Fuzzy Adaptive Nonsingular Fixed-Time Attitude Tracking Control of Quadrotor UAVs
In this article, a fuzzy adaptive nonsingular fixed-time attitude tracking control scheme is proposed for the quadrotor unmanned aerial vehicles (UAVs) subject to inertia uncertainties, actuator saturation, and faults. A new nonsingular fixed-time sliding mode surface and an auxiliary function are c...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 57; no. 5; pp. 2864 - 2877 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9251 1557-9603 |
DOI | 10.1109/TAES.2021.3067610 |
Cover
Loading…
Abstract | In this article, a fuzzy adaptive nonsingular fixed-time attitude tracking control scheme is proposed for the quadrotor unmanned aerial vehicles (UAVs) subject to inertia uncertainties, actuator saturation, and faults. A new nonsingular fixed-time sliding mode surface and an auxiliary function are constructed, such that the singularity problem can be avoided in the controller design without using any piecewise continuous functions. Then, a novel arccot function-based double power reaching law is developed to adjust the control gain and enhance the transient tracking performance. The fixed-time convergence of sliding variables and tracking errors are analyzed by rigorous theoretical proofs, and comparative experiments on a three-degree-of-freedom quadrotor platform are performed to illustrate the effectiveness of the presented scheme. |
---|---|
AbstractList | In this article, a fuzzy adaptive nonsingular fixed-time attitude tracking control scheme is proposed for the quadrotor unmanned aerial vehicles (UAVs) subject to inertia uncertainties, actuator saturation, and faults. A new nonsingular fixed-time sliding mode surface and an auxiliary function are constructed, such that the singularity problem can be avoided in the controller design without using any piecewise continuous functions. Then, a novel arccot function-based double power reaching law is developed to adjust the control gain and enhance the transient tracking performance. The fixed-time convergence of sliding variables and tracking errors are analyzed by rigorous theoretical proofs, and comparative experiments on a three-degree-of-freedom quadrotor platform are performed to illustrate the effectiveness of the presented scheme. |
Author | Tao, Liang He, Xiongxiong Chen, Qiang Tao, Meiling |
Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0001-5869-0436 surname: Chen fullname: Chen, Qiang email: sdnjchq@zjut.edu.cn organization: Zhejiang University of Technology Hangzhou, China – sequence: 2 givenname: Meiling surname: Tao fullname: Tao, Meiling email: taomeilingsmile@163.com organization: Zhejiang University of Technology, Hangzhou, China – sequence: 3 givenname: Xiongxiong orcidid: 0000-0002-5806-1047 surname: He fullname: He, Xiongxiong email: hxx@zjut.edu.cn organization: Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Liang surname: Tao fullname: Tao, Liang email: taoliang@ahpu.edu.cn organization: Ministry of Education, Anhui Polytechnic University, Wuhu, China |
BookMark | eNp9kEFLwzAUx4NMcJt-APES8Nz5kjRtcizDqTCUYec1ZG0qmVsz01TcPr0tGx48eHo8-P_en_cboUHtaoPQNYEJISDv8uz-dUKBkgmDJE0InKEh4TyNZAJsgIYARESScnKBRk2z7tZYxGyIFrP2cNjjrNS7YL8MfnZ1Y-v3dqM9ntlvU0a53RqchWBDWxqce118dAE8dXXwboNdhRetLr0LzuNl9tZcovNKbxpzdZpjtJzd59PHaP7y8DTN5lFBJQuRSPiqTDTQlAiuhUgll5SkMiWGcJCFZoxDwWJOhWRmFUsTVwVhScJFqoEDG6Pb492dd5-taYJau9bXXaWiXABICYnoUuSYKrxrGm8qtfN2q_1eEVC9OdWbU705dTLXMekfprBBB9t_rO3mX_LmSFpjzG-TZIJKItgP9717HA |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1109_TAES_2023_3308552 crossref_primary_10_1109_TFUZZ_2024_3393763 crossref_primary_10_3390_act12030130 crossref_primary_10_1109_TAES_2024_3411591 crossref_primary_10_1016_j_chaos_2022_112469 crossref_primary_10_1016_j_jfranklin_2022_09_036 crossref_primary_10_3390_drones8030077 crossref_primary_10_1007_s40815_023_01628_5 crossref_primary_10_1002_rnc_7714 crossref_primary_10_1109_TAES_2024_3434773 crossref_primary_10_1002_acs_3363 crossref_primary_10_1007_s11071_023_08894_w crossref_primary_10_1109_TCST_2023_3286044 crossref_primary_10_3390_drones6100280 crossref_primary_10_1016_j_ast_2023_108668 crossref_primary_10_1109_TCSI_2022_3193878 crossref_primary_10_1016_j_ast_2024_108967 crossref_primary_10_1109_TAES_2023_3323633 crossref_primary_10_1177_09596518241289652 crossref_primary_10_3390_su141811230 crossref_primary_10_1016_j_jfranklin_2022_08_041 crossref_primary_10_1177_17298806221137247 crossref_primary_10_1109_TAES_2022_3159770 crossref_primary_10_1109_TCSII_2021_3078708 crossref_primary_10_1177_10775463221100062 crossref_primary_10_1049_cth2_12557 crossref_primary_10_1109_JAS_2022_105665 crossref_primary_10_1109_TFUZZ_2024_3370995 crossref_primary_10_1016_j_ast_2024_109426 crossref_primary_10_1109_TSMC_2022_3211624 crossref_primary_10_1016_j_cja_2024_11_010 crossref_primary_10_1016_j_jfranklin_2025_107515 crossref_primary_10_3390_app13031575 crossref_primary_10_1016_j_ast_2022_107881 crossref_primary_10_1002_rnc_5766 crossref_primary_10_1109_TAES_2023_3283237 crossref_primary_10_1109_TAES_2023_3265948 crossref_primary_10_1007_s41315_023_00308_9 crossref_primary_10_1080_23307706_2024_2388584 crossref_primary_10_1007_s40747_022_00864_w crossref_primary_10_1109_TAES_2024_3446754 crossref_primary_10_1016_j_ifacsc_2024_100289 crossref_primary_10_1007_s11071_021_07091_x crossref_primary_10_1016_j_jfranklin_2022_01_043 crossref_primary_10_1109_TSMC_2024_3408410 |
Cites_doi | 10.1109/TIE.2017.2739700 10.1109/TAES.2015.130725 10.1007/s00521-016-2260-5 10.1002/rnc.4593 10.1109/TEC.2020.3038010 10.1109/TAC.2011.2179869 10.1109/TIE.2020.3016257 10.1109/TIE.2011.2107719 10.1007/s11071-019-04836-7 10.1016/j.ast.2019.03.059 10.1109/TSMC.2017.2698473 10.1109/TNNLS.2017.2698507 10.1109/TII.2019.2949588 10.1109/TCST.2006.872519 10.1109/TCST.2016.2519838 10.1109/TMECH.2020.3035660 10.1109/TCYB.2019.2893317 10.1016/j.jfranklin.2020.04.041 10.2514/2.6934 10.1109/TFUZZ.2016.2566803 10.1109/TAES.2018.2849158 10.1109/TVT.2020.3036400 10.1109/TAES.2016.150303 10.1109/TNNLS.2019.2952175 10.1109/TIE.2018.2878117 10.1109/TAES.2018.2832998 10.1109/TSMC.2016.2564918 10.1016/j.ast.2019.105444 10.1109/TIE.2016.2552151 10.1109/TIE.2017.2674634 10.1109/TIE.2014.2364982 10.1016/j.ast.2016.04.005 10.1109/TAES.2017.2649258 10.1109/TCST.2017.2710951 10.1016/j.ast.2020.105887 10.1109/TCST.2017.2705072 10.1109/TSMC.2017.2785314 10.1109/TIE.2019.2946554 10.1109/TIE.2017.2752139 10.1109/TCST.2018.2812758 10.1109/TNNLS.2018.2876130 10.1049/iet-cta.2014.0202 10.1007/s11071-019-05301-1 10.1109/TAC.2003.809147 10.1109/TAES.2021.3050647 10.1109/TCYB.2020.3024672 10.1109/TNNLS.2020.2966744 10.1049/iet-cta.2016.1457 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2021.3067610 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 2877 |
ExternalDocumentID | 10_1109_TAES_2021_3067610 9382918 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Laboratory Open Project Fund grantid: GDSC202010 – fundername: National Natural Science Foundation of China grantid: 61973274; 61873239 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Anhui Province; Anhui Provincial Natural Science Foundation grantid: 2008085QF331 funderid: 10.13039/501100003995 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c293t-865bd6a027185a887959217971e1509ca3350c3452893eb49e4fc1366587a0503 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Mon Jun 30 10:12:36 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 01 00:48:32 EDT 2025 Wed Aug 27 02:25:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-865bd6a027185a887959217971e1509ca3350c3452893eb49e4fc1366587a0503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5869-0436 0000-0002-5806-1047 |
PQID | 2580099068 |
PQPubID | 85477 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9382918 proquest_journals_2580099068 crossref_primary_10_1109_TAES_2021_3067610 crossref_citationtrail_10_1109_TAES_2021_3067610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 ref46 ref24 ref45 ref23 ref48 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1109/TIE.2017.2739700 – ident: ref45 doi: 10.1109/TAES.2015.130725 – ident: ref48 doi: 10.1007/s00521-016-2260-5 – ident: ref26 doi: 10.1002/rnc.4593 – ident: ref34 doi: 10.1109/TEC.2020.3038010 – ident: ref18 doi: 10.1109/TAC.2011.2179869 – ident: ref33 doi: 10.1109/TIE.2020.3016257 – ident: ref10 doi: 10.1109/TIE.2011.2107719 – ident: ref12 doi: 10.1007/s11071-019-04836-7 – ident: ref13 doi: 10.1016/j.ast.2019.03.059 – ident: ref16 doi: 10.1109/TSMC.2017.2698473 – ident: ref31 doi: 10.1109/TNNLS.2017.2698507 – ident: ref27 doi: 10.1109/TII.2019.2949588 – ident: ref4 doi: 10.1109/TCST.2006.872519 – ident: ref22 doi: 10.1109/TCST.2016.2519838 – ident: ref9 doi: 10.1109/TMECH.2020.3035660 – ident: ref32 doi: 10.1109/TCYB.2019.2893317 – ident: ref24 doi: 10.1016/j.jfranklin.2020.04.041 – ident: ref44 doi: 10.2514/2.6934 – ident: ref36 doi: 10.1109/TFUZZ.2016.2566803 – ident: ref23 doi: 10.1109/TAES.2018.2849158 – ident: ref11 doi: 10.1109/TVT.2020.3036400 – ident: ref5 doi: 10.1109/TAES.2016.150303 – ident: ref37 doi: 10.1109/TNNLS.2019.2952175 – ident: ref20 doi: 10.1109/TIE.2018.2878117 – ident: ref29 doi: 10.1109/TAES.2018.2832998 – ident: ref46 doi: 10.1109/TSMC.2016.2564918 – ident: ref14 doi: 10.1016/j.ast.2019.105444 – ident: ref7 doi: 10.1109/TIE.2016.2552151 – ident: ref43 doi: 10.1109/TIE.2017.2674634 – ident: ref6 doi: 10.1109/TIE.2014.2364982 – ident: ref40 doi: 10.1016/j.ast.2016.04.005 – ident: ref15 doi: 10.1109/TAES.2017.2649258 – ident: ref8 doi: 10.1109/TCST.2017.2710951 – ident: ref25 doi: 10.1016/j.ast.2020.105887 – ident: ref1 doi: 10.1109/TCST.2017.2705072 – ident: ref47 doi: 10.1109/TSMC.2017.2785314 – ident: ref38 doi: 10.1109/TIE.2019.2946554 – ident: ref3 doi: 10.1109/TIE.2017.2752139 – ident: ref21 doi: 10.1109/TCST.2018.2812758 – ident: ref41 doi: 10.1109/TNNLS.2018.2876130 – ident: ref28 doi: 10.1049/iet-cta.2014.0202 – ident: ref39 doi: 10.1007/s11071-019-05301-1 – ident: ref42 doi: 10.1109/TAC.2003.809147 – ident: ref2 doi: 10.1109/TAES.2021.3050647 – ident: ref19 doi: 10.1109/TCYB.2020.3024672 – ident: ref35 doi: 10.1109/TNNLS.2020.2966744 – ident: ref30 doi: 10.1049/iet-cta.2016.1457 |
SSID | ssj0014843 |
Score | 2.5473192 |
Snippet | In this article, a fuzzy adaptive nonsingular fixed-time attitude tracking control scheme is proposed for the quadrotor unmanned aerial vehicles (UAVs) subject... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2864 |
SubjectTerms | Actuators Adaptive control Attitude control Continuity (mathematics) Control systems design Convergence fixed-time control Fuzzy logic fuzzy logic system (FLS) Mathematical model nonsingular sliding mode surface quadrotors Quaternions Sliding mode control Tracking control Tracking errors Uncertainty Unmanned aerial vehicles Unmanned helicopters |
Title | Fuzzy Adaptive Nonsingular Fixed-Time Attitude Tracking Control of Quadrotor UAVs |
URI | https://ieeexplore.ieee.org/document/9382918 https://www.proquest.com/docview/2580099068 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH84T3rwa4rzixw8ie36kaTtsYyVITgQN9mtpOkbiLLJbEH315vXdmOoiLce0hDykrz3S37v9wCuSSLEcaZTy0MVWBw9aYUi05bKhMqyAIWHldrnUA7G_G4iJltwu86FQcSKfIY2fVZv-flcl3RV1o380IvcsAUtA9zqXK31iwEPG4acazawcdrNC6brRN1R3H80SNBzbYqPJSXLbvigqqjKj5O4ci_JPtyvBlazSl7ssshsvfym2fjfkR_AXhNnsrheGIewhbMj2N1QH2zDQ1Iul58sztUbnXlsSFzZGZWmX7Dk-QNzi_JDWFwQmyBHZtyapot11qvp7Ww-ZQ-lyhdzg9vZOH56P4Zx0h_1BlZTYcHSxs0XVihFlktloKlx2yqsCo8bjBIFLppAMdLK94WjfS4MLPMx4xHyqXZ9acKWQJGSzAlsz-YzPAUW6EjpQAofA81z00_OCe96vnZRcul0wFnNeaob-XGqgvGaVjDEiVIyU0pmShszdeBm_ctbrb3xV-M2Tfu6YTPjHbhYGTZtdud76omQImNHhme__3UOO9R3Tdq7gO1iUeKlCT6K7KpadV9WHdLR |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VOAAHdkRZfeCESMliO8kxQq3KVqmiRdwix5lKCNRWJZGgX48nSasKEOKWg5NYHtszz37zBuCcJEJsezCwXFS-xdGVViASbalEqCTxUbhYqH12ZLvPb5_Fcw0u57kwiFiQz7BBj8VdfjrSOR2VXYVe4IZOsAQrgpJxy2yt-Z0BDyqOnGOWsHHb1R2mY4dXvaj5aLCg6zQoQpaULrvghYqyKj_24sLBtDbhYda1klfy2sizpKGn31Qb_9v3LdioIk0WlVNjG2o43IH1Bf3BXei28un0k0WpGtOuxzrElh1ScfoJa718YGpRhgiLMuITpMiMY9N0tM6uS4I7Gw1YN1fpZGSQO-tHT-970G81e9dtq6qxYGnj6DMrkCJJpTLg1DhuFRSlxw1KCX0HTagYauV5wtYeFwaYeZjwEPlAO540gYuvSEtmH5aHoyEeAPN1qLQvhYe-5qn5TsoJ8bqedlByadfBno15rCsBcqqD8RYXQMQOYzJTTGaKKzPV4WL-yrhU3_ir8S4N-7xhNeJ1OJ4ZNq7W53vsioBiY1sGh7-_dQar7d7DfXx_07k7gjX6T0nhO4blbJLjiQlFsuS0mIFfgjvWGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+Nonsingular+Fixed-Time+Attitude+Tracking+Control+of+Quadrotor+UAVs&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=Chen%2C+Qiang&rft.au=Tao%2C+Meiling&rft.au=He%2C+Xiongxiong&rft.au=Tao%2C+Liang&rft.date=2021-10-01&rft.pub=IEEE&rft.issn=0018-9251&rft.volume=57&rft.issue=5&rft.spage=2864&rft.epage=2877&rft_id=info:doi/10.1109%2FTAES.2021.3067610&rft.externalDocID=9382918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |