Sodium-ion battery anodes: Status and future trends

Saved in:
Bibliographic Details
Published inEnergyChem Vol. 1; no. 2; p. 100012
Main Authors Zhang, Wenli, Zhang, Fan, Ming, Fangwang, Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published 01.09.2019
Online AccessGet full text
ISSN2589-7780
2589-7780
DOI10.1016/j.enchem.2019.100012

Cover

Loading…
ArticleNumber 100012
Author Ming, Fangwang
Alshareef, Husam N.
Zhang, Wenli
Zhang, Fan
Author_xml – sequence: 1
  givenname: Wenli
  orcidid: 0000-0002-6781-2826
  surname: Zhang
  fullname: Zhang, Wenli
– sequence: 2
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
– sequence: 3
  givenname: Fangwang
  orcidid: 0000-0003-4574-9720
  surname: Ming
  fullname: Ming, Fangwang
– sequence: 4
  givenname: Husam N.
  orcidid: 0000-0002-1123-5935
  surname: Alshareef
  fullname: Alshareef, Husam N.
BookMark eNp9z7tOwzAUBmALFYlS-gYMeYEEX-LY7oYqoEiVGAqz5djHIlHjINsZ-vakKgNiYDoXnf9I3y1ahDEAQvcEVwST5qGvINhPGCqKiZpXGBN6hZaUS1UKIfHiV3-D1in18wlVTa2YWCJ2GF03DWU3hqI1OUM8FSaMDtKmOGSTpzSPrvBTniIUOUJw6Q5de3NMsP6pK_Tx_PS-3ZX7t5fX7eO-tFSxXEpee0KUpS1uaYNZw6wktfecKyWNBaqEB-KFN5w7YMpyKYVqjMPM1xYwW6H68tfGMaUIXn_FbjDxpAnWZ7vu9cWuz3Z9sc-xzZ-Y7WbJLMzRdMf_w9-0VWN4
CitedBy_id crossref_primary_10_1002_ange_201913368
crossref_primary_10_1021_acs_energyfuels_2c01354
crossref_primary_10_1002_admi_202001043
crossref_primary_10_3390_app11041483
crossref_primary_10_1016_j_jcis_2023_06_124
crossref_primary_10_1021_acs_langmuir_4c00794
crossref_primary_10_1002_batt_202100243
crossref_primary_10_1016_j_jssc_2025_125279
crossref_primary_10_1002_inf2_12218
crossref_primary_10_1016_j_est_2024_114977
crossref_primary_10_1002_smll_202406325
crossref_primary_10_1039_D4DT01847H
crossref_primary_10_3390_c7030057
crossref_primary_10_1016_j_esci_2023_100181
crossref_primary_10_1080_08927022_2023_2211170
crossref_primary_10_1109_ACCESS_2019_2958684
crossref_primary_10_3390_batteries11020061
crossref_primary_10_1016_j_coelec_2024_101482
crossref_primary_10_1016_j_jpowsour_2022_230974
crossref_primary_10_1039_D1TC00236H
crossref_primary_10_1016_j_compositesb_2021_109246
crossref_primary_10_1021_acs_energyfuels_3c02406
crossref_primary_10_1021_acsami_1c17700
crossref_primary_10_1002_smtd_202201508
crossref_primary_10_1016_j_apsusc_2024_160786
crossref_primary_10_1039_D1TA00204J
crossref_primary_10_1016_j_cej_2024_155462
crossref_primary_10_1039_D4NR00579A
crossref_primary_10_1039_D1CP01401C
crossref_primary_10_1002_ente_202101024
crossref_primary_10_35848_1347_4065_abe201
crossref_primary_10_1007_s12274_021_3462_4
crossref_primary_10_1016_j_carbon_2020_06_052
crossref_primary_10_1039_C7CS00614D
crossref_primary_10_1021_acsenergylett_0c02181
crossref_primary_10_1039_D2QI01312F
crossref_primary_10_3390_en17112646
crossref_primary_10_1002_advs_202407538
crossref_primary_10_1016_j_matre_2021_100022
crossref_primary_10_1021_acs_energyfuels_2c02660
crossref_primary_10_1039_D1MA00158B
crossref_primary_10_1007_s44246_022_00009_1
crossref_primary_10_1021_acsanm_4c02993
crossref_primary_10_1002_cnma_202200068
crossref_primary_10_1016_j_ssi_2023_116325
crossref_primary_10_3390_cryst12091241
crossref_primary_10_1007_s40820_022_00844_2
crossref_primary_10_1021_acsenergylett_1c01868
crossref_primary_10_1002_adfm_202203279
crossref_primary_10_1016_j_jcis_2022_05_068
crossref_primary_10_1002_eem2_12633
crossref_primary_10_1002_est2_309
crossref_primary_10_1002_advs_202207751
crossref_primary_10_1016_j_nanoso_2024_101347
crossref_primary_10_1021_acsaem_3c02975
crossref_primary_10_1016_j_apsusc_2023_157074
crossref_primary_10_1016_j_jcis_2024_01_156
crossref_primary_10_1002_chem_202304207
crossref_primary_10_1039_D4ME00007B
crossref_primary_10_1016_j_ceramint_2024_06_294
crossref_primary_10_1021_acsami_3c11795
crossref_primary_10_1016_j_jpowsour_2024_234863
crossref_primary_10_1016_j_mtener_2023_101271
crossref_primary_10_1002_ente_202401320
crossref_primary_10_1016_j_est_2023_109312
crossref_primary_10_1016_j_nanoen_2021_105792
crossref_primary_10_1039_D0TA01821J
crossref_primary_10_1002_aenm_202303833
crossref_primary_10_1021_acs_jpcc_2c08815
crossref_primary_10_1039_D0SE00583E
crossref_primary_10_1016_j_colsurfa_2023_131670
crossref_primary_10_1016_j_enchem_2020_100036
crossref_primary_10_1007_s11581_023_05076_x
crossref_primary_10_1016_j_enchem_2020_100031
crossref_primary_10_1002_celc_202300127
crossref_primary_10_1016_j_est_2024_113961
crossref_primary_10_1002_er_7277
crossref_primary_10_3390_en18040978
crossref_primary_10_1016_j_cej_2022_138019
crossref_primary_10_1007_s10854_021_07048_1
crossref_primary_10_1016_j_jelechem_2020_114747
crossref_primary_10_1007_s40097_020_00367_5
crossref_primary_10_1016_j_jcis_2021_07_097
crossref_primary_10_2139_ssrn_3985329
crossref_primary_10_3390_ma15082787
crossref_primary_10_1016_j_jallcom_2021_161885
crossref_primary_10_1016_j_ccr_2021_214260
crossref_primary_10_1016_j_nanoen_2021_106184
crossref_primary_10_1016_j_enchem_2020_100048
crossref_primary_10_1016_j_ccr_2020_213312
crossref_primary_10_1016_j_apsusc_2024_160502
crossref_primary_10_1007_s40820_025_01697_1
crossref_primary_10_1007_s42247_023_00501_3
crossref_primary_10_1021_acsomega_4c09865
crossref_primary_10_1246_bcsj_20210324
crossref_primary_10_1021_acsaem_2c00595
crossref_primary_10_1021_acsaem_1c01818
crossref_primary_10_1016_j_jallcom_2020_154693
crossref_primary_10_1016_S1872_5805_25_60953_X
crossref_primary_10_1002_chem_202000294
crossref_primary_10_1016_j_cej_2023_144234
crossref_primary_10_1039_D0TA10666F
crossref_primary_10_1021_acsmaterialslett_3c01616
crossref_primary_10_1002_eem2_12167
crossref_primary_10_1002_smll_202307275
crossref_primary_10_1016_j_mtla_2023_101968
crossref_primary_10_1016_j_cej_2022_136772
crossref_primary_10_3390_batteries8020012
crossref_primary_10_1002_ente_202300338
crossref_primary_10_1039_D3NA00854A
crossref_primary_10_1021_acsami_0c09082
crossref_primary_10_1002_smll_202003174
crossref_primary_10_1007_s10854_020_04655_2
crossref_primary_10_1007_s11771_022_5126_2
crossref_primary_10_1016_j_apsusc_2022_154825
crossref_primary_10_1002_aenm_202000099
crossref_primary_10_1039_D3RA03007E
crossref_primary_10_1002_smll_202402915
crossref_primary_10_1016_j_apsusc_2024_160606
crossref_primary_10_1016_j_cej_2021_128518
crossref_primary_10_1021_acsaem_4c01310
crossref_primary_10_1002_admt_202400136
crossref_primary_10_1016_j_jallcom_2022_167108
crossref_primary_10_1021_acsami_9b17775
crossref_primary_10_1039_D2CP03662B
crossref_primary_10_1007_s41918_022_00174_2
crossref_primary_10_1016_j_jallcom_2023_169028
crossref_primary_10_3389_fbael_2023_1330448
crossref_primary_10_1007_s11581_023_05048_1
crossref_primary_10_1021_acsaem_1c00271
crossref_primary_10_1016_j_ensm_2020_06_020
crossref_primary_10_1016_j_cej_2025_159623
crossref_primary_10_1016_j_est_2023_108781
crossref_primary_10_1039_D3NR06258A
crossref_primary_10_1016_j_carbon_2022_02_011
crossref_primary_10_1021_acsnanoscienceau_3c00031
crossref_primary_10_1007_s10965_022_02892_z
crossref_primary_10_1016_j_ccr_2021_214297
crossref_primary_10_1016_j_cej_2021_128408
crossref_primary_10_1016_j_jallcom_2021_162784
crossref_primary_10_1016_j_rechem_2023_101041
crossref_primary_10_1016_j_cej_2024_158461
crossref_primary_10_1016_j_jallcom_2023_168887
crossref_primary_10_1016_j_jcis_2020_10_102
crossref_primary_10_1016_j_nanoms_2022_02_001
crossref_primary_10_1063_5_0096098
crossref_primary_10_1016_j_est_2024_114216
crossref_primary_10_1016_j_ssi_2024_116546
crossref_primary_10_1002_cey2_196
crossref_primary_10_1016_j_cis_2020_102263
crossref_primary_10_1002_aenm_202100346
crossref_primary_10_1149_1945_7111_ac47eb
crossref_primary_10_1002_ange_202003386
crossref_primary_10_3390_polym15061496
crossref_primary_10_1021_acsanm_1c04122
crossref_primary_10_1007_s41918_022_00134_w
crossref_primary_10_1002_smll_202302071
crossref_primary_10_1016_j_jpowsour_2025_236177
crossref_primary_10_1016_j_apsusc_2021_152000
crossref_primary_10_1002_adma_202420251
crossref_primary_10_1021_acs_iecr_2c00878
crossref_primary_10_1002_adma_202000732
crossref_primary_10_1039_D2GC01503J
crossref_primary_10_1021_acsami_4c12015
crossref_primary_10_1039_D1EE01341F
crossref_primary_10_1016_j_cej_2024_154898
crossref_primary_10_1021_acs_langmuir_3c02598
crossref_primary_10_1016_j_jpowsour_2020_228375
crossref_primary_10_1002_cssc_202100872
crossref_primary_10_1088_2515_7655_ac1204
crossref_primary_10_1002_pol_20210573
crossref_primary_10_1039_D0NR04922K
crossref_primary_10_1016_j_jcis_2024_07_070
crossref_primary_10_1088_2631_8695_ad708f
crossref_primary_10_1016_j_cej_2020_125679
crossref_primary_10_1016_j_nanoen_2021_106591
crossref_primary_10_1002_anie_202011484
crossref_primary_10_1039_D1SE00341K
crossref_primary_10_1002_celc_202400586
crossref_primary_10_1016_j_matpr_2021_11_369
crossref_primary_10_3390_cryst13071002
crossref_primary_10_1016_j_flatc_2023_100516
crossref_primary_10_1016_j_jallcom_2023_169076
crossref_primary_10_1016_j_electacta_2023_143308
crossref_primary_10_1039_D4RA01800A
crossref_primary_10_1016_j_pmatsci_2023_101128
crossref_primary_10_1016_j_cis_2021_102562
crossref_primary_10_1007_s11581_024_05902_w
crossref_primary_10_1007_s12209_022_00340_z
crossref_primary_10_1021_acs_jpcc_1c03984
crossref_primary_10_1039_D4CC05551A
crossref_primary_10_1002_aenm_202001128
crossref_primary_10_1002_batt_202400471
crossref_primary_10_1021_acs_energyfuels_2c00193
crossref_primary_10_3390_en14237928
crossref_primary_10_1016_j_ensm_2020_07_027
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1016_j_est_2024_112986
crossref_primary_10_1016_j_jallcom_2020_155642
crossref_primary_10_1016_j_jpowsour_2023_233475
crossref_primary_10_1021_acsaelm_3c01355
crossref_primary_10_1002_smll_202309809
crossref_primary_10_3390_batteries8030025
crossref_primary_10_1016_j_ensm_2024_103538
crossref_primary_10_1016_j_comptc_2024_114955
crossref_primary_10_1039_D2CC06154F
crossref_primary_10_1002_smtd_202000439
crossref_primary_10_1039_D3GC05027K
crossref_primary_10_1016_j_matchemphys_2019_122568
crossref_primary_10_1063_5_0011886
crossref_primary_10_1088_2399_1984_abacd3
crossref_primary_10_1016_j_nxener_2024_100097
crossref_primary_10_1016_j_nxmate_2024_100323
crossref_primary_10_4028_www_scientific_net_MSF_1044_25
crossref_primary_10_1016_j_scib_2024_09_032
crossref_primary_10_1039_D0TA07436E
crossref_primary_10_1080_15567036_2024_2401118
crossref_primary_10_1007_s10008_024_06136_6
crossref_primary_10_1039_D3NR01346D
crossref_primary_10_1002_aelm_202000967
crossref_primary_10_1016_j_mtcomm_2024_108653
crossref_primary_10_1016_j_enmm_2020_100298
crossref_primary_10_3390_nano13081349
crossref_primary_10_1016_j_ensm_2020_11_030
crossref_primary_10_3390_nano12193529
crossref_primary_10_1021_acssuschemeng_2c00047
crossref_primary_10_1007_s10853_023_08602_4
crossref_primary_10_1016_j_actamat_2024_119964
crossref_primary_10_1039_D0NR00626B
crossref_primary_10_1515_revic_2024_0128
crossref_primary_10_1007_s10854_024_13583_4
crossref_primary_10_3390_ma16216869
crossref_primary_10_1016_j_jcis_2024_10_143
crossref_primary_10_1021_acs_energyfuels_4c03525
crossref_primary_10_1515_ntrev_2022_0042
crossref_primary_10_1016_j_electacta_2023_142521
crossref_primary_10_1016_j_ensm_2023_103022
crossref_primary_10_1007_s12598_023_02607_3
crossref_primary_10_1515_ntrev_2022_0039
crossref_primary_10_1002_cey2_600
crossref_primary_10_1016_j_jallcom_2024_175014
crossref_primary_10_1016_j_mtener_2022_101115
crossref_primary_10_1007_s12598_023_02550_3
crossref_primary_10_1039_D2TA03264C
crossref_primary_10_1002_aenm_202303338
crossref_primary_10_1038_s41467_023_36957_4
crossref_primary_10_59761_RCR5100
crossref_primary_10_1002_aenm_202000804
crossref_primary_10_1007_s40243_022_00208_1
crossref_primary_10_1016_j_energy_2019_116675
crossref_primary_10_1016_j_pmatsci_2023_101166
crossref_primary_10_3390_batteries9040235
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1088_1361_6528_ab6480
crossref_primary_10_1002_anie_201913368
crossref_primary_10_3390_batteries9050271
crossref_primary_10_1002_adma_202004039
crossref_primary_10_1002_sstr_202100132
crossref_primary_10_1021_acsami_2c06502
crossref_primary_10_1007_s44246_024_00122_3
crossref_primary_10_1016_j_electacta_2023_143077
crossref_primary_10_1002_smll_202206126
crossref_primary_10_1002_bkcs_12687
crossref_primary_10_1016_j_jcis_2024_03_107
crossref_primary_10_1002_cey2_182
crossref_primary_10_3389_fenrg_2023_1266653
crossref_primary_10_1016_j_mtchem_2021_100675
crossref_primary_10_1002_ente_202401484
crossref_primary_10_1002_anie_202003386
crossref_primary_10_1021_acs_jpcc_3c08083
Cites_doi 10.1021/jacs.5b06809
10.1016/j.elecom.2012.05.017
10.1021/acsnano.8b03615
10.1021/acsnano.7b08161
10.1039/c2cc32730a
10.1039/C4TA00041B
10.1016/j.carbon.2017.12.126
10.1021/acs.nanolett.6b05280
10.1016/j.cej.2017.09.088
10.1016/j.nanoen.2018.03.060
10.1002/adfm.201601323
10.1002/advs.201700298
10.1016/j.cej.2017.01.020
10.1021/acs.nanolett.7b01485
10.1039/C8CS00324F
10.1126/science.aao2808
10.1002/adma.201801334
10.1002/smll.201870074
10.1002/aenm.201803215
10.1016/j.nanoen.2018.01.030
10.1021/nn503921j
10.1016/j.nanoen.2015.07.021
10.1021/nl404637q
10.1039/c2ee22864e
10.1002/adma.201606860
10.1016/j.jpowsour.2017.05.064
10.1038/ncomms7544
10.1002/smtd.201900005
10.1002/aenm.201401123
10.1039/C8CC00649K
10.1021/cm202076g
10.1039/C5EE00878F
10.1002/aenm.201601519
10.1016/j.carbon.2018.01.095
10.1016/j.elecom.2015.09.002
10.1002/aenm.201800108
10.1039/c3ta15248k
10.1021/acs.nanolett.5b03903
10.1002/aenm.201702869
10.1021/nn4025674
10.1039/C3TA13592F
10.1021/acs.accounts.5b00482
10.1021/acs.accounts.8b00084
10.1021/acsenergylett.8b01062
10.1002/aenm.201601526
10.1039/C6CS00776G
10.1002/anie.201803511
10.1016/j.carbon.2015.09.091
10.1002/adma.201700622
10.1021/jp407322k
10.1002/adma.201306314
10.1002/chem.201402511
10.1002/adma.201201205
10.1021/acscentsci.5b00329
10.1002/celc.201800016
10.1002/aenm.201703082
10.1016/j.nanoen.2019.03.020
10.1039/C7CC00301C
10.1038/nchem.2085
10.1016/j.nanoen.2018.08.035
10.1039/c3cc40448j
10.1016/j.carbon.2017.05.072
10.1039/C5EE02051D
10.1007/s12274-016-1408-z
10.1021/acs.jpcc.5b10366
10.1002/adma.201970239
10.1021/nl303305c
10.1002/adma.201504412
10.1002/celc.201700060
10.1007/s40820-017-0165-1
10.1002/adfm.201802099
10.1002/adma.201400794
10.1021/acsami.5b05509
10.1002/cssc.201200680
10.1016/j.jpowsour.2014.04.012
10.1002/cssc.201701664
10.1002/adma.201603212
10.1016/j.jpowsour.2015.05.116
10.1021/acsenergylett.8b00312
10.1016/j.nanoen.2017.02.043
10.1039/C5TA00614G
10.1002/adma.201305638
10.1021/acsami.7b16580
10.1002/aenm.201801840
10.1038/ncomms7929
10.1038/ncomms13318
10.1016/j.carbon.2012.12.072
10.1002/adma.201702372
10.1021/acscentsci.5b00328
10.1016/j.electacta.2014.11.009
10.1021/jp4063753
10.1021/acs.chemmater.6b01988
10.1021/acs.nanolett.5b03667
10.1039/C5TA05781G
10.1002/adfm.201505548
10.1021/acsenergylett.8b01761
10.1016/j.carbon.2018.04.003
10.1002/aenm.201602898
10.1021/acsanm.8b00045
10.1016/j.nantod.2018.12.003
10.1021/acsnano.8b07172
10.1002/celc.201800941
10.1149/1.1393348
10.1021/nl400998t
10.1016/j.cej.2017.10.007
10.1038/s41467-017-01202-2
10.1002/aenm.201800855
10.1021/acsami.7b06230
10.1016/j.carbon.2015.12.066
10.1021/nl901670t
10.1002/aenm.201300139
10.1007/s12274-016-1346-9
10.1002/aenm.201702724
10.1039/C4TA05451B
10.1002/aenm.201803648
10.1021/jacs.9b03467
10.1007/s12274-017-1671-7
10.1016/j.cej.2017.09.081
10.1016/0167-2738(88)90351-7
10.1126/sciadv.aat1687
10.1021/acs.nanolett.6b00942
10.1002/aenm.201700403
10.1002/adma.201800658
10.1016/j.nanoen.2017.09.052
10.1002/anie.201510978
10.1002/cssc.201800512
10.1021/acs.nanolett.7b00083
10.1002/smll.201700767
10.1016/j.cej.2017.09.110
10.1016/j.chempr.2018.03.006
10.1038/ncomms5033
10.1039/C5EE02589C
10.1016/j.jpowsour.2013.11.083
10.1126/science.1241488
10.1039/C6TA00950F
10.1002/anie.201410376
10.1002/adma.201704670
10.1016/S0013-4686(02)00250-5
10.1016/j.jpowsour.2014.06.150
10.1002/cssc.201301394
10.1016/j.nanoen.2016.06.005
10.1021/acs.chemrev.8b00642
10.1038/natrevmats.2016.98
10.1039/c3cc45254a
10.1038/nnano.2015.194
10.1021/acsaem.8b00354
10.1002/aenm.201200166
10.1002/adma.201605607
10.1016/j.nanoen.2015.03.017
10.1039/C5EE02074C
10.1039/C7TA01936J
10.1039/C5CC10585D
10.1016/j.nanoen.2017.04.007
10.1021/jp507116t
10.1002/aenm.201702383
10.1002/chem.201702225
10.1021/acs.nanolett.5b01969
10.1021/acs.chemmater.5b02348
10.1038/s41560-017-0014-y
10.1149/1.2221153
10.1016/j.mattod.2018.12.040
10.1021/acsnano.7b00557
10.1021/am501144q
10.1021/nn404640c
10.1002/advs.201800519
10.1002/adma.201801013
10.1002/adma.201503015
10.1002/anie.201308354
10.1021/acsnano.7b07132
10.1016/j.nanoen.2015.05.015
10.1039/C4TA06825D
10.1016/j.elecom.2012.01.002
10.1016/j.carbon.2017.11.054
10.1021/acs.chemmater.5b00616
10.1002/aenm.201200346
10.1021/acsnano.5b00376
10.1149/2.037211jes
10.1002/chem.201705855
10.1002/adma.201405370
10.1016/j.electacta.2015.12.136
10.1021/acs.chemmater.8b00645
10.1021/acs.jpclett.5b00868
10.1021/acsami.5b04338
10.1021/nn406156b
10.1038/nenergy.2017.105
10.1002/aenm.201801514
10.1021/acsnano.5b07081
10.1039/C7TA01634D
10.1016/j.nanoen.2019.04.030
10.1002/aenm.201100494
10.1021/jz5002743
10.1016/j.jpowsour.2016.03.060
10.1002/aenm.201602778
10.1002/smll.201703576
10.1016/j.jpowsour.2016.06.017
10.1021/acsenergylett.9b00822
10.1021/jz2012066
10.1038/s41467-017-00211-5
10.1016/j.carbon.2018.04.031
10.1021/ja310347x
10.1016/j.jechem.2016.04.016
10.1021/acsnano.5b06958
10.1201/b19635
10.1002/aenm.201200026
10.1021/nl3016957
10.1002/aenm.201501489
10.1149/1.1379565
10.1126/sciadv.aau6264
10.1039/C4TA03365E
10.1002/adma.201804116
10.1021/acsami.6b03757
10.1039/C5TA00727E
10.1021/acs.chemmater.7b03753
10.1002/aenm.201502568
10.1038/natrevmats.2018.13
10.1021/acsami.5b00861
10.1016/j.carbon.2018.05.032
10.1016/j.ensm.2015.10.003
10.1021/acscentsci.8b00437
10.1016/j.nanoen.2018.04.006
10.1021/acs.nanolett.6b01777
10.1002/anie.201209689
10.1016/j.nanoen.2015.07.010
10.1021/acs.chemmater.5b00633
10.1002/aenm.201700087
10.1016/j.nanoen.2016.02.024
10.1021/acsnano.5b04474
10.1002/adma.201102306
10.1002/adma.201204877
10.1016/j.carbon.2017.01.093
10.1021/nl404165c
10.1002/aenm.201601188
10.1039/C6EE01717G
10.1021/acsenergylett.8b00762
10.1021/jacs.5b00336
10.1016/j.cej.2018.01.098
10.1016/j.carbon.2018.06.036
10.1002/aenm.201602894
10.1039/C7TA06577A
10.1038/nmat4170
10.1002/aenm.201700959
10.1016/j.nanoen.2014.12.012
10.1002/aenm.201703217
10.1039/C7EE01628J
10.1039/C5EE03262H
10.1002/aenm.201702769
10.1016/j.nanoen.2015.10.034
10.1021/ja508154e
10.1016/j.nanoen.2017.08.002
10.1002/anie.201802672
10.1016/j.nanoen.2015.03.041
10.1002/aenm.201703268
10.1002/adma.201803621
10.1016/j.electacta.2015.06.039
10.1002/adma.201601723
10.1039/C7TA02689G
10.1002/adma.201304962
10.1002/anie.201403734
10.1038/srep02671
10.1002/adfm.201402984
10.1016/j.nanoen.2015.04.018
10.1016/j.jpowsour.2013.06.057
10.1021/cm5039649
10.1021/acsenergylett.8b00609
10.1016/j.elecom.2014.04.014
10.1021/acsnano.7b01165
10.1016/j.elecom.2011.09.020
10.1002/advs.201700146
10.1002/anie.201400032
10.1016/j.jpowsour.2012.10.014
10.1016/j.nanoen.2016.08.044
10.1149/2.003208jes
10.1002/adma.201702410
10.1002/aenm.201600659
10.1016/j.carbon.2013.01.064
10.1007/s12274-017-1756-3
10.1021/acsami.5b04225
10.1038/ncomms2481
10.1002/adfm.201200691
10.1038/nnano.2017.16
10.1039/C8TA02695E
10.1002/adma.201802745
10.1002/aenm.201703238
10.1039/C7RA06777A
10.1063/1.5013132
10.1038/ncomms2878
10.1021/acsami.7b05687
10.1021/acs.accounts.5b00114
10.1002/advs.201500195
10.1002/adma.201505918
10.1039/C7EE03016A
10.1021/am507679x
10.1021/cr500192f
10.1021/acsami.9b05635
10.1021/acsnano.8b00643
10.1039/C4TA05611F
10.1038/nmat2725
10.1016/j.pmatsci.2018.04.006
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.enchem.2019.100012
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2589-7780
ExternalDocumentID 10_1016_j_enchem_2019_100012
GroupedDBID 0R~
AABXZ
AAEDW
AAHCO
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABJNI
ACDAQ
ACRLP
ACVFH
ADCNI
AEBSH
AEIPS
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFXIZ
AFZHZ
AGCQF
AGRNS
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BNPGV
CITATION
EBS
EFJIC
EJD
FDB
FYGXN
KOM
M41
ROL
SPC
SPCBC
SSG
SSH
SSK
SSM
SSR
T5K
~G-
ID FETCH-LOGICAL-c293t-854f119c2b0b260363c814ff55998ace297fe1f7fa55de39c588796ad03f4ce03
ISSN 2589-7780
IngestDate Thu Apr 24 23:16:00 EDT 2025
Tue Jul 01 04:25:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c293t-854f119c2b0b260363c814ff55998ace297fe1f7fa55de39c588796ad03f4ce03
ORCID 0000-0002-6781-2826
0000-0002-1123-5935
0000-0003-4574-9720
OpenAccessLink http://hdl.handle.net/10754/662450
ParticipantIDs crossref_primary_10_1016_j_enchem_2019_100012
crossref_citationtrail_10_1016_j_enchem_2019_100012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-00
PublicationDecade 2010
PublicationTitle EnergyChem
PublicationYear 2019
References Lu (10.1016/j.enchem.2019.100012_bib0144) 2016; 190
Kim (10.1016/j.enchem.2019.100012_bib0054) 2015; 25
Cha (10.1016/j.enchem.2019.100012_bib0204) 2014; 2
Ge (10.1016/j.enchem.2019.100012_bib0015) 1988; 28–30
Qian (10.1016/j.enchem.2019.100012_bib0161) 2019; 60
Lian (10.1016/j.enchem.2019.100012_bib0302) 2017; 40
Kim (10.1016/j.enchem.2019.100012_bib0028a) 2013; 25
Guo (10.1016/j.enchem.2019.100012_bib0272) 2017; 11
Abel (10.1016/j.enchem.2019.100012_bib0041) 2013; 117
Bommier (10.1016/j.enchem.2019.100012_bib0018) 2018; 97
Chen (10.1016/j.enchem.2019.100012_bib0181) 2017; 120
Luo (10.1016/j.enchem.2019.100012_bib0312) 2015; 13
Kim (10.1016/j.enchem.2019.100012_bib0120) 2014; 20
Chen (10.1016/j.enchem.2019.100012_bib0267) 2017; 17
Er (10.1016/j.enchem.2019.100012_bib0285) 2014; 6
Hu (10.1016/j.enchem.2019.100012_bib0185) 2018; 12
Sun (10.1016/j.enchem.2019.100012_bib0162) 2018; 30
Su (10.1016/j.enchem.2019.100012_bib0217) 2013; 49
Zhang (10.1016/j.enchem.2019.100012_bib0275) 2014; 7
Xue (10.1016/j.enchem.2019.100012_bib0245) 2018; 134
Yao (10.1016/j.enchem.2019.100012_bib0065) 2018; 9
Zhang (10.1016/j.enchem.2019.100012_bib0117) 2019; 11
Chao (10.1016/j.enchem.2019.100012_bib0177) 2018; 30
Jung (10.1016/j.enchem.2019.100012_bib0044) 2014; 5
Foix (10.1016/j.enchem.2019.100012_bib0123) 2016; 28
Li (10.1016/j.enchem.2019.100012_bib0059) 2017; 7
Komaba (10.1016/j.enchem.2019.100012_bib0145) 2012; 21
Luo (10.1016/j.enchem.2019.100012_bib0013) 2017; 7
Qin (10.1016/j.enchem.2019.100012_bib0231) 2017; 9
Chen (10.1016/j.enchem.2019.100012_bib0176) 2017; 27
Ali (10.1016/j.enchem.2019.100012_bib0197) 2018; 30
Huang (10.1016/j.enchem.2019.100012_bib0134) 2015; 16
Kim (10.1016/j.enchem.2019.100012_bib0262) 2015; 16
Li (10.1016/j.enchem.2019.100012_bib0235) 2014; 26
Zhang (10.1016/j.enchem.2019.100012_bib0305) 2017; 29
Kim (10.1016/j.enchem.2019.100012_bib0005) 2018; 8
Cao (10.1016/j.enchem.2019.100012_bib0077) 2012; 12
Lao (10.1016/j.enchem.2019.100012_bib0048) 2017; 29
Zhu (10.1016/j.enchem.2019.100012_bib0125) 2013; 13
Sun (10.1016/j.enchem.2019.100012_bib0246) 2011; 13
Jian (10.1016/j.enchem.2019.100012_bib0071) 2015; 137
Zhang (10.1016/j.enchem.2019.100012_bib0156) 2017; 29
Gao (10.1016/j.enchem.2019.100012_bib0183) 2018; 12
Guo (10.1016/j.enchem.2019.100012_bib0249) 2017; 5
Liu (10.1016/j.enchem.2019.100012_bib0269) 2016; 16
Wang (10.1016/j.enchem.2019.100012_bib0223) 2018; 332
Yin (10.1016/j.enchem.2019.100012_bib0157) 2017; 10
Zhu (10.1016/j.enchem.2019.100012_bib0257) 2018; 14
Sun (10.1016/j.enchem.2019.100012_bib0119) 2018; 8
Liu (10.1016/j.enchem.2019.100012_bib0153) 2018; 12
Ni (10.1016/j.enchem.2019.100012_bib0045) 2018; 3
Xiao (10.1016/j.enchem.2019.100012_bib0060) 2018; 8
Bai (10.1016/j.enchem.2019.100012_bib0057) 2015; 7
He (10.1016/j.enchem.2019.100012_bib0315) 2017; 8
Yang (10.1016/j.enchem.2019.100012_bib0206) 2015; 3
Wang (10.1016/j.enchem.2019.100012_bib0131) 2016; 28
Xu (10.1016/j.enchem.2019.100012_bib0053) 2013; 3
Anji Reddy (10.1016/j.enchem.2019.100012_bib0088) 2018; 3
Li (10.1016/j.enchem.2019.100012_bib0278) 2018; 30
Wang (10.1016/j.enchem.2019.100012_bib0313) 2015; 137
Huang (10.1016/j.enchem.2019.100012_bib0012) 2018; 3
Xu (10.1016/j.enchem.2019.100012_bib0171) 2018; 28
Yang (10.1016/j.enchem.2019.100012_bib0212) 2015; 3
Simone (10.1016/j.enchem.2019.100012_bib0055) 2016; 25
Lukatskaya (10.1016/j.enchem.2019.100012_bib0296) 2017; 6
Liang (10.1016/j.enchem.2019.100012_bib0129) 2015; 8
Li (10.1016/j.enchem.2019.100012_bib0260) 2018; 8
Duan (10.1016/j.enchem.2019.100012_bib0317) 2019; 13
Ming (10.1016/j.enchem.2019.100012_bib0324) 2019; 4
Bai (10.1016/j.enchem.2019.100012_bib0089) 2018; 8
Ni (10.1016/j.enchem.2019.100012_bib0192) 2017; 29
Zou (10.1016/j.enchem.2019.100012_bib0210) 2016; 325
Qiu (10.1016/j.enchem.2019.100012_bib0087) 2017; 7
Li (10.1016/j.enchem.2019.100012_bib0224) 2015; 15
Huang (10.1016/j.enchem.2019.100012_bib0303) 2018; 46
Patra (10.1016/j.enchem.2019.100012_bib0225) 2016; 28
Komaba (10.1016/j.enchem.2019.100012_bib0072) 2015; 60
Okamoto (10.1016/j.enchem.2019.100012_bib0074) 2014; 118
Sheng (10.1016/j.enchem.2019.100012_bib0241) 2017; 5
Ding (10.1016/j.enchem.2019.100012_bib0068) 2013; 7
Tang (10.1016/j.enchem.2019.100012_bib0242) 2017; 41
Peng (10.1016/j.enchem.2019.100012_bib0306) 2016; 9
Wang (10.1016/j.enchem.2019.100012_bib0252) 2018; 24
Cui (10.1016/j.enchem.2019.100012_bib0155) 2009; 9
Dou (10.1016/j.enchem.2019.100012_bib0108) 2019; 23
Li (10.1016/j.enchem.2019.100012_bib0135) 2017; 29
Xiong (10.1016/j.enchem.2019.100012_bib0175) 2017; 10
Song (10.1016/j.enchem.2019.100012_bib0105) 2018; 8
Bao (10.1016/j.enchem.2019.100012_bib0297) 2018; 8
Li (10.1016/j.enchem.2019.100012_bib0169) 2018; 30
Zhu (10.1016/j.enchem.2019.100012_bib0164) 2019; 5
Sun (10.1016/j.enchem.2019.100012_bib0154) 2015; 10
Anasori (10.1016/j.enchem.2019.100012_bib0282) 2017; 2
Dou (10.1016/j.enchem.2019.100012_bib0092) 2018; 6
Li (10.1016/j.enchem.2019.100012_bib0122) 2015; 48
Xie (10.1016/j.enchem.2019.100012_bib0182) 2018; 3
Lukatskaya (10.1016/j.enchem.2019.100012_bib0287) 2013; 341
Dall'Agnese (10.1016/j.enchem.2019.100012_bib0300) 2015; 6
Xu (10.1016/j.enchem.2019.100012_bib0138) 2016; 16
Li (10.1016/j.enchem.2019.100012_bib0100) 2016; 99
Bauer (10.1016/j.enchem.2019.100012_bib0007) 2018; 8
Wang (10.1016/j.enchem.2019.100012_bib0067) 2013; 57
Xu (10.1016/j.enchem.2019.100012_bib0201) 2013; 49
Zhang (10.1016/j.enchem.2019.100012_bib0265) 2015; 5
Pang (10.1016/j.enchem.2019.100012_bib0281) 2019; 48
Wang (10.1016/j.enchem.2019.100012_bib0310) 2014; 53
Goktas (10.1016/j.enchem.2019.100012_bib0080) 2018; 8
Zhao (10.1016/j.enchem.2019.100012_bib0293) 2017; 29
Li (10.1016/j.enchem.2019.100012_bib0082) 2017; 53
Chen (10.1016/j.enchem.2019.100012_bib0133) 2019; 30
Luo (10.1016/j.enchem.2019.100012_bib0052) 2016; 49
Yan (10.1016/j.enchem.2019.100012_bib0203) 2014; 269
Zhang (10.1016/j.enchem.2019.100012_bib0033) 2018; 30
Qian (10.1016/j.enchem.2019.100012_bib0040) 2012; 48
Kim (10.1016/j.enchem.2019.100012_bib0283) 2019; 60
Zhang (10.1016/j.enchem.2019.100012_bib0006) 2019
Abouimrane (10.1016/j.enchem.2019.100012_bib0023) 2012; 5
Xiong (10.1016/j.enchem.2019.100012_bib0019) 2011; 2
Yoon (10.1016/j.enchem.2019.100012_bib0078) 2017; 7
Liu (10.1016/j.enchem.2019.100012_bib0220) 2015; 16
Zeng (10.1016/j.enchem.2019.100012_bib0304) 2018; 57
Liu (10.1016/j.enchem.2019.100012_bib0132) 2017; 17
Park (10.1016/j.enchem.2019.100012_bib0022) 2012; 24
Lakshmi (10.1016/j.enchem.2019.100012_bib0184) 2018; 131
Naguib (10.1016/j.enchem.2019.100012_bib0280) 2011; 23
Jiang (10.1016/j.enchem.2019.100012_bib0173) 2016; 9
Wu (10.1016/j.enchem.2019.100012_bib0205) 2014; 251
Balogun (10.1016/j.enchem.2019.100012_bib0014) 2016; 98
Wang (10.1016/j.enchem.2019.100012_bib0314) 2015; 8
Liang (10.1016/j.enchem.2019.100012_bib0323) 2017; 35
Pan (10.1016/j.enchem.2019.100012_bib0186) 2018; 12
Wu (10.1016/j.enchem.2019.100012_bib0214) 2018; 5
Beda (10.1016/j.enchem.2019.100012_bib0083) 2018; 139
Li (10.1016/j.enchem.2019.100012_bib0263) 2016; 28
Dirican (10.1016/j.enchem.2019.100012_bib0221) 2015; 7
Zhao (10.1016/j.enchem.2019.100012_bib0112) 2019; 9
Wang (10.1016/j.enchem.2019.100012_bib0096) 2018; 342
Liu (10.1016/j.enchem.2019.100012_bib0172) 2015; 8
Fan (10.1016/j.enchem.2019.100012_bib0146) 2015; 174
Zhao (10.1016/j.enchem.2019.100012_bib0103) 2019; 9
Zhao (10.1016/j.enchem.2019.100012_bib0254) 2015; 27
Kurra (10.1016/j.enchem.2019.100012_bib0299) 2018; 3
Xu (10.1016/j.enchem.2019.100012_bib0069) 2015; 27
Li (10.1016/j.enchem.2019.100012_bib0137) 2016; 16
Ming (10.1016/j.enchem.2019.100012_bib0270) 2018; 53
He (10.1016/j.enchem.2019.100012_bib0230) 2017; 23
Qian (10.1016/j.enchem.2019.100012_bib0234) 2014; 14
Zhu (10.1016/j.enchem.2019.100012_bib0094) 2018; 130
Larcher (10.1016/j.enchem.2019.100012_bib0002) 2015; 7
Doeff (10.1016/j.enchem.2019.100012_bib0051) 2006; 140
Bommier (10.1016/j.enchem.2019.100012_bib0141) 2018; 14
Wang (10.1016/j.enchem.2019.100012_bib0200) 2018; 30
Kim (10.1016/j.enchem.2019.100012_bib0031) 2015; 8
Qin (10.1016/j.enchem.2019.100012_bib0227) 2017; 5
Darwiche (10.1016/j.enchem.2019.100012_bib0026) 2012; 134
Jin (10.1016/j.enchem.2019.100012_bib0010) 2017; 7
Ger (10.1016/j.enchem.2019.100012_bib0110) 2015; 3
Kim (10.1016/j.enchem.2019.100012_bib0261) 2012; 2
Yu (10.1016/j.enchem.2019.100012_bib0286) 2016; 120
Zhang (10.1016/j.enchem.2019.100012_bib0240) 2016; 6
Cho (10.1016/j.enchem.2019.100012_bib0273) 2017; 10
Wu (10.1016/j.enchem.2019.100012_bib0237) 2014; 2
Chen (10.1016/j.enchem.2019.100012_bib0178) 2018; 14
Magasinski (10.1016/j.enchem.2019.100012_bib0046) 2010; 9
Jin (10.1016/j.enchem.2019.100012_bib0091) 2018; 1
Zhang (10.1016/j.enchem.2019.100012_bib0218) 2017; 17
Zhu (10.1016/j.enchem.2019.100012_bib0256) 2014; 53
Zhou (10.1016/j.enchem.2019.100012_bib0136) 2017; 11
Li (10.1016/j.enchem.2019.100012_bib0058) 2016; 6
He (10.1016/j.enchem.2019.100012_bib0130) 2014; 14
Xie (10.1016/j.enchem.2019.100012_bib0029) 2014; 8
Raccichini (10.1016/j.enchem.2019.100012_bib0111) 2015; 14
Chen (10.1016/j.enchem.2019.100012_bib0170a) 2018; 30
Chen (10.1016/j.enchem.2019.100012_bib0228) 2017; 5
Moriwake (10.1016/j.enchem.2019.100012_bib0079) 2017; 7
Li (10.1016/j.enchem.2019.100012_bib0180) 2015; 3
Dai (10.1016/j.enchem.2019.100012_bib0148) 2014; 263
Ma (10.1016/j.enchem.2019.100012_bib0179) 2018; 57
Li (10.1016/j.enchem.2019.100012_bib0066) 2016; 2
Eames (10.1016/j.enchem.2019.100012_bib0284) 2014; 136
Zhao (10.1016/j.enchem.2019.100012_bib0021) 2012; 2
Lee (10.1016/j.enchem.2019.100012_bib0160) 2019; 119
Xu (10.1016/j.enchem.2019.100012_bib0188) 2018; 30
Qiang (10.1016/j.enchem.2019.100012_bib0266) 2017; 116
Hou (10.1016/j.enchem.2019.100012_bib0004) 2017; 7
Zhao (10.1016/j.enchem.2019.100012_bib0276) 2015; 3
Lim (10.1016/j.enchem.2019.100012_bib0191) 2016; 26
Ao (10.1016/j.enchem.2019.100012_bib0229) 2017; 359
Datta (10.1016/j.enchem.2019.100012_bib0127) 2013; 225
Li (10.1016/j.enchem.2019.100012_bib0198) 2018; 4
Yabuuchi (10.1016/j.enchem.2019.100012_bib0009) 2014; 114
Xu (10.1016/j.enchem.2019.100012_bib0075) 2017; 4
Fang (10.1016/j.enchem.2019.100012_bib0011) 2018; 4
Chen (10.1016/j.enchem.2019.100
References_xml – volume: 137
  start-page: 11566
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0071
  article-title: Carbon electrodes for K-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06809
– volume: 13
  start-page: 2473
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0317
  article-title: Semiconducting crystalline two-dimensional polyimide nanosheets with superior sodium storage properties
  publication-title: ACS Nano
– volume: 21
  start-page: 65
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0145
  article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.05.017
– volume: 12
  start-page: 8323
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0153
  article-title: Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03615
– volume: 12
  start-page: 1592
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0185
  article-title: Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08161
– volume: 48
  start-page: 7070
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0040
  article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32730a
– volume: 9
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0065
  article-title: Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 5182
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0204
  article-title: Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00041B
– volume: 130
  start-page: 145
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0094
  article-title: Engineering capacitive contribution in nitrogen-doped carbon nanofiber films enabling high performance sodium storage
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2017.12.126
– volume: 17
  start-page: 1302
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0218
  article-title: Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05280
– volume: 332
  start-page: 260
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0258
  article-title: Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.088
– volume: 48
  start-page: 526
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0259
  article-title: Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.060
– volume: 26
  start-page: 5019
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0196
  article-title: Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601323
– volume: 4
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0047
  article-title: Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700298
– volume: 315
  start-page: 101
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0049
  article-title: Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.01.020
– volume: 17
  start-page: 3907
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0267
  article-title: Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: from rational synthesis to in situ probing
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01485
– volume: 48
  start-page: 72
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0281
  article-title: Applications of 2D MXenes in energy conversion and storage systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00324F
– volume: 2
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0036
  article-title: Graphitic carbon materials for advanced sodium-ion batteries
  publication-title: Small Methods
– volume: 358
  start-page: 1400
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0050
  article-title: The nanoscale circuitry of battery electrodes
  publication-title: Science
  doi: 10.1126/science.aao2808
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0162
  article-title: Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801334
– volume: 14
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0178
  article-title: Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries
  publication-title: Small
  doi: 10.1002/smll.201870074
– volume: 9
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0112
  article-title: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803215
– volume: 46
  start-page: 20
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0303
  article-title: Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.030
– volume: 8
  start-page: 9606
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0029
  article-title: Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/nn503921j
– volume: 16
  start-page: 479
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0134
  article-title: Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.021
– volume: 14
  start-page: 1865
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0234
  article-title: Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl404637q
– volume: 5
  start-page: 9632
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0023
  article-title: Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22864e
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0109
  article-title: Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606860
– volume: 359
  start-page: 340
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0229
  article-title: Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.064
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0291
  article-title: Atomic cobalt covalently engineered interlayers for superior lithium-ion storage
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6544
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0039
  article-title: Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7544
– volume: 3
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0321
  article-title: 3D laser scribed graphene derived from carbon nanospheres : an ultrahigh-power electrode for supercapacitors
  publication-title: Small Methods
  doi: 10.1002/smtd.201900005
– volume: 5
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0265
  article-title: 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401123
– volume: 54
  start-page: 4533
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0295
  article-title: Alkali-induced crumpling of Ti3C2T: x (MXene) to form 3D porous networks for sodium ion storage
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00649K
– volume: 23
  start-page: 4109
  year: 2011
  ident: 10.1016/j.enchem.2019.100012_bib0020
  article-title: N.aTiO: lowest voltage ever reported oxide insertion electrode for sodium ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm202076g
– volume: 8
  start-page: 2954
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0129
  article-title: Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00878F
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0078
  article-title: Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601519
– volume: 131
  start-page: 86
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0184
  article-title: Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2018.01.095
– volume: 60
  start-page: 172
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0072
  article-title: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2015.09.002
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0106
  article-title: Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800108
– volume: 2
  start-page: 8431
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0236
  article-title: Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta15248k
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0033
  article-title: Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 1546
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0137
  article-title: Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03903
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0007
  article-title: The scale-up and commercialization of nonaqueous Na-ion battery technologies
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702869
– volume: 7
  start-page: 6378
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0027
  article-title: Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode
  publication-title: ACS Nano
  doi: 10.1021/nn4025674
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0135
  article-title: Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery
  publication-title: Adv. Mater.
– volume: 2
  start-page: 529
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0222
  article-title: Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13592F
– volume: 49
  start-page: 231
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0052
  article-title: Na-ion battery anodes: materials and electrochemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00482
– volume: 51
  start-page: 1609
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0114
  article-title: Laser-induced graphene
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00084
– volume: 17
  start-page: 1302
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0232
  article-title: Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05280
– year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0279
– volume: 3
  start-page: 2094
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0299
  article-title: Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01062
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0013
  article-title: Ultrathin surface coating enables the stable sodium metal anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601526
– volume: 46
  start-page: 3529
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0081
  article-title: Sodium-ion batteries: present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 57
  start-page: 8540
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0304
  article-title: Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803511
– volume: 98
  start-page: 162
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0014
  article-title: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2015.09.091
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0048
  article-title: Alloy-based anode materials toward advanced sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700622
– volume: 117
  start-page: 18885
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0041
  article-title: Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp407322k
– volume: 26
  start-page: 3854
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0239
  article-title: Layered SnS2-reduced graphene oxide composite - a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306314
– volume: 20
  start-page: 11980
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0120
  article-title: High-capacity anode materials for sodium-ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201402511
– volume: 24
  start-page: 3562
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0022
  article-title: Sodium terephthalate as an organic anode material for sodium ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201205
– volume: 1
  start-page: 516
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0064
  article-title: Electrochemically expandable soft carbon as anodes for Na-ion batteries
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.5b00329
– volume: 5
  start-page: 811
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0251
  article-title: Tin-assisted Sb2S3 nanoparticles uniformly grafted on graphene effectively improves sodium-ion storage performance
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800016
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0105
  article-title: Interphases in sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703082
– volume: 14
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0257
  article-title: Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery
  publication-title: Small
– volume: 60
  start-page: 179
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0283
  article-title: MXetronics: electronic and photonic applications of MXenes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.020
– volume: 53
  start-page: 2610
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0082
  article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC00301C
– volume: 7
  start-page: 19
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0002
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
– volume: 53
  start-page: 11
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0270
  article-title: Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.035
– volume: 49
  start-page: 3131
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0217
  article-title: SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40448j
– volume: 120
  start-page: 380
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0181
  article-title: In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2017.05.072
– volume: 8
  start-page: 2963
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0031
  article-title: Sodium intercalation chemistry in graphite
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02051D
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0305
  article-title: Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2156
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0157
  article-title: Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1408-z
– volume: 120
  start-page: 5288
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0286
  article-title: Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10366
– year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0107
  article-title: Rational design of carbon nanomaterials for electrochemical sodium storage and capture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201970239
– volume: 12
  start-page: 5897
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0024
  article-title: Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction
  publication-title: Nano Lett.
  doi: 10.1021/nl303305c
– volume: 28
  start-page: 2259
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0208
  article-title: Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504412
– volume: 4
  start-page: 1560
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0307
  article-title: MoS-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700060
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0297
  article-title: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 12
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0253
  article-title: Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-017-0165-1
– volume: 28
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0171
  article-title: Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802099
– volume: 26
  start-page: 4037
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0235
  article-title: Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400794
– volume: 7
  start-page: 19362
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0250
  article-title: One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05509
– volume: 6
  start-page: 56
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0098
  article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201200680
– volume: 263
  start-page: 276
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0148
  article-title: Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.012
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0156
  article-title: In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage
  publication-title: Adv. Mater.
– volume: 11
  start-page: 506
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0035
  article-title: Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701664
– volume: 28
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0038
  article-title: Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 9824
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0123
  article-title: Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603212
– volume: 293
  start-page: 626
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0030
  article-title: Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.05.116
– volume: 3
  start-page: 1137
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0045
  article-title: Phosphorus: an anode of choice for sodium ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00312
– volume: 34
  start-page: 249
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0322
  article-title: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.043
– volume: 3
  start-page: 8800
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0206
  article-title: Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00614G
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0043
  article-title: Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes
  publication-title: Adv. Mater.
– volume: 26
  start-page: 4139
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0233
  article-title: Tin phosphide as a promising anode material for Na-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305638
– volume: 10
  start-page: 3581
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0268
  article-title: A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16580
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0116
  article-title: Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801840
– volume: 6
  start-page: 6929
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0209
  article-title: Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7929
– volume: 7
  start-page: 13318
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0316
  article-title: Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13318
– volume: 55
  start-page: 328
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0099
  article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2012.12.072
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0140
  article-title: Layer-Tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702372
– volume: 1
  start-page: 449
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0163
  article-title: A highly reversible room-temperature sodium metal anode
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.5b00328
– volume: 151
  start-page: 8
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0219
  article-title: Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.009
– volume: 118
  start-page: 16
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0074
  article-title: Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4063753
– volume: 28
  start-page: 5753
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0263
  article-title: Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01988
– volume: 15
  start-page: 7671
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0070
  article-title: Potassium ion batteries with graphitic materials
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03667
– volume: 3
  start-page: 21754
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0276
  article-title: Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05781G
– volume: 26
  start-page: 3711
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0191
  article-title: High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core–shell nanoparticles and reduced graphene oxide nanocomposites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201505548
– volume: 3
  start-page: 2851
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0088
  article-title: Insight into sodium insertion and the storage mechanism in hard carbon
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01761
– volume: 134
  start-page: 222
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0245
  article-title: Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2018.04.003
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0004
  article-title: Carbon anode materials for advanced sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602898
– volume: 1
  start-page: 505
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0294
  article-title: Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00045
– volume: 24
  start-page: 81
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0115
  article-title: Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.12.003
– volume: 12
  start-page: 12578
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0186
  article-title: Construction of MoS2/C hierarchical tubular heterostructures for high performance sodium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07172
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0177
  article-title: C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3498
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0216
  article-title: Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201800941
– volume: 147
  start-page: 1271
  year: 2000
  ident: 10.1016/j.enchem.2019.100012_bib0017a
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 13
  start-page: 3093
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0125
  article-title: Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir
  publication-title: Nano Lett.
  doi: 10.1021/nl400998t
– volume: 334
  start-page: 932
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0308
  article-title: 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.007
– volume: 8
  start-page: 1172
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0315
  article-title: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01202-2
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0090
  article-title: Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800855
– volume: 9
  start-page: 26797
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0231
  article-title: Ultrafast ionic liquid-assisted microwave synthesis of SnO microflowers and their superior sodium-ion storage performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06230
– volume: 99
  start-page: 556
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0100
  article-title: Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2015.12.066
– volume: 9
  start-page: 3370
  year: 2009
  ident: 10.1016/j.enchem.2019.100012_bib0155
  article-title: Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl901670t
– volume: 3
  start-page: 1186
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0165
  article-title: Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300139
– volume: 10
  start-page: 897
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0273
  article-title: Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1346-9
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0080
  article-title: Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI)
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702724
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0260
  article-title: Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 71
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0062
  article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05451B
– volume: 9
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0103
  article-title: Low-Temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803648
– year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0318
  article-title: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03467
– volume: 10
  start-page: 4055
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0274
  article-title: Phosphorus and phosphide nanomaterials for sodium-ion batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1671-7
– volume: 332
  start-page: 237
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0223
  article-title: Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.081
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0278
  article-title: Necklace-like structures composed of Fe3N@C yolk – shell particles as an advanced anode for sodium-ion batteries
  publication-title: Adv. Mater.
– volume: 28–30
  start-page: 1172
  year: 1988
  ident: 10.1016/j.enchem.2019.100012_bib0015
  article-title: Electrochemical intercalation of sodium in graphite
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(88)90351-7
– volume: 4
  start-page: eaat1687
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0198
  article-title: A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat1687
– volume: 16
  start-page: 3321
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0269
  article-title: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00942
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0087
  article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700403
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0188
  article-title: Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800658
– volume: 41
  start-page: 377
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0242
  article-title: Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high- performance anode for lithium-ion and sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.052
– volume: 55
  start-page: 3408
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0174
  article-title: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510978
– volume: 4
  start-page: 2130
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0189
  article-title: Synthesis of grain-like MoS2 for high-performance sodium-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800512
– volume: 17
  start-page: 2034
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0132
  article-title: New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00083
– volume: 13
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0243
  article-title: Tin sulfide-based nanohybrid for high-performance anode of sodium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.201700767
– volume: 27
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0176
  article-title: Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays
  publication-title: Adv. Funct. Mater.
– volume: 332
  start-page: 548
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0244
  article-title: One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.110
– volume: 4
  start-page: 1167
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0011
  article-title: A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries
  publication-title: Chem.
  doi: 10.1016/j.chempr.2018.03.006
– volume: 5
  start-page: 4033
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0037
  article-title: Expanded graphite as superior anode for sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5033
– volume: 8
  start-page: 3160
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0314
  article-title: Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02589C
– volume: 251
  start-page: 379
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0205
  article-title: Anatase TiO2 nanoparticles for high power sodium-ion anodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.11.083
– volume: 341
  start-page: 1502
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0287
  article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 4
  start-page: 6472
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0063
  article-title: Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00950F
– volume: 54
  start-page: 3432
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0121
  article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410376
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0118
  article-title: A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704670
– volume: 47
  start-page: 3303
  year: 2002
  ident: 10.1016/j.enchem.2019.100012_bib0084
  article-title: Electrochemical insertion of sodium into hard carbons
  publication-title: Electrochim. Acta.
  doi: 10.1016/S0013-4686(02)00250-5
– volume: 269
  start-page: 37
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0203
  article-title: One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.06.150
– volume: 7
  start-page: 2000
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0275
  article-title: Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201301394
– volume: 26
  start-page: 513
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0298
  article-title: Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.005
– volume: 119
  start-page: 5416
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0160
  article-title: Sodium metal anodes: emerging solutions to dendrite growth
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00642
– volume: 2
  start-page: 16098
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0282
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 49
  start-page: 8973
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0201
  article-title: Nanocrystalline anatase TiO: a new anode material for rechargeable sodium ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45254a
– volume: 10
  start-page: 980
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0154
  article-title: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.194
– volume: 1
  start-page: 2295
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0091
  article-title: High-performance hard carbon anode: tunable local structures and sodium storage mechanism
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00354
– volume: 2
  start-page: 962
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0021
  article-title: Disodium terephthalate (NA2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200166
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0192
  article-title: Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605607
– volume: 13
  start-page: 450
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0311
  article-title: Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.017
– volume: 8
  start-page: 3531
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0172
  article-title: Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02074C
– volume: 5
  start-page: 10946
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0227
  article-title: Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01936J
– volume: 52
  start-page: 4337
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0277
  article-title: The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC10585D
– volume: 35
  start-page: 331
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0323
  article-title: Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.007
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0199
  article-title: Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 23527
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0247
  article-title: An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp507116t
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0119
  article-title: MoS2/Graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702383
– volume: 23
  start-page: 13724
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0230
  article-title: Mesoporous tin-based oxide nanospheres/reduced graphene composites as advanced anodes for lithium-ion half/full cells and sodium-ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201702225
– volume: 15
  start-page: 5888
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0086
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 27
  start-page: 6022
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0202
  article-title: Anatase TiO: better anode material than amorphous and rutile phases of TiO2 for na-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02348
– volume: 2
  start-page: 861
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0320a
  article-title: High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0014-y
– volume: 140
  start-page: L169
  year: 2006
  ident: 10.1016/j.enchem.2019.100012_bib0051
  article-title: Electrochemical insertion of sodium into carbon
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2221153
– volume: 23
  start-page: 87
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0108
  article-title: Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.040
– volume: 11
  start-page: 5530
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0136
  article-title: Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00557
– volume: 6
  start-page: 11173
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0285
  article-title: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501144q
– volume: 7
  start-page: 11004
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0068
  article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn404640c
– volume: 5
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0214
  article-title: Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800519
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0168
  article-title: Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801013
– volume: 27
  start-page: 6702
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0124
  article-title: Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503015
– volume: 53
  start-page: 2152
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0256
  article-title: Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308354
– volume: 11
  start-page: 12658
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0272
  article-title: Cobalt sulfide quantum dot embedded n S-doped-1 carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07132
– volume: 16
  start-page: 62
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0262
  article-title: Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.015
– volume: 3
  start-page: 5820
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0180
  article-title: Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06825D
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0200
  article-title: Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage
  publication-title: Adv. Mater.
– volume: 16
  start-page: 61
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0288
  article-title: MXene: a promising transition metal carbide anode for lithium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.01.002
– volume: 127
  start-page: 658
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0093
  article-title: Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2017.11.054
– volume: 27
  start-page: 3096
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0254
  article-title: High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00616
– volume: 3
  start-page: 128
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0053
  article-title: Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200346
– volume: 9
  start-page: 3254
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0150
  article-title: Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00376
– volume: 159
  start-page: A1801
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0025
  article-title: Reversible insertion of sodium in tin
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.037211jes
– volume: 24
  start-page: 3873
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0252
  article-title: SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201705855
– volume: 27
  start-page: 2042
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0069
  article-title: High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405370
– volume: 190
  start-page: 402
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0144
  article-title: Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of sb-based anode for sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.136
– volume: 30
  start-page: 4536
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0097
  article-title: Defective hard carbon anode for Na-ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00645
– volume: 6
  start-page: 2305
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0300
  article-title: Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00868
– volume: 7
  start-page: 18387
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0221
  article-title: Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04338
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0193
  article-title: Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1759
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0255
  article-title: MoS2/graphene composite paper for sodium-ion battery electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn406156b
– volume: 6
  start-page: 17105
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0296
  article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.105
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0139
  article-title: Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801514
– volume: 10
  start-page: 1529
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0271
  article-title: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07081
– volume: 5
  start-page: 10027
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0228
  article-title: Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01634D
– volume: 6
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0085
  article-title: Correlation between microstructure and Na storage behavior in hard carbon
  publication-title: Adv. Energy Mater.
– volume: 60
  start-page: 866
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0161
  article-title: Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.030
– volume: 2
  start-page: 141
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0261
  article-title: The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100494
– volume: 5
  start-page: 1283
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0044
  article-title: Atom-level understanding of the sodiation process in silicon anode material
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5002743
– volume: 317
  start-page: 153
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0128
  article-title: Long-term cycling stability of porous Sn anode for sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.060
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0104
  article-title: Soft carbon as anode for high-performance sodium-based dual ion full battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602778
– volume: 14
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0141
  article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes
  publication-title: Small
  doi: 10.1002/smll.201703576
– volume: 325
  start-page: 25
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0210
  article-title: Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.017
– volume: 4
  start-page: 1584
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0324
  article-title: Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00822
– volume: 2
  start-page: 2560
  year: 2011
  ident: 10.1016/j.enchem.2019.100012_bib0019
  article-title: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2012066
– volume: 8
  start-page: 460
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0194
  article-title: Alkaline earth metal vanadates as sodium-ion battery anodes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00211-5
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0005
  article-title: Recent progress and perspective in electrode materials for K-ion batteries
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 187
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0095
  article-title: Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2018.04.031
– volume: 134
  start-page: 20805
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0026
  article-title: Better cycling performances of bulk Sb in na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja310347x
– volume: 25
  start-page: 761
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0055
  article-title: Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2016.04.016
– volume: 10
  start-page: 3334
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0290
  article-title: Sodium-ion intercalation mechanism in MXene nanosheets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06958
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0187
  article-title: Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage
  publication-title: Adv. Energy Mater.
  doi: 10.1201/b19635
– volume: 2
  start-page: 710
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0034
  article-title: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200026
– volume: 12
  start-page: 3783
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0077
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0151
  article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0211
  article-title: Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501489
– volume: 148
  start-page: A803
  year: 2001
  ident: 10.1016/j.enchem.2019.100012_bib0016
  article-title: The mechanisms of lithium and sodium insertion in carbon materials
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379565
– volume: 5
  start-page: eaau6264
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0164
  article-title: Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau6264
– volume: 2
  start-page: 16424
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0237
  article-title: A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03365E
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0170a
  article-title: 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804116
– volume: 8
  start-page: 16684
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0213
  article-title: Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03757
– volume: 3
  start-page: 10320
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0110
  article-title: Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA00727E
– volume: 30
  start-page: 1505
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0215
  article-title: Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03753
– volume: 6
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0167
  article-title: Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502568
– volume: 3
  start-page: 18013
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0001
  article-title: A cost and resource analysis of sodium-ion batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 7
  start-page: 5598
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0057
  article-title: Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00861
– volume: 137
  start-page: 165
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0056
  article-title: Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2018.05.032
– volume: 2
  start-page: 139
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0066
  article-title: Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.10.003
– volume: 4
  start-page: 1261
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0159
  article-title: Sodium-ion hybrid capacitor of high power and energy density
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00437
– volume: 48
  start-page: 448
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0264
  article-title: An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.006
– volume: 16
  start-page: 3955
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0138
  article-title: Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01777
– volume: 52
  start-page: 4633
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0149
  article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201209689
– volume: 16
  start-page: 399
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0220
  article-title: SnO2 coated carbon cloth with surface modification as Na-ion battery anode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.010
– volume: 27
  start-page: 4274
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0207
  article-title: Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00633
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0010
  article-title: Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700087
– volume: 22
  start-page: 232
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0126
  article-title: Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.024
– volume: 9
  start-page: 11933
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0152
  article-title: Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04474
– volume: 23
  start-page: 4248
  year: 2011
  ident: 10.1016/j.enchem.2019.100012_bib0280
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 25
  start-page: 3045
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0028a
  article-title: An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204877
– volume: 116
  start-page: 286
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0266
  article-title: Cooperatively assembled, nitrogen-doped, ordered mesoporous carbon/iron oxide nanocomposites for low-cost, long cycle life sodium-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2017.01.093
– volume: 14
  start-page: 1255
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0130
  article-title: Monodisperse antimony nanocrystals for high-rate li-ion and na-ion battery anodes: nano versus bulk
  publication-title: Nano Lett.
  doi: 10.1021/nl404165c
– volume: 6
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0240
  article-title: SnSe2 2D anodes for advanced sodium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601188
– volume: 9
  start-page: 2847
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0306
  article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01717G
– volume: 3
  start-page: 1670
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0182
  article-title: β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00762
– volume: 137
  start-page: 3124
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0313
  article-title: Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00336
– volume: 342
  start-page: 52
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0096
  article-title: Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.098
– volume: 139
  start-page: 248
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0083
  article-title: Hard carbons derived from green phenolic resins for Na-ion batteries
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2018.06.036
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0059
  article-title: Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602894
– volume: 5
  start-page: 19745
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0241
  article-title: Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06577A
– volume: 14
  start-page: 271
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0111
  article-title: The role of graphene for electrochemical energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4170
– volume: 7
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0292
  article-title: Na-ion intercalation and charge storage mechanism in 2D vanadium carbide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700959
– volume: 12
  start-page: 88
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0042
  article-title: Bismuth: a new anode for the Na-ion battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.012
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0089
  article-title: Elucidation of the sodium-storage mechanism in hard carbons
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703217
– volume: 10
  start-page: 1757
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0175
  article-title: SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01628J
– volume: 9
  start-page: 1430
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0173
  article-title: Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03262H
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0195
  article-title: Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702769
– volume: 19
  start-page: 279
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0061
  article-title: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.034
– volume: 136
  start-page: 16270
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0284
  article-title: Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508154e
– volume: 40
  start-page: 1
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0302
  article-title: Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.002
– volume: 57
  start-page: 8901
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0179
  article-title: Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802672
– year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0006
  article-title: Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 537
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0312
  article-title: Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.041
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0008
  article-title: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703268
– volume: 31
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0113
  article-title: Laser-induced graphene : from discovery to translation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803621
– volume: 174
  start-page: 970
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0146
  article-title: Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.06.039
– volume: 28
  start-page: 7672
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0190
  article-title: Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601723
– volume: 5
  start-page: 12445
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0249
  article-title: SbO/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02689G
– volume: 26
  start-page: 2901
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0142
  article-title: Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304962
– volume: 53
  start-page: 10169
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0032a
  article-title: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403734
– volume: 3
  start-page: 2671
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0309
  article-title: A low cost, all-organic Na-ion battery based on polymeric cathode and anode
  publication-title: Sci. Rep.
  doi: 10.1038/srep02671
– volume: 25
  start-page: 534
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0054
  article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402984
– volume: 15
  start-page: 369
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0224
  article-title: High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.04.018
– volume: 243
  start-page: 585
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0073
  article-title: First-principles study of alkali metal-graphite intercalation compounds
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.057
– volume: 27
  start-page: 1210
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0143
  article-title: Understanding the interaction of the carbonates and binder in Na-ion batteries: a combined bulk and surface study
  publication-title: Chem. Mater.
  doi: 10.1021/cm5039649
– volume: 3
  start-page: 1604
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0012
  article-title: Electrode materials of sodium-ion batteries toward practical application
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00609
– volume: 44
  start-page: 66
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0147
  article-title: Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.04.014
– volume: 11
  start-page: 4792
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0301
  article-title: Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01165
– volume: 13
  start-page: 1462
  year: 2011
  ident: 10.1016/j.enchem.2019.100012_bib0246
  article-title: High capacity Sb2O4 thin film electrodes for rechargeable sodium battery
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.09.020
– volume: 4
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0075
  article-title: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700146
– volume: 53
  start-page: 5892
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0310
  article-title: All organic sodium-ion batteries with Na4C8H2O6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400032
– volume: 225
  start-page: 316
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0127
  article-title: Tin and graphite based nanocomposites: potential anode for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.014
– volume: 28
  start-page: 124
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0225
  article-title: High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.044
– volume: 159
  start-page: A1368
  year: 2012
  ident: 10.1016/j.enchem.2019.100012_bib0289
  article-title: A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.003208jes
– volume: 29
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0293
  article-title: Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702410
– volume: 6
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0058
  article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600659
– volume: 57
  start-page: 202
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0067
  article-title: Reduced graphene oxide with superior cycling stability and rate capability for sodium storage
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2013.01.064
– volume: 10
  start-page: 4398
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0226
  article-title: Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1756-3
– volume: 7
  start-page: 17264
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0248
  article-title: Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04225
– volume: 4
  start-page: 1485
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0319
  article-title: Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2481
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0169
  article-title: Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage
  publication-title: Adv. Mater.
– volume: 23
  start-page: 947
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0076
  article-title: Sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200691
– volume: 12
  start-page: 194
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0003
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 6
  start-page: 12185
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0238
  article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02695E
– volume: 30
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0197
  article-title: Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802745
– volume: 8
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0060
  article-title: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703238
– volume: 30
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0133
  article-title: Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries
  publication-title: Nanotechnology
– volume: 7
  start-page: 36550
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0079
  article-title: Why is sodium-intercalated graphite unstable?
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06777A
– volume: 6
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0092
  article-title: Research update: hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries
  publication-title: APL Mater.
  doi: 10.1063/1.5013132
– volume: 4
  start-page: 1870
  year: 2013
  ident: 10.1016/j.enchem.2019.100012_bib0166
  article-title: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2878
– volume: 9
  start-page: 23766
  year: 2017
  ident: 10.1016/j.enchem.2019.100012_bib0325
  article-title: Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05687
– volume: 48
  start-page: 1657
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0122
  article-title: Tin and tin compounds for sodium ion battery anodes: phase transformations and performance
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00114
– volume: 2
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0101
  article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500195
– volume: 28
  start-page: 4126
  year: 2016
  ident: 10.1016/j.enchem.2019.100012_bib0131
  article-title: Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505918
– volume: 11
  start-page: 1218
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0158
  article-title: Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03016A
– volume: 7
  start-page: 2626
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0102
  article-title: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507679x
– volume: 114
  start-page: 11636
  year: 2014
  ident: 10.1016/j.enchem.2019.100012_bib0009
  article-title: Research development on sodium-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500192f
– volume: 11
  start-page: 20905
  year: 2019
  ident: 10.1016/j.enchem.2019.100012_bib0117
  article-title: Wettability-driven assembly of electrochemical microsupercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05635
– volume: 12
  start-page: 3568
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0183
  article-title: A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00643
– volume: 3
  start-page: 5648
  year: 2015
  ident: 10.1016/j.enchem.2019.100012_bib0212
  article-title: Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05611F
– volume: 9
  start-page: 353
  year: 2010
  ident: 10.1016/j.enchem.2019.100012_bib0046
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
– volume: 97
  start-page: 170
  year: 2018
  ident: 10.1016/j.enchem.2019.100012_bib0018
  article-title: Internal structure-na storage mechanisms - electrochemical performance relations in carbons
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.04.006
SSID ssj0002964937
Score 2.5599902
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 100012
Title Sodium-ion battery anodes: Status and future trends
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRcU3OXiTDXk3602KpYiK-EBvYZ9qqa1og-CvdyabJtEWUS8hGTZLNt-wOzM78y0hByYSnuGJop4IOUXCLiq49GiUCsV0mBivqK06v0j6t9HpfXzfal03spbyiXDlx9y6kv-gCjLAFatk_4Bs1SkI4B7whSsgDNdfYXw9Vk_5M0UERcGTiWRKY2XT3NCMzC0DsyUOwaTysq63isUXlX9IGjATQL7DMMeMtFcr0_lTJXp45-UCiKozfHvkr1oXbI_9_I0_H164zeCCX2dPlXNQEKcMDHB72JKr58imk2hDV4LGhOgXoa65c7UNGwxcwA2GiVl2zK2bf6XG_rZkVYmE0xy1QWZ7ybCXzPayQBYD8B28Nlk87l6dXVahN9xpZgWbajWUaVFlkfk3-0ENo6VhfdyskOXSbXCOrQ6skpYerZGwxt8p8Xcs_keORR8elWPRdyz66-S2d3LT7dPyEAwqwRKb0DSOjO8zGQhPgO8ZJqFM_cgYZIpLudQB6xjtm47hcax0yGQMywZLuPJCE-FhcBukPRqP9CZxVCdiQgYdgxsBaSRSwbk2yO_PlQZXeYuE01FmsmSIx4NKhtlPv3mL0OqtF8uQ8mP77T-23yFLtWbukvbkNdd7YAhOxH4J7Ceq-Fsd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium-ion+battery+anodes%3A+Status+and+future+trends&rft.jtitle=EnergyChem&rft.au=Zhang%2C+Wenli&rft.au=Zhang%2C+Fan&rft.au=Ming%2C+Fangwang&rft.au=Alshareef%2C+Husam+N.&rft.date=2019-09-01&rft.issn=2589-7780&rft.eissn=2589-7780&rft.volume=1&rft.issue=2&rft.spage=100012&rft_id=info:doi/10.1016%2Fj.enchem.2019.100012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enchem_2019_100012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7780&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7780&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7780&client=summon