 2011; 12 ref61 xu (ref1) 2013; abs 1304 5634 |
References_xml | – ident: ref45 doi: 10.1109/CVPR.2017.461 – ident: ref7 doi: 10.1016/j.knosys.2018.09.009 – ident: ref22 doi: 10.1007/s11263-018-1086-2 – ident: ref65 doi: 10.1109/TIP.2015.2463223 – ident: ref39 doi: 10.1109/ICDM.2012.43 – volume: 12 start-page: 2211 year: 2011 ident: ref38 article-title: Multiple kernel learning algorithms publication-title: J Mach Learn Res – start-page: 362 year: 2015 ident: ref30 article-title: Integration of single-view graphs with diffusion of tensor product graphs for multi-view spectral clustering publication-title: Proc Asian Conf Mach Learn – volume: abs 1304 5634 year: 2013 ident: ref1 article-title: A survey on multi-view learning publication-title: CoRR – ident: ref23 doi: 10.1109/TIP.2019.2916740 – ident: ref58 doi: 10.1017/CBO9780511804441 – ident: ref50 doi: 10.1109/TCYB.2019.2918495 – ident: ref9 doi: 10.1007/978-981-13-3029-2 – ident: ref3 doi: 10.1109/TKDE.2017.2681670 – ident: ref55 doi: 10.1109/TIP.2014.2305840 – ident: ref54 doi: 10.1109/CVPR.2014.485 – start-page: 507 year: 2005 ident: ref18 article-title: Laplacian score for feature selection publication-title: Proc Adv Neural Informat Process Syst – ident: ref20 doi: 10.1109/TKDE.2011.222 – ident: ref53 doi: 10.1016/j.laa.2010.09.020 – ident: ref61 doi: 10.1109/TKDE.2017.2725263 – ident: ref40 doi: 10.1109/CVPR.2009.5206547 – ident: ref15 doi: 10.1109/CVPR.2017.8 – volume: 35 start-page: 652 year: 1949 ident: ref57 article-title: On a theorem of weyl concerning eigenvalues of linear transformations I publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.35.11.652 – start-page: 1413 year: 2011 ident: ref14 article-title: Co-regularized multi-view spectral clustering publication-title: Proc Conf Neural Informat Process Syst – ident: ref44 doi: 10.1109/ICCV.2015.185 – ident: ref64 doi: 10.1109/CVPR.2013.450 – ident: ref43 doi: 10.1109/CVPR.2015.7298657 – ident: ref26 doi: 10.1609/aaai.v34i04.5807 – ident: ref27 doi: 10.1016/j.patcog.2020.107441 – ident: ref5 doi: 10.1609/aaai.v33i01.33015508 – ident: ref24 doi: 10.1109/TMM.2019.2952984 – start-page: 20 year: 2005 ident: ref28 article-title: Spectral clustering with two views publication-title: Proc Int Conf Mach Learn – ident: ref41 doi: 10.1109/TPAMI.2012.88 – ident: ref10 doi: 10.24963/ijcai.2017/357 – ident: ref4 doi: 10.1016/j.patcog.2018.09.016 – ident: ref21 doi: 10.1109/MSP.2010.939739 – ident: ref36 doi: 10.1109/TNNLS.2020.2984814 – year: 1996 ident: ref63 article-title: Columbia object image library (COIL-100) – ident: ref60 doi: 10.1016/j.knosys.2020.105482 – ident: ref47 doi: 10.1016/j.patcog.2018.09.009 – ident: ref56 doi: 10.1609/aaai.v31i1.10909 – ident: ref37 doi: 10.1109/TKDE.2015.2503743 – start-page: 1813 year: 2010 ident: ref62 article-title: Efficient and robust feature selection via joint L2, 1-norms minimization publication-title: Proc Conf Neural Informat Process Syst – ident: ref6 doi: 10.1109/TNNLS.2019.2944851 – ident: ref46 doi: 10.1609/aaai.v32i1.11617 – ident: ref35 doi: 10.1109/TIP.2017.2754939 – ident: ref33 doi: 10.1109/TCYB.2017.2751646 – ident: ref2 doi: 10.1016/j.patcog.2015.12.007 – ident: ref13 doi: 10.1109/TKDE.2019.2903810 – ident: ref51 doi: 10.1137/110837711 – ident: ref29 doi: 10.1609/aaai.v28i1.8950 – start-page: 5092 year: 2019 ident: ref34 article-title: COMIC: Multi-view clustering without parameter selection publication-title: Proc Int Conf Mach Learn – ident: ref32 doi: 10.1609/aaai.v34i04.6109 – ident: ref48 doi: 10.24963/ijcai.2019/404 – ident: ref12 doi: 10.1109/TMM.2018.2889560 – ident: ref19 doi: 10.1126/science.290.5500.2323 – ident: ref49 doi: 10.1016/j.knosys.2019.105126 – start-page: 393 year: 2011 ident: ref31 article-title: A co-training approach for multi-view spectral clustering publication-title: Proc Int Conf Mach Learn – start-page: 849 year: 2002 ident: ref66 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Conf Neural Informat Process Syst – ident: ref59 doi: 10.1093/biomet/ast036 – ident: ref42 doi: 10.1109/ICCV.2015.482 – ident: ref25 doi: 10.1016/j.neunet.2020.08.019 – ident: ref8 doi: 10.1109/TCYB.2018.2836804 – ident: ref11 doi: 10.1109/TPAMI.2018.2879108 – start-page: 153 year: 2003 ident: ref17 article-title: Locality preserving projections publication-title: Proc Conf Neural Informat Process Syst – ident: ref16 doi: 10.1109/TPAMI.2018.2877660 – ident: ref52 doi: 10.1609/aaai.v35i11.17231 |
SSID | ssj0008781 |
Score | 2.6291134 |
Snippet | Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5076 |
SubjectTerms | adaptive confidences Affinity Clustering Clustering methods consensus indicator Correlation Data structures Kernel Knowledge representation Learning low-rank tensor representation Mathematical analysis Multi-view clustering Semantics Sparse matrices Tensors |
Title | Low-Rank Tensor Based Proximity Learning for Multi-View Clustering |
URI | https://ieeexplore.ieee.org/document/9714775 https://www.proquest.com/docview/2795804204 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx6sT6xWycGTuHV3m83uHn0VUSsiVbwtecyKKK3UlqK_3kk2Lb4QbwubQMgkM9-XZOYD2A2TUpWK68CmWdqjGxNkWvAAda4txFfGlWPoXImzW35-n9zPwP40FwYR3eMzbNpPd5dv-npkj8oO8jTiaZrMwiwRtypXa-p1s9QJkhK7IE7U4qm_wYzC_KB7cXJKTDCOiaAmUSaiLzHIiar88MQuvLRr0JkMrHpV8tQcDVVTv3-r2fjfkS_BoseZ7LBaGMswg70VqE00HJjf0iuw8Kkg4SocXfbHwY3sPbEu0dv-gB1RkDPsmkZlE6HemC_H-sAI6zKXvBvcPeKYHT-PbMUF-rMGt-3T7vFZ4FUWAk2hfhgQBVaZLPOYsIgQUiInSpYYcoRCKFMmUkcGtYxNrNBgacWKJcG0WHGBwhC8WYe5Xr-HG8AMhq1SCWnVywim8Uyg5LnAKBYZ6jCtQziZ90L7EuRWCeO5cFQkzAtrqsKaqvCmqsPetMtLVX_jr8arduqnDf2s16ExMW7hd-hrEad5kpHHCvnm7722YN5Ky1ePGxswNxyMcJsAyFDtuJX3AYgg1ZE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4heqAcSnmJbaH1ob1UypJ4HSc59MBTC7sghBbELfgxQQi0W8GuVvS39K_0v3XsdVZQqt6QuEWKrSie8cx89sw3AF_itNKVFiZyZZbu6MZGuZEiQlMYF-Jr6-kYjo5l-0wcXqQXM_BrWguDiD75DJvu0d_l24EZuaOyzSJLRJbVKZQdfBgTQLv_frBL0vzK-f5eb6cdhR4CkSFHNowI4OlcVQUnTyulUigIcKSWtrmU2lapMolFo7jlGi1WrhWvoiCEayFR2sJRLZGBf0NxRson1WFTO59nvgUq4RlCYS2RhTvTJC42e53dPcKenBMkTpNcJk-8nm_j8sz2e4e2vwC_66WY5LHcNEdD3TQ__2KJfK1r9R7ehUiabU1UfxFmsL8EC3WXChaM1hLMP6JcXIbt7mAcnar-DesRgB_csW1y45ad0Cq4Uq8HFghnrxhF88yXJ0fn1zhmO7cjxylBb1bg7EX-axVm-4M-rgGzGLcqLZXrz0aBqMglKlFITLjM0cRZA-JazqUJJOuu18dt6cFWXJRONUqnGmVQjQZ8m075MWEY-d_gZSfq6cAg5Qas18pUBht0X_KsSHOyybH48O9Zn2Gu3Tvqlt2D485HeEvfCamc6zA7vBvhBoVbQ_3Jaz2Dy5dWnT_B7zRX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Tensor+Based+Proximity+Learning+for+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Chen%2C+Man-Sheng&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=5&rft.spage=5076&rft.epage=5090&rft_id=info:doi/10.1109%2FTKDE.2022.3151861&rft.externalDocID=9714775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |