Low-Rank Tensor Based Proximity Learning for Multi-View Clustering

Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 35; no. 5; pp. 5076 - 5090
Main Authors Chen, Man-Sheng, Wang, Chang-Dong, Lai, Jian-Huang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
AbstractList Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
Author Wang, Chang-Dong
Lai, Jian-Huang
Chen, Man-Sheng
Author_xml – sequence: 1
  givenname: Man-Sheng
  orcidid: 0000-0001-6578-0616
  surname: Chen
  fullname: Chen, Man-Sheng
  email: chenmsh27@mail2.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
– sequence: 2
  givenname: Chang-Dong
  orcidid: 0000-0001-5972-559X
  surname: Wang
  fullname: Wang, Chang-Dong
  email: changdongwang@hotmail.com
  organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
– sequence: 3
  givenname: Jian-Huang
  orcidid: 0000-0003-3883-2024
  surname: Lai
  fullname: Lai, Jian-Huang
  email: stsljh@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
BookMark eNp9kE1PwzAMhiM0JLbBD0BcKnHuSNKkTY5sjA9RBEKDa5W2LsrokpGkGvv3dNrEgQMn2_L72NIzQgNjDSB0TvCEECyvFo838wnFlE4SwolIyREaEs5FTIkkg77HjMQsYdkJGnm_xBiLTJAhmuZ2E78q8xktwHjroqnyUEcvzn7rlQ7bKAfljDYfUdMvn7o26PhdwyaatZ0P4PrNKTpuVOvh7FDH6O12vpjdx_nz3cPsOo8rKpMQCyFKoRpJUy7SVClgkjJe86SfyrrhqiI1VIrWtIQampSzTAlOaMlSSGspkzG63N9dO_vVgQ_F0nbO9C8LmkkuMKOY9alsn6qc9d5BU1Q6qKCtCU7ptiC42AkrdsKKnbDiIKwnyR9y7fRKue2_zMWe0QDwm5cZYVnGkx8qtXey
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110772
crossref_primary_10_1109_TETCI_2024_3409724
crossref_primary_10_1007_s00530_023_01234_3
crossref_primary_10_1109_TMM_2024_3521754
crossref_primary_10_1007_s00521_022_08137_w
crossref_primary_10_1109_TETCI_2023_3306027
crossref_primary_10_1177_1088467X251315633
crossref_primary_10_1016_j_engappai_2025_110387
crossref_primary_10_1142_S0219649224501053
crossref_primary_10_1016_j_eswa_2023_122765
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1016_j_neucom_2024_128266
crossref_primary_10_1016_j_eswa_2024_125151
crossref_primary_10_1016_j_eswa_2025_126488
crossref_primary_10_1016_j_ipm_2024_103735
crossref_primary_10_1016_j_eswa_2023_121152
crossref_primary_10_1016_j_inffus_2023_102025
crossref_primary_10_1109_TIP_2024_3393291
crossref_primary_10_1109_ACCESS_2023_3274837
crossref_primary_10_1109_TCSVT_2023_3291821
crossref_primary_10_1016_j_neunet_2024_106748
crossref_primary_10_1007_s10115_024_02197_1
crossref_primary_10_1109_TCSVT_2024_3430041
crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1109_TNNLS_2023_3271623
crossref_primary_10_1016_j_eswa_2025_127118
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_1145_3694689
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1109_TETCI_2022_3221491
crossref_primary_10_1016_j_patcog_2024_110839
crossref_primary_10_1109_TCSVT_2023_3276362
crossref_primary_10_1109_TKDE_2024_3392209
crossref_primary_10_1109_TNSE_2024_3485646
crossref_primary_10_1007_s10489_022_03518_z
crossref_primary_10_1109_TPAMI_2024_3386828
crossref_primary_10_1016_j_iot_2024_101203
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_1016_j_neunet_2024_106282
crossref_primary_10_1109_TKDE_2023_3253244
crossref_primary_10_1016_j_ins_2023_119719
crossref_primary_10_1109_TKDE_2024_3391627
crossref_primary_10_1016_j_ijar_2025_109402
crossref_primary_10_1109_TKDE_2024_3399707
crossref_primary_10_1016_j_neunet_2024_106965
crossref_primary_10_1007_s10994_023_06474_y
crossref_primary_10_1109_TCSVT_2024_3492814
crossref_primary_10_1016_j_neunet_2024_106842
Cites_doi 10.1109/CVPR.2017.461
10.1016/j.knosys.2018.09.009
10.1007/s11263-018-1086-2
10.1109/TIP.2015.2463223
10.1109/ICDM.2012.43
10.1109/TIP.2019.2916740
10.1017/CBO9780511804441
10.1109/TCYB.2019.2918495
10.1007/978-981-13-3029-2
10.1109/TKDE.2017.2681670
10.1109/TIP.2014.2305840
10.1109/CVPR.2014.485
10.1109/TKDE.2011.222
10.1016/j.laa.2010.09.020
10.1109/TKDE.2017.2725263
10.1109/CVPR.2009.5206547
10.1109/CVPR.2017.8
10.1073/pnas.35.11.652
10.1109/ICCV.2015.185
10.1109/CVPR.2013.450
10.1109/CVPR.2015.7298657
10.1609/aaai.v34i04.5807
10.1016/j.patcog.2020.107441
10.1609/aaai.v33i01.33015508
10.1109/TMM.2019.2952984
10.1109/TPAMI.2012.88
10.24963/ijcai.2017/357
10.1016/j.patcog.2018.09.016
10.1109/MSP.2010.939739
10.1109/TNNLS.2020.2984814
10.1016/j.knosys.2020.105482
10.1016/j.patcog.2018.09.009
10.1609/aaai.v31i1.10909
10.1109/TKDE.2015.2503743
10.1109/TNNLS.2019.2944851
10.1609/aaai.v32i1.11617
10.1109/TIP.2017.2754939
10.1109/TCYB.2017.2751646
10.1016/j.patcog.2015.12.007
10.1109/TKDE.2019.2903810
10.1137/110837711
10.1609/aaai.v28i1.8950
10.1609/aaai.v34i04.6109
10.24963/ijcai.2019/404
10.1109/TMM.2018.2889560
10.1126/science.290.5500.2323
10.1016/j.knosys.2019.105126
10.1093/biomet/ast036
10.1109/ICCV.2015.482
10.1016/j.neunet.2020.08.019
10.1109/TCYB.2018.2836804
10.1109/TPAMI.2018.2879108
10.1109/TPAMI.2018.2877660
10.1609/aaai.v35i11.17231
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2022.3151861
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5090
ExternalDocumentID 10_1109_TKDE_2022_3151861
9714775
Genre orig-research
GrantInformation_xml – fundername: Sun Yat-sen University
  grantid: 2020B1212060032
  funderid: 10.13039/501100002402
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF1201200
– fundername: Guangdong Province Key Laboratory of Computational Science
  funderid: 10.13039/501100019318
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61876193
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-888b8af9265866aae49245d53866bdf5ac1deca2d2bedef6547a8512b46e6d993
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 02:30:41 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Jul 01 01:19:40 EDT 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-888b8af9265866aae49245d53866bdf5ac1deca2d2bedef6547a8512b46e6d993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3883-2024
0000-0001-5972-559X
0000-0001-6578-0616
PQID 2795804204
PQPubID 85438
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TKDE_2022_3151861
ieee_primary_9714775
proquest_journals_2795804204
crossref_primary_10_1109_TKDE_2022_3151861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
he (ref17) 2003
ng (ref66) 2002
fan (ref57) 1949; 35
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
kumar (ref14) 2011
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
kumar (ref31) 2011
ref35
ref37
ref36
ref33
ref32
de sa (ref28) 2005
ref2
he (ref18) 2005
ref39
nene (ref63) 1996
nie (ref62) 2010
ref24
ref23
ref26
ref25
ref20
ref64
ref22
ref21
ref65
ref27
ref29
peng (ref34) 2019
shu (ref30) 2015
ref60
gönen (ref38) 2011; 12
ref61
xu (ref1) 2013; abs 1304 5634
References_xml – ident: ref45
  doi: 10.1109/CVPR.2017.461
– ident: ref7
  doi: 10.1016/j.knosys.2018.09.009
– ident: ref22
  doi: 10.1007/s11263-018-1086-2
– ident: ref65
  doi: 10.1109/TIP.2015.2463223
– ident: ref39
  doi: 10.1109/ICDM.2012.43
– volume: 12
  start-page: 2211
  year: 2011
  ident: ref38
  article-title: Multiple kernel learning algorithms
  publication-title: J Mach Learn Res
– start-page: 362
  year: 2015
  ident: ref30
  article-title: Integration of single-view graphs with diffusion of tensor product graphs for multi-view spectral clustering
  publication-title: Proc Asian Conf Mach Learn
– volume: abs 1304 5634
  year: 2013
  ident: ref1
  article-title: A survey on multi-view learning
  publication-title: CoRR
– ident: ref23
  doi: 10.1109/TIP.2019.2916740
– ident: ref58
  doi: 10.1017/CBO9780511804441
– ident: ref50
  doi: 10.1109/TCYB.2019.2918495
– ident: ref9
  doi: 10.1007/978-981-13-3029-2
– ident: ref3
  doi: 10.1109/TKDE.2017.2681670
– ident: ref55
  doi: 10.1109/TIP.2014.2305840
– ident: ref54
  doi: 10.1109/CVPR.2014.485
– start-page: 507
  year: 2005
  ident: ref18
  article-title: Laplacian score for feature selection
  publication-title: Proc Adv Neural Informat Process Syst
– ident: ref20
  doi: 10.1109/TKDE.2011.222
– ident: ref53
  doi: 10.1016/j.laa.2010.09.020
– ident: ref61
  doi: 10.1109/TKDE.2017.2725263
– ident: ref40
  doi: 10.1109/CVPR.2009.5206547
– ident: ref15
  doi: 10.1109/CVPR.2017.8
– volume: 35
  start-page: 652
  year: 1949
  ident: ref57
  article-title: On a theorem of weyl concerning eigenvalues of linear transformations I
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.35.11.652
– start-page: 1413
  year: 2011
  ident: ref14
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Proc Conf Neural Informat Process Syst
– ident: ref44
  doi: 10.1109/ICCV.2015.185
– ident: ref64
  doi: 10.1109/CVPR.2013.450
– ident: ref43
  doi: 10.1109/CVPR.2015.7298657
– ident: ref26
  doi: 10.1609/aaai.v34i04.5807
– ident: ref27
  doi: 10.1016/j.patcog.2020.107441
– ident: ref5
  doi: 10.1609/aaai.v33i01.33015508
– ident: ref24
  doi: 10.1109/TMM.2019.2952984
– start-page: 20
  year: 2005
  ident: ref28
  article-title: Spectral clustering with two views
  publication-title: Proc Int Conf Mach Learn
– ident: ref41
  doi: 10.1109/TPAMI.2012.88
– ident: ref10
  doi: 10.24963/ijcai.2017/357
– ident: ref4
  doi: 10.1016/j.patcog.2018.09.016
– ident: ref21
  doi: 10.1109/MSP.2010.939739
– ident: ref36
  doi: 10.1109/TNNLS.2020.2984814
– year: 1996
  ident: ref63
  article-title: Columbia object image library (COIL-100)
– ident: ref60
  doi: 10.1016/j.knosys.2020.105482
– ident: ref47
  doi: 10.1016/j.patcog.2018.09.009
– ident: ref56
  doi: 10.1609/aaai.v31i1.10909
– ident: ref37
  doi: 10.1109/TKDE.2015.2503743
– start-page: 1813
  year: 2010
  ident: ref62
  article-title: Efficient and robust feature selection via joint L2, 1-norms minimization
  publication-title: Proc Conf Neural Informat Process Syst
– ident: ref6
  doi: 10.1109/TNNLS.2019.2944851
– ident: ref46
  doi: 10.1609/aaai.v32i1.11617
– ident: ref35
  doi: 10.1109/TIP.2017.2754939
– ident: ref33
  doi: 10.1109/TCYB.2017.2751646
– ident: ref2
  doi: 10.1016/j.patcog.2015.12.007
– ident: ref13
  doi: 10.1109/TKDE.2019.2903810
– ident: ref51
  doi: 10.1137/110837711
– ident: ref29
  doi: 10.1609/aaai.v28i1.8950
– start-page: 5092
  year: 2019
  ident: ref34
  article-title: COMIC: Multi-view clustering without parameter selection
  publication-title: Proc Int Conf Mach Learn
– ident: ref32
  doi: 10.1609/aaai.v34i04.6109
– ident: ref48
  doi: 10.24963/ijcai.2019/404
– ident: ref12
  doi: 10.1109/TMM.2018.2889560
– ident: ref19
  doi: 10.1126/science.290.5500.2323
– ident: ref49
  doi: 10.1016/j.knosys.2019.105126
– start-page: 393
  year: 2011
  ident: ref31
  article-title: A co-training approach for multi-view spectral clustering
  publication-title: Proc Int Conf Mach Learn
– start-page: 849
  year: 2002
  ident: ref66
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Conf Neural Informat Process Syst
– ident: ref59
  doi: 10.1093/biomet/ast036
– ident: ref42
  doi: 10.1109/ICCV.2015.482
– ident: ref25
  doi: 10.1016/j.neunet.2020.08.019
– ident: ref8
  doi: 10.1109/TCYB.2018.2836804
– ident: ref11
  doi: 10.1109/TPAMI.2018.2879108
– start-page: 153
  year: 2003
  ident: ref17
  article-title: Locality preserving projections
  publication-title: Proc Conf Neural Informat Process Syst
– ident: ref16
  doi: 10.1109/TPAMI.2018.2877660
– ident: ref52
  doi: 10.1609/aaai.v35i11.17231
SSID ssj0008781
Score 2.6291134
Snippet Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5076
SubjectTerms adaptive confidences
Affinity
Clustering
Clustering methods
consensus indicator
Correlation
Data structures
Kernel
Knowledge representation
Learning
low-rank tensor representation
Mathematical analysis
Multi-view clustering
Semantics
Sparse matrices
Tensors
Title Low-Rank Tensor Based Proximity Learning for Multi-View Clustering
URI https://ieeexplore.ieee.org/document/9714775
https://www.proquest.com/docview/2795804204
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx6sT6xWycGTuHV3m83uHn0VUSsiVbwtecyKKK3UlqK_3kk2Lb4QbwubQMgkM9-XZOYD2A2TUpWK68CmWdqjGxNkWvAAda4txFfGlWPoXImzW35-n9zPwP40FwYR3eMzbNpPd5dv-npkj8oO8jTiaZrMwiwRtypXa-p1s9QJkhK7IE7U4qm_wYzC_KB7cXJKTDCOiaAmUSaiLzHIiar88MQuvLRr0JkMrHpV8tQcDVVTv3-r2fjfkS_BoseZ7LBaGMswg70VqE00HJjf0iuw8Kkg4SocXfbHwY3sPbEu0dv-gB1RkDPsmkZlE6HemC_H-sAI6zKXvBvcPeKYHT-PbMUF-rMGt-3T7vFZ4FUWAk2hfhgQBVaZLPOYsIgQUiInSpYYcoRCKFMmUkcGtYxNrNBgacWKJcG0WHGBwhC8WYe5Xr-HG8AMhq1SCWnVywim8Uyg5LnAKBYZ6jCtQziZ90L7EuRWCeO5cFQkzAtrqsKaqvCmqsPetMtLVX_jr8arduqnDf2s16ExMW7hd-hrEad5kpHHCvnm7722YN5Ky1ePGxswNxyMcJsAyFDtuJX3AYgg1ZE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT9wwEB4heqAcSnmJbaH1ob1UypJ4HSc59MBTC7sghBbELfgxQQi0W8GuVvS39K_0v3XsdVZQqt6QuEWKrSie8cx89sw3AF_itNKVFiZyZZbu6MZGuZEiQlMYF-Jr6-kYjo5l-0wcXqQXM_BrWguDiD75DJvu0d_l24EZuaOyzSJLRJbVKZQdfBgTQLv_frBL0vzK-f5eb6cdhR4CkSFHNowI4OlcVQUnTyulUigIcKSWtrmU2lapMolFo7jlGi1WrhWvoiCEayFR2sJRLZGBf0NxRson1WFTO59nvgUq4RlCYS2RhTvTJC42e53dPcKenBMkTpNcJk-8nm_j8sz2e4e2vwC_66WY5LHcNEdD3TQ__2KJfK1r9R7ehUiabU1UfxFmsL8EC3WXChaM1hLMP6JcXIbt7mAcnar-DesRgB_csW1y45ad0Cq4Uq8HFghnrxhF88yXJ0fn1zhmO7cjxylBb1bg7EX-axVm-4M-rgGzGLcqLZXrz0aBqMglKlFITLjM0cRZA-JazqUJJOuu18dt6cFWXJRONUqnGmVQjQZ8m075MWEY-d_gZSfq6cAg5Qas18pUBht0X_KsSHOyybH48O9Zn2Gu3Tvqlt2D485HeEvfCamc6zA7vBvhBoVbQ_3Jaz2Dy5dWnT_B7zRX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Tensor+Based+Proximity+Learning+for+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Chen%2C+Man-Sheng&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2023-05-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=5&rft.spage=5076&rft.epage=5090&rft_id=info:doi/10.1109%2FTKDE.2022.3151861&rft.externalDocID=9714775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon