Sodium-ion battery anodes: Status and future trends
Saved in:
Published in | EnergyChem Vol. 1; no. 2; p. 100012 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2019
|
Online Access | Get full text |
ISSN | 2589-7780 2589-7780 |
DOI | 10.1016/j.enchem.2019.100012 |
Cover
Loading…
ArticleNumber | 100012 |
---|---|
Author | Ming, Fangwang Alshareef, Husam N. Zhang, Wenli Zhang, Fan |
Author_xml | – sequence: 1 givenname: Wenli orcidid: 0000-0002-6781-2826 surname: Zhang fullname: Zhang, Wenli – sequence: 2 givenname: Fan surname: Zhang fullname: Zhang, Fan – sequence: 3 givenname: Fangwang orcidid: 0000-0003-4574-9720 surname: Ming fullname: Ming, Fangwang – sequence: 4 givenname: Husam N. orcidid: 0000-0002-1123-5935 surname: Alshareef fullname: Alshareef, Husam N. |
BookMark | eNp9z7tOwzAUBmALFYlS-gYMeYEEX-LY7oYqoEiVGAqz5djHIlHjINsZ-vakKgNiYDoXnf9I3y1ahDEAQvcEVwST5qGvINhPGCqKiZpXGBN6hZaUS1UKIfHiV3-D1in18wlVTa2YWCJ2GF03DWU3hqI1OUM8FSaMDtKmOGSTpzSPrvBTniIUOUJw6Q5de3NMsP6pK_Tx_PS-3ZX7t5fX7eO-tFSxXEpee0KUpS1uaYNZw6wktfecKyWNBaqEB-KFN5w7YMpyKYVqjMPM1xYwW6H68tfGMaUIXn_FbjDxpAnWZ7vu9cWuz3Z9sc-xzZ-Y7WbJLMzRdMf_w9-0VWN4 |
CitedBy_id | crossref_primary_10_1002_ange_201913368 crossref_primary_10_1021_acs_energyfuels_2c01354 crossref_primary_10_1002_admi_202001043 crossref_primary_10_3390_app11041483 crossref_primary_10_1016_j_jcis_2023_06_124 crossref_primary_10_1021_acs_langmuir_4c00794 crossref_primary_10_1002_batt_202100243 crossref_primary_10_1016_j_jssc_2025_125279 crossref_primary_10_1002_inf2_12218 crossref_primary_10_1016_j_est_2024_114977 crossref_primary_10_1002_smll_202406325 crossref_primary_10_1039_D4DT01847H crossref_primary_10_3390_c7030057 crossref_primary_10_1016_j_esci_2023_100181 crossref_primary_10_1080_08927022_2023_2211170 crossref_primary_10_1109_ACCESS_2019_2958684 crossref_primary_10_3390_batteries11020061 crossref_primary_10_1016_j_coelec_2024_101482 crossref_primary_10_1016_j_jpowsour_2022_230974 crossref_primary_10_1039_D1TC00236H crossref_primary_10_1016_j_compositesb_2021_109246 crossref_primary_10_1021_acs_energyfuels_3c02406 crossref_primary_10_1021_acsami_1c17700 crossref_primary_10_1002_smtd_202201508 crossref_primary_10_1016_j_apsusc_2024_160786 crossref_primary_10_1039_D1TA00204J crossref_primary_10_1016_j_cej_2024_155462 crossref_primary_10_1039_D4NR00579A crossref_primary_10_1039_D1CP01401C crossref_primary_10_1002_ente_202101024 crossref_primary_10_35848_1347_4065_abe201 crossref_primary_10_1007_s12274_021_3462_4 crossref_primary_10_1016_j_carbon_2020_06_052 crossref_primary_10_1039_C7CS00614D crossref_primary_10_1021_acsenergylett_0c02181 crossref_primary_10_1039_D2QI01312F crossref_primary_10_3390_en17112646 crossref_primary_10_1002_advs_202407538 crossref_primary_10_1016_j_matre_2021_100022 crossref_primary_10_1021_acs_energyfuels_2c02660 crossref_primary_10_1039_D1MA00158B crossref_primary_10_1007_s44246_022_00009_1 crossref_primary_10_1021_acsanm_4c02993 crossref_primary_10_1002_cnma_202200068 crossref_primary_10_1016_j_ssi_2023_116325 crossref_primary_10_3390_cryst12091241 crossref_primary_10_1007_s40820_022_00844_2 crossref_primary_10_1021_acsenergylett_1c01868 crossref_primary_10_1002_adfm_202203279 crossref_primary_10_1016_j_jcis_2022_05_068 crossref_primary_10_1002_eem2_12633 crossref_primary_10_1002_est2_309 crossref_primary_10_1002_advs_202207751 crossref_primary_10_1016_j_nanoso_2024_101347 crossref_primary_10_1021_acsaem_3c02975 crossref_primary_10_1016_j_apsusc_2023_157074 crossref_primary_10_1016_j_jcis_2024_01_156 crossref_primary_10_1002_chem_202304207 crossref_primary_10_1039_D4ME00007B crossref_primary_10_1016_j_ceramint_2024_06_294 crossref_primary_10_1021_acsami_3c11795 crossref_primary_10_1016_j_jpowsour_2024_234863 crossref_primary_10_1016_j_mtener_2023_101271 crossref_primary_10_1002_ente_202401320 crossref_primary_10_1016_j_est_2023_109312 crossref_primary_10_1016_j_nanoen_2021_105792 crossref_primary_10_1039_D0TA01821J crossref_primary_10_1002_aenm_202303833 crossref_primary_10_1021_acs_jpcc_2c08815 crossref_primary_10_1039_D0SE00583E crossref_primary_10_1016_j_colsurfa_2023_131670 crossref_primary_10_1016_j_enchem_2020_100036 crossref_primary_10_1007_s11581_023_05076_x crossref_primary_10_1016_j_enchem_2020_100031 crossref_primary_10_1002_celc_202300127 crossref_primary_10_1016_j_est_2024_113961 crossref_primary_10_1002_er_7277 crossref_primary_10_3390_en18040978 crossref_primary_10_1016_j_cej_2022_138019 crossref_primary_10_1007_s10854_021_07048_1 crossref_primary_10_1016_j_jelechem_2020_114747 crossref_primary_10_1007_s40097_020_00367_5 crossref_primary_10_1016_j_jcis_2021_07_097 crossref_primary_10_2139_ssrn_3985329 crossref_primary_10_3390_ma15082787 crossref_primary_10_1016_j_jallcom_2021_161885 crossref_primary_10_1016_j_ccr_2021_214260 crossref_primary_10_1016_j_nanoen_2021_106184 crossref_primary_10_1016_j_enchem_2020_100048 crossref_primary_10_1016_j_ccr_2020_213312 crossref_primary_10_1016_j_apsusc_2024_160502 crossref_primary_10_1007_s40820_025_01697_1 crossref_primary_10_1007_s42247_023_00501_3 crossref_primary_10_1021_acsomega_4c09865 crossref_primary_10_1246_bcsj_20210324 crossref_primary_10_1021_acsaem_2c00595 crossref_primary_10_1021_acsaem_1c01818 crossref_primary_10_1016_j_jallcom_2020_154693 crossref_primary_10_1016_S1872_5805_25_60953_X crossref_primary_10_1002_chem_202000294 crossref_primary_10_1016_j_cej_2023_144234 crossref_primary_10_1039_D0TA10666F crossref_primary_10_1021_acsmaterialslett_3c01616 crossref_primary_10_1002_eem2_12167 crossref_primary_10_1002_smll_202307275 crossref_primary_10_1016_j_mtla_2023_101968 crossref_primary_10_1016_j_cej_2022_136772 crossref_primary_10_3390_batteries8020012 crossref_primary_10_1002_ente_202300338 crossref_primary_10_1039_D3NA00854A crossref_primary_10_1021_acsami_0c09082 crossref_primary_10_1002_smll_202003174 crossref_primary_10_1007_s10854_020_04655_2 crossref_primary_10_1007_s11771_022_5126_2 crossref_primary_10_1016_j_apsusc_2022_154825 crossref_primary_10_1002_aenm_202000099 crossref_primary_10_1039_D3RA03007E crossref_primary_10_1002_smll_202402915 crossref_primary_10_1016_j_apsusc_2024_160606 crossref_primary_10_1016_j_cej_2021_128518 crossref_primary_10_1021_acsaem_4c01310 crossref_primary_10_1002_admt_202400136 crossref_primary_10_1016_j_jallcom_2022_167108 crossref_primary_10_1021_acsami_9b17775 crossref_primary_10_1039_D2CP03662B crossref_primary_10_1007_s41918_022_00174_2 crossref_primary_10_1016_j_jallcom_2023_169028 crossref_primary_10_3389_fbael_2023_1330448 crossref_primary_10_1007_s11581_023_05048_1 crossref_primary_10_1021_acsaem_1c00271 crossref_primary_10_1016_j_ensm_2020_06_020 crossref_primary_10_1016_j_cej_2025_159623 crossref_primary_10_1016_j_est_2023_108781 crossref_primary_10_1039_D3NR06258A crossref_primary_10_1016_j_carbon_2022_02_011 crossref_primary_10_1021_acsnanoscienceau_3c00031 crossref_primary_10_1007_s10965_022_02892_z crossref_primary_10_1016_j_ccr_2021_214297 crossref_primary_10_1016_j_cej_2021_128408 crossref_primary_10_1016_j_jallcom_2021_162784 crossref_primary_10_1016_j_rechem_2023_101041 crossref_primary_10_1016_j_cej_2024_158461 crossref_primary_10_1016_j_jallcom_2023_168887 crossref_primary_10_1016_j_jcis_2020_10_102 crossref_primary_10_1016_j_nanoms_2022_02_001 crossref_primary_10_1063_5_0096098 crossref_primary_10_1016_j_est_2024_114216 crossref_primary_10_1016_j_ssi_2024_116546 crossref_primary_10_1002_cey2_196 crossref_primary_10_1016_j_cis_2020_102263 crossref_primary_10_1002_aenm_202100346 crossref_primary_10_1149_1945_7111_ac47eb crossref_primary_10_1002_ange_202003386 crossref_primary_10_3390_polym15061496 crossref_primary_10_1021_acsanm_1c04122 crossref_primary_10_1007_s41918_022_00134_w crossref_primary_10_1002_smll_202302071 crossref_primary_10_1016_j_jpowsour_2025_236177 crossref_primary_10_1016_j_apsusc_2021_152000 crossref_primary_10_1002_adma_202420251 crossref_primary_10_1021_acs_iecr_2c00878 crossref_primary_10_1002_adma_202000732 crossref_primary_10_1039_D2GC01503J crossref_primary_10_1021_acsami_4c12015 crossref_primary_10_1039_D1EE01341F crossref_primary_10_1016_j_cej_2024_154898 crossref_primary_10_1021_acs_langmuir_3c02598 crossref_primary_10_1016_j_jpowsour_2020_228375 crossref_primary_10_1002_cssc_202100872 crossref_primary_10_1088_2515_7655_ac1204 crossref_primary_10_1002_pol_20210573 crossref_primary_10_1039_D0NR04922K crossref_primary_10_1016_j_jcis_2024_07_070 crossref_primary_10_1088_2631_8695_ad708f crossref_primary_10_1016_j_cej_2020_125679 crossref_primary_10_1016_j_nanoen_2021_106591 crossref_primary_10_1002_anie_202011484 crossref_primary_10_1039_D1SE00341K crossref_primary_10_1002_celc_202400586 crossref_primary_10_1016_j_matpr_2021_11_369 crossref_primary_10_3390_cryst13071002 crossref_primary_10_1016_j_flatc_2023_100516 crossref_primary_10_1016_j_jallcom_2023_169076 crossref_primary_10_1016_j_electacta_2023_143308 crossref_primary_10_1039_D4RA01800A crossref_primary_10_1016_j_pmatsci_2023_101128 crossref_primary_10_1016_j_cis_2021_102562 crossref_primary_10_1007_s11581_024_05902_w crossref_primary_10_1007_s12209_022_00340_z crossref_primary_10_1021_acs_jpcc_1c03984 crossref_primary_10_1039_D4CC05551A crossref_primary_10_1002_aenm_202001128 crossref_primary_10_1002_batt_202400471 crossref_primary_10_1021_acs_energyfuels_2c00193 crossref_primary_10_3390_en14237928 crossref_primary_10_1016_j_ensm_2020_07_027 crossref_primary_10_1002_ange_202011484 crossref_primary_10_1016_j_est_2024_112986 crossref_primary_10_1016_j_jallcom_2020_155642 crossref_primary_10_1016_j_jpowsour_2023_233475 crossref_primary_10_1021_acsaelm_3c01355 crossref_primary_10_1002_smll_202309809 crossref_primary_10_3390_batteries8030025 crossref_primary_10_1016_j_ensm_2024_103538 crossref_primary_10_1016_j_comptc_2024_114955 crossref_primary_10_1039_D2CC06154F crossref_primary_10_1002_smtd_202000439 crossref_primary_10_1039_D3GC05027K crossref_primary_10_1016_j_matchemphys_2019_122568 crossref_primary_10_1063_5_0011886 crossref_primary_10_1088_2399_1984_abacd3 crossref_primary_10_1016_j_nxener_2024_100097 crossref_primary_10_1016_j_nxmate_2024_100323 crossref_primary_10_4028_www_scientific_net_MSF_1044_25 crossref_primary_10_1016_j_scib_2024_09_032 crossref_primary_10_1039_D0TA07436E crossref_primary_10_1080_15567036_2024_2401118 crossref_primary_10_1007_s10008_024_06136_6 crossref_primary_10_1039_D3NR01346D crossref_primary_10_1002_aelm_202000967 crossref_primary_10_1016_j_mtcomm_2024_108653 crossref_primary_10_1016_j_enmm_2020_100298 crossref_primary_10_3390_nano13081349 crossref_primary_10_1016_j_ensm_2020_11_030 crossref_primary_10_3390_nano12193529 crossref_primary_10_1021_acssuschemeng_2c00047 crossref_primary_10_1007_s10853_023_08602_4 crossref_primary_10_1016_j_actamat_2024_119964 crossref_primary_10_1039_D0NR00626B crossref_primary_10_1515_revic_2024_0128 crossref_primary_10_1007_s10854_024_13583_4 crossref_primary_10_3390_ma16216869 crossref_primary_10_1016_j_jcis_2024_10_143 crossref_primary_10_1021_acs_energyfuels_4c03525 crossref_primary_10_1515_ntrev_2022_0042 crossref_primary_10_1016_j_electacta_2023_142521 crossref_primary_10_1016_j_ensm_2023_103022 crossref_primary_10_1007_s12598_023_02607_3 crossref_primary_10_1515_ntrev_2022_0039 crossref_primary_10_1002_cey2_600 crossref_primary_10_1016_j_jallcom_2024_175014 crossref_primary_10_1016_j_mtener_2022_101115 crossref_primary_10_1007_s12598_023_02550_3 crossref_primary_10_1039_D2TA03264C crossref_primary_10_1002_aenm_202303338 crossref_primary_10_1038_s41467_023_36957_4 crossref_primary_10_59761_RCR5100 crossref_primary_10_1002_aenm_202000804 crossref_primary_10_1007_s40243_022_00208_1 crossref_primary_10_1016_j_energy_2019_116675 crossref_primary_10_1016_j_pmatsci_2023_101166 crossref_primary_10_3390_batteries9040235 crossref_primary_10_1039_D3EE02082G crossref_primary_10_1088_1361_6528_ab6480 crossref_primary_10_1002_anie_201913368 crossref_primary_10_3390_batteries9050271 crossref_primary_10_1002_adma_202004039 crossref_primary_10_1002_sstr_202100132 crossref_primary_10_1021_acsami_2c06502 crossref_primary_10_1007_s44246_024_00122_3 crossref_primary_10_1016_j_electacta_2023_143077 crossref_primary_10_1002_smll_202206126 crossref_primary_10_1002_bkcs_12687 crossref_primary_10_1016_j_jcis_2024_03_107 crossref_primary_10_1002_cey2_182 crossref_primary_10_3389_fenrg_2023_1266653 crossref_primary_10_1016_j_mtchem_2021_100675 crossref_primary_10_1002_ente_202401484 crossref_primary_10_1002_anie_202003386 crossref_primary_10_1021_acs_jpcc_3c08083 |
Cites_doi | 10.1021/jacs.5b06809 10.1016/j.elecom.2012.05.017 10.1021/acsnano.8b03615 10.1021/acsnano.7b08161 10.1039/c2cc32730a 10.1039/C4TA00041B 10.1016/j.carbon.2017.12.126 10.1021/acs.nanolett.6b05280 10.1016/j.cej.2017.09.088 10.1016/j.nanoen.2018.03.060 10.1002/adfm.201601323 10.1002/advs.201700298 10.1016/j.cej.2017.01.020 10.1021/acs.nanolett.7b01485 10.1039/C8CS00324F 10.1126/science.aao2808 10.1002/adma.201801334 10.1002/smll.201870074 10.1002/aenm.201803215 10.1016/j.nanoen.2018.01.030 10.1021/nn503921j 10.1016/j.nanoen.2015.07.021 10.1021/nl404637q 10.1039/c2ee22864e 10.1002/adma.201606860 10.1016/j.jpowsour.2017.05.064 10.1038/ncomms7544 10.1002/smtd.201900005 10.1002/aenm.201401123 10.1039/C8CC00649K 10.1021/cm202076g 10.1039/C5EE00878F 10.1002/aenm.201601519 10.1016/j.carbon.2018.01.095 10.1016/j.elecom.2015.09.002 10.1002/aenm.201800108 10.1039/c3ta15248k 10.1021/acs.nanolett.5b03903 10.1002/aenm.201702869 10.1021/nn4025674 10.1039/C3TA13592F 10.1021/acs.accounts.5b00482 10.1021/acs.accounts.8b00084 10.1021/acsenergylett.8b01062 10.1002/aenm.201601526 10.1039/C6CS00776G 10.1002/anie.201803511 10.1016/j.carbon.2015.09.091 10.1002/adma.201700622 10.1021/jp407322k 10.1002/adma.201306314 10.1002/chem.201402511 10.1002/adma.201201205 10.1021/acscentsci.5b00329 10.1002/celc.201800016 10.1002/aenm.201703082 10.1016/j.nanoen.2019.03.020 10.1039/C7CC00301C 10.1038/nchem.2085 10.1016/j.nanoen.2018.08.035 10.1039/c3cc40448j 10.1016/j.carbon.2017.05.072 10.1039/C5EE02051D 10.1007/s12274-016-1408-z 10.1021/acs.jpcc.5b10366 10.1002/adma.201970239 10.1021/nl303305c 10.1002/adma.201504412 10.1002/celc.201700060 10.1007/s40820-017-0165-1 10.1002/adfm.201802099 10.1002/adma.201400794 10.1021/acsami.5b05509 10.1002/cssc.201200680 10.1016/j.jpowsour.2014.04.012 10.1002/cssc.201701664 10.1002/adma.201603212 10.1016/j.jpowsour.2015.05.116 10.1021/acsenergylett.8b00312 10.1016/j.nanoen.2017.02.043 10.1039/C5TA00614G 10.1002/adma.201305638 10.1021/acsami.7b16580 10.1002/aenm.201801840 10.1038/ncomms7929 10.1038/ncomms13318 10.1016/j.carbon.2012.12.072 10.1002/adma.201702372 10.1021/acscentsci.5b00328 10.1016/j.electacta.2014.11.009 10.1021/jp4063753 10.1021/acs.chemmater.6b01988 10.1021/acs.nanolett.5b03667 10.1039/C5TA05781G 10.1002/adfm.201505548 10.1021/acsenergylett.8b01761 10.1016/j.carbon.2018.04.003 10.1002/aenm.201602898 10.1021/acsanm.8b00045 10.1016/j.nantod.2018.12.003 10.1021/acsnano.8b07172 10.1002/celc.201800941 10.1149/1.1393348 10.1021/nl400998t 10.1016/j.cej.2017.10.007 10.1038/s41467-017-01202-2 10.1002/aenm.201800855 10.1021/acsami.7b06230 10.1016/j.carbon.2015.12.066 10.1021/nl901670t 10.1002/aenm.201300139 10.1007/s12274-016-1346-9 10.1002/aenm.201702724 10.1039/C4TA05451B 10.1002/aenm.201803648 10.1021/jacs.9b03467 10.1007/s12274-017-1671-7 10.1016/j.cej.2017.09.081 10.1016/0167-2738(88)90351-7 10.1126/sciadv.aat1687 10.1021/acs.nanolett.6b00942 10.1002/aenm.201700403 10.1002/adma.201800658 10.1016/j.nanoen.2017.09.052 10.1002/anie.201510978 10.1002/cssc.201800512 10.1021/acs.nanolett.7b00083 10.1002/smll.201700767 10.1016/j.cej.2017.09.110 10.1016/j.chempr.2018.03.006 10.1038/ncomms5033 10.1039/C5EE02589C 10.1016/j.jpowsour.2013.11.083 10.1126/science.1241488 10.1039/C6TA00950F 10.1002/anie.201410376 10.1002/adma.201704670 10.1016/S0013-4686(02)00250-5 10.1016/j.jpowsour.2014.06.150 10.1002/cssc.201301394 10.1016/j.nanoen.2016.06.005 10.1021/acs.chemrev.8b00642 10.1038/natrevmats.2016.98 10.1039/c3cc45254a 10.1038/nnano.2015.194 10.1021/acsaem.8b00354 10.1002/aenm.201200166 10.1002/adma.201605607 10.1016/j.nanoen.2015.03.017 10.1039/C5EE02074C 10.1039/C7TA01936J 10.1039/C5CC10585D 10.1016/j.nanoen.2017.04.007 10.1021/jp507116t 10.1002/aenm.201702383 10.1002/chem.201702225 10.1021/acs.nanolett.5b01969 10.1021/acs.chemmater.5b02348 10.1038/s41560-017-0014-y 10.1149/1.2221153 10.1016/j.mattod.2018.12.040 10.1021/acsnano.7b00557 10.1021/am501144q 10.1021/nn404640c 10.1002/advs.201800519 10.1002/adma.201801013 10.1002/adma.201503015 10.1002/anie.201308354 10.1021/acsnano.7b07132 10.1016/j.nanoen.2015.05.015 10.1039/C4TA06825D 10.1016/j.elecom.2012.01.002 10.1016/j.carbon.2017.11.054 10.1021/acs.chemmater.5b00616 10.1002/aenm.201200346 10.1021/acsnano.5b00376 10.1149/2.037211jes 10.1002/chem.201705855 10.1002/adma.201405370 10.1016/j.electacta.2015.12.136 10.1021/acs.chemmater.8b00645 10.1021/acs.jpclett.5b00868 10.1021/acsami.5b04338 10.1021/nn406156b 10.1038/nenergy.2017.105 10.1002/aenm.201801514 10.1021/acsnano.5b07081 10.1039/C7TA01634D 10.1016/j.nanoen.2019.04.030 10.1002/aenm.201100494 10.1021/jz5002743 10.1016/j.jpowsour.2016.03.060 10.1002/aenm.201602778 10.1002/smll.201703576 10.1016/j.jpowsour.2016.06.017 10.1021/acsenergylett.9b00822 10.1021/jz2012066 10.1038/s41467-017-00211-5 10.1016/j.carbon.2018.04.031 10.1021/ja310347x 10.1016/j.jechem.2016.04.016 10.1021/acsnano.5b06958 10.1201/b19635 10.1002/aenm.201200026 10.1021/nl3016957 10.1002/aenm.201501489 10.1149/1.1379565 10.1126/sciadv.aau6264 10.1039/C4TA03365E 10.1002/adma.201804116 10.1021/acsami.6b03757 10.1039/C5TA00727E 10.1021/acs.chemmater.7b03753 10.1002/aenm.201502568 10.1038/natrevmats.2018.13 10.1021/acsami.5b00861 10.1016/j.carbon.2018.05.032 10.1016/j.ensm.2015.10.003 10.1021/acscentsci.8b00437 10.1016/j.nanoen.2018.04.006 10.1021/acs.nanolett.6b01777 10.1002/anie.201209689 10.1016/j.nanoen.2015.07.010 10.1021/acs.chemmater.5b00633 10.1002/aenm.201700087 10.1016/j.nanoen.2016.02.024 10.1021/acsnano.5b04474 10.1002/adma.201102306 10.1002/adma.201204877 10.1016/j.carbon.2017.01.093 10.1021/nl404165c 10.1002/aenm.201601188 10.1039/C6EE01717G 10.1021/acsenergylett.8b00762 10.1021/jacs.5b00336 10.1016/j.cej.2018.01.098 10.1016/j.carbon.2018.06.036 10.1002/aenm.201602894 10.1039/C7TA06577A 10.1038/nmat4170 10.1002/aenm.201700959 10.1016/j.nanoen.2014.12.012 10.1002/aenm.201703217 10.1039/C7EE01628J 10.1039/C5EE03262H 10.1002/aenm.201702769 10.1016/j.nanoen.2015.10.034 10.1021/ja508154e 10.1016/j.nanoen.2017.08.002 10.1002/anie.201802672 10.1016/j.nanoen.2015.03.041 10.1002/aenm.201703268 10.1002/adma.201803621 10.1016/j.electacta.2015.06.039 10.1002/adma.201601723 10.1039/C7TA02689G 10.1002/adma.201304962 10.1002/anie.201403734 10.1038/srep02671 10.1002/adfm.201402984 10.1016/j.nanoen.2015.04.018 10.1016/j.jpowsour.2013.06.057 10.1021/cm5039649 10.1021/acsenergylett.8b00609 10.1016/j.elecom.2014.04.014 10.1021/acsnano.7b01165 10.1016/j.elecom.2011.09.020 10.1002/advs.201700146 10.1002/anie.201400032 10.1016/j.jpowsour.2012.10.014 10.1016/j.nanoen.2016.08.044 10.1149/2.003208jes 10.1002/adma.201702410 10.1002/aenm.201600659 10.1016/j.carbon.2013.01.064 10.1007/s12274-017-1756-3 10.1021/acsami.5b04225 10.1038/ncomms2481 10.1002/adfm.201200691 10.1038/nnano.2017.16 10.1039/C8TA02695E 10.1002/adma.201802745 10.1002/aenm.201703238 10.1039/C7RA06777A 10.1063/1.5013132 10.1038/ncomms2878 10.1021/acsami.7b05687 10.1021/acs.accounts.5b00114 10.1002/advs.201500195 10.1002/adma.201505918 10.1039/C7EE03016A 10.1021/am507679x 10.1021/cr500192f 10.1021/acsami.9b05635 10.1021/acsnano.8b00643 10.1039/C4TA05611F 10.1038/nmat2725 10.1016/j.pmatsci.2018.04.006 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enchem.2019.100012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-7780 |
ExternalDocumentID | 10_1016_j_enchem_2019_100012 |
GroupedDBID | 0R~ AABXZ AAEDW AAHCO AAKOC AALRI AAQFI AATTM AAXKI AAXUO AAYWO AAYXX ABJNI ACDAQ ACRLP ACVFH ADCNI AEBSH AEIPS AEUPX AEZYN AFJKZ AFPUW AFRZQ AFXIZ AFZHZ AGCQF AGRNS AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BNPGV CITATION EBS EFJIC EJD FDB FYGXN KOM M41 ROL SPC SPCBC SSG SSH SSK SSM SSR T5K ~G- |
ID | FETCH-LOGICAL-c293t-854f119c2b0b260363c814ff55998ace297fe1f7fa55de39c588796ad03f4ce03 |
ISSN | 2589-7780 |
IngestDate | Thu Apr 24 23:16:00 EDT 2025 Tue Jul 01 04:25:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c293t-854f119c2b0b260363c814ff55998ace297fe1f7fa55de39c588796ad03f4ce03 |
ORCID | 0000-0002-6781-2826 0000-0002-1123-5935 0000-0003-4574-9720 |
OpenAccessLink | http://hdl.handle.net/10754/662450 |
ParticipantIDs | crossref_primary_10_1016_j_enchem_2019_100012 crossref_citationtrail_10_1016_j_enchem_2019_100012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-00 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-00 |
PublicationDecade | 2010 |
PublicationTitle | EnergyChem |
PublicationYear | 2019 |
References | Lu (10.1016/j.enchem.2019.100012_bib0144) 2016; 190 Kim (10.1016/j.enchem.2019.100012_bib0054) 2015; 25 Cha (10.1016/j.enchem.2019.100012_bib0204) 2014; 2 Ge (10.1016/j.enchem.2019.100012_bib0015) 1988; 28–30 Qian (10.1016/j.enchem.2019.100012_bib0161) 2019; 60 Lian (10.1016/j.enchem.2019.100012_bib0302) 2017; 40 Kim (10.1016/j.enchem.2019.100012_bib0028a) 2013; 25 Guo (10.1016/j.enchem.2019.100012_bib0272) 2017; 11 Abel (10.1016/j.enchem.2019.100012_bib0041) 2013; 117 Bommier (10.1016/j.enchem.2019.100012_bib0018) 2018; 97 Chen (10.1016/j.enchem.2019.100012_bib0181) 2017; 120 Luo (10.1016/j.enchem.2019.100012_bib0312) 2015; 13 Kim (10.1016/j.enchem.2019.100012_bib0120) 2014; 20 Chen (10.1016/j.enchem.2019.100012_bib0267) 2017; 17 Er (10.1016/j.enchem.2019.100012_bib0285) 2014; 6 Hu (10.1016/j.enchem.2019.100012_bib0185) 2018; 12 Sun (10.1016/j.enchem.2019.100012_bib0162) 2018; 30 Su (10.1016/j.enchem.2019.100012_bib0217) 2013; 49 Zhang (10.1016/j.enchem.2019.100012_bib0275) 2014; 7 Xue (10.1016/j.enchem.2019.100012_bib0245) 2018; 134 Yao (10.1016/j.enchem.2019.100012_bib0065) 2018; 9 Zhang (10.1016/j.enchem.2019.100012_bib0117) 2019; 11 Chao (10.1016/j.enchem.2019.100012_bib0177) 2018; 30 Jung (10.1016/j.enchem.2019.100012_bib0044) 2014; 5 Foix (10.1016/j.enchem.2019.100012_bib0123) 2016; 28 Li (10.1016/j.enchem.2019.100012_bib0059) 2017; 7 Komaba (10.1016/j.enchem.2019.100012_bib0145) 2012; 21 Luo (10.1016/j.enchem.2019.100012_bib0013) 2017; 7 Qin (10.1016/j.enchem.2019.100012_bib0231) 2017; 9 Chen (10.1016/j.enchem.2019.100012_bib0176) 2017; 27 Ali (10.1016/j.enchem.2019.100012_bib0197) 2018; 30 Huang (10.1016/j.enchem.2019.100012_bib0134) 2015; 16 Kim (10.1016/j.enchem.2019.100012_bib0262) 2015; 16 Li (10.1016/j.enchem.2019.100012_bib0235) 2014; 26 Zhang (10.1016/j.enchem.2019.100012_bib0305) 2017; 29 Kim (10.1016/j.enchem.2019.100012_bib0005) 2018; 8 Cao (10.1016/j.enchem.2019.100012_bib0077) 2012; 12 Lao (10.1016/j.enchem.2019.100012_bib0048) 2017; 29 Zhu (10.1016/j.enchem.2019.100012_bib0125) 2013; 13 Sun (10.1016/j.enchem.2019.100012_bib0246) 2011; 13 Jian (10.1016/j.enchem.2019.100012_bib0071) 2015; 137 Zhang (10.1016/j.enchem.2019.100012_bib0156) 2017; 29 Gao (10.1016/j.enchem.2019.100012_bib0183) 2018; 12 Guo (10.1016/j.enchem.2019.100012_bib0249) 2017; 5 Liu (10.1016/j.enchem.2019.100012_bib0269) 2016; 16 Wang (10.1016/j.enchem.2019.100012_bib0223) 2018; 332 Yin (10.1016/j.enchem.2019.100012_bib0157) 2017; 10 Zhu (10.1016/j.enchem.2019.100012_bib0257) 2018; 14 Sun (10.1016/j.enchem.2019.100012_bib0119) 2018; 8 Liu (10.1016/j.enchem.2019.100012_bib0153) 2018; 12 Ni (10.1016/j.enchem.2019.100012_bib0045) 2018; 3 Xiao (10.1016/j.enchem.2019.100012_bib0060) 2018; 8 Bai (10.1016/j.enchem.2019.100012_bib0057) 2015; 7 He (10.1016/j.enchem.2019.100012_bib0315) 2017; 8 Yang (10.1016/j.enchem.2019.100012_bib0206) 2015; 3 Wang (10.1016/j.enchem.2019.100012_bib0131) 2016; 28 Xu (10.1016/j.enchem.2019.100012_bib0053) 2013; 3 Anji Reddy (10.1016/j.enchem.2019.100012_bib0088) 2018; 3 Li (10.1016/j.enchem.2019.100012_bib0278) 2018; 30 Wang (10.1016/j.enchem.2019.100012_bib0313) 2015; 137 Huang (10.1016/j.enchem.2019.100012_bib0012) 2018; 3 Xu (10.1016/j.enchem.2019.100012_bib0171) 2018; 28 Yang (10.1016/j.enchem.2019.100012_bib0212) 2015; 3 Simone (10.1016/j.enchem.2019.100012_bib0055) 2016; 25 Lukatskaya (10.1016/j.enchem.2019.100012_bib0296) 2017; 6 Liang (10.1016/j.enchem.2019.100012_bib0129) 2015; 8 Li (10.1016/j.enchem.2019.100012_bib0260) 2018; 8 Duan (10.1016/j.enchem.2019.100012_bib0317) 2019; 13 Ming (10.1016/j.enchem.2019.100012_bib0324) 2019; 4 Bai (10.1016/j.enchem.2019.100012_bib0089) 2018; 8 Ni (10.1016/j.enchem.2019.100012_bib0192) 2017; 29 Zou (10.1016/j.enchem.2019.100012_bib0210) 2016; 325 Qiu (10.1016/j.enchem.2019.100012_bib0087) 2017; 7 Li (10.1016/j.enchem.2019.100012_bib0224) 2015; 15 Huang (10.1016/j.enchem.2019.100012_bib0303) 2018; 46 Patra (10.1016/j.enchem.2019.100012_bib0225) 2016; 28 Komaba (10.1016/j.enchem.2019.100012_bib0072) 2015; 60 Okamoto (10.1016/j.enchem.2019.100012_bib0074) 2014; 118 Sheng (10.1016/j.enchem.2019.100012_bib0241) 2017; 5 Ding (10.1016/j.enchem.2019.100012_bib0068) 2013; 7 Tang (10.1016/j.enchem.2019.100012_bib0242) 2017; 41 Peng (10.1016/j.enchem.2019.100012_bib0306) 2016; 9 Wang (10.1016/j.enchem.2019.100012_bib0252) 2018; 24 Cui (10.1016/j.enchem.2019.100012_bib0155) 2009; 9 Dou (10.1016/j.enchem.2019.100012_bib0108) 2019; 23 Li (10.1016/j.enchem.2019.100012_bib0135) 2017; 29 Xiong (10.1016/j.enchem.2019.100012_bib0175) 2017; 10 Song (10.1016/j.enchem.2019.100012_bib0105) 2018; 8 Bao (10.1016/j.enchem.2019.100012_bib0297) 2018; 8 Li (10.1016/j.enchem.2019.100012_bib0169) 2018; 30 Zhu (10.1016/j.enchem.2019.100012_bib0164) 2019; 5 Sun (10.1016/j.enchem.2019.100012_bib0154) 2015; 10 Anasori (10.1016/j.enchem.2019.100012_bib0282) 2017; 2 Dou (10.1016/j.enchem.2019.100012_bib0092) 2018; 6 Li (10.1016/j.enchem.2019.100012_bib0122) 2015; 48 Xie (10.1016/j.enchem.2019.100012_bib0182) 2018; 3 Lukatskaya (10.1016/j.enchem.2019.100012_bib0287) 2013; 341 Dall'Agnese (10.1016/j.enchem.2019.100012_bib0300) 2015; 6 Xu (10.1016/j.enchem.2019.100012_bib0138) 2016; 16 Li (10.1016/j.enchem.2019.100012_bib0100) 2016; 99 Bauer (10.1016/j.enchem.2019.100012_bib0007) 2018; 8 Wang (10.1016/j.enchem.2019.100012_bib0067) 2013; 57 Xu (10.1016/j.enchem.2019.100012_bib0201) 2013; 49 Zhang (10.1016/j.enchem.2019.100012_bib0265) 2015; 5 Pang (10.1016/j.enchem.2019.100012_bib0281) 2019; 48 Wang (10.1016/j.enchem.2019.100012_bib0310) 2014; 53 Goktas (10.1016/j.enchem.2019.100012_bib0080) 2018; 8 Zhao (10.1016/j.enchem.2019.100012_bib0293) 2017; 29 Li (10.1016/j.enchem.2019.100012_bib0082) 2017; 53 Chen (10.1016/j.enchem.2019.100012_bib0133) 2019; 30 Luo (10.1016/j.enchem.2019.100012_bib0052) 2016; 49 Yan (10.1016/j.enchem.2019.100012_bib0203) 2014; 269 Zhang (10.1016/j.enchem.2019.100012_bib0033) 2018; 30 Qian (10.1016/j.enchem.2019.100012_bib0040) 2012; 48 Kim (10.1016/j.enchem.2019.100012_bib0283) 2019; 60 Zhang (10.1016/j.enchem.2019.100012_bib0006) 2019 Abouimrane (10.1016/j.enchem.2019.100012_bib0023) 2012; 5 Xiong (10.1016/j.enchem.2019.100012_bib0019) 2011; 2 Yoon (10.1016/j.enchem.2019.100012_bib0078) 2017; 7 Liu (10.1016/j.enchem.2019.100012_bib0220) 2015; 16 Zeng (10.1016/j.enchem.2019.100012_bib0304) 2018; 57 Liu (10.1016/j.enchem.2019.100012_bib0132) 2017; 17 Park (10.1016/j.enchem.2019.100012_bib0022) 2012; 24 Lakshmi (10.1016/j.enchem.2019.100012_bib0184) 2018; 131 Naguib (10.1016/j.enchem.2019.100012_bib0280) 2011; 23 Jiang (10.1016/j.enchem.2019.100012_bib0173) 2016; 9 Wu (10.1016/j.enchem.2019.100012_bib0205) 2014; 251 Balogun (10.1016/j.enchem.2019.100012_bib0014) 2016; 98 Wang (10.1016/j.enchem.2019.100012_bib0314) 2015; 8 Liang (10.1016/j.enchem.2019.100012_bib0323) 2017; 35 Pan (10.1016/j.enchem.2019.100012_bib0186) 2018; 12 Wu (10.1016/j.enchem.2019.100012_bib0214) 2018; 5 Beda (10.1016/j.enchem.2019.100012_bib0083) 2018; 139 Li (10.1016/j.enchem.2019.100012_bib0263) 2016; 28 Dirican (10.1016/j.enchem.2019.100012_bib0221) 2015; 7 Zhao (10.1016/j.enchem.2019.100012_bib0112) 2019; 9 Wang (10.1016/j.enchem.2019.100012_bib0096) 2018; 342 Liu (10.1016/j.enchem.2019.100012_bib0172) 2015; 8 Fan (10.1016/j.enchem.2019.100012_bib0146) 2015; 174 Zhao (10.1016/j.enchem.2019.100012_bib0103) 2019; 9 Zhao (10.1016/j.enchem.2019.100012_bib0254) 2015; 27 Kurra (10.1016/j.enchem.2019.100012_bib0299) 2018; 3 Xu (10.1016/j.enchem.2019.100012_bib0069) 2015; 27 Li (10.1016/j.enchem.2019.100012_bib0137) 2016; 16 Ming (10.1016/j.enchem.2019.100012_bib0270) 2018; 53 He (10.1016/j.enchem.2019.100012_bib0230) 2017; 23 Qian (10.1016/j.enchem.2019.100012_bib0234) 2014; 14 Zhu (10.1016/j.enchem.2019.100012_bib0094) 2018; 130 Larcher (10.1016/j.enchem.2019.100012_bib0002) 2015; 7 Doeff (10.1016/j.enchem.2019.100012_bib0051) 2006; 140 Bommier (10.1016/j.enchem.2019.100012_bib0141) 2018; 14 Wang (10.1016/j.enchem.2019.100012_bib0200) 2018; 30 Kim (10.1016/j.enchem.2019.100012_bib0031) 2015; 8 Qin (10.1016/j.enchem.2019.100012_bib0227) 2017; 5 Darwiche (10.1016/j.enchem.2019.100012_bib0026) 2012; 134 Jin (10.1016/j.enchem.2019.100012_bib0010) 2017; 7 Ger (10.1016/j.enchem.2019.100012_bib0110) 2015; 3 Kim (10.1016/j.enchem.2019.100012_bib0261) 2012; 2 Yu (10.1016/j.enchem.2019.100012_bib0286) 2016; 120 Zhang (10.1016/j.enchem.2019.100012_bib0240) 2016; 6 Cho (10.1016/j.enchem.2019.100012_bib0273) 2017; 10 Wu (10.1016/j.enchem.2019.100012_bib0237) 2014; 2 Chen (10.1016/j.enchem.2019.100012_bib0178) 2018; 14 Magasinski (10.1016/j.enchem.2019.100012_bib0046) 2010; 9 Jin (10.1016/j.enchem.2019.100012_bib0091) 2018; 1 Zhang (10.1016/j.enchem.2019.100012_bib0218) 2017; 17 Zhu (10.1016/j.enchem.2019.100012_bib0256) 2014; 53 Zhou (10.1016/j.enchem.2019.100012_bib0136) 2017; 11 Li (10.1016/j.enchem.2019.100012_bib0058) 2016; 6 He (10.1016/j.enchem.2019.100012_bib0130) 2014; 14 Xie (10.1016/j.enchem.2019.100012_bib0029) 2014; 8 Raccichini (10.1016/j.enchem.2019.100012_bib0111) 2015; 14 Chen (10.1016/j.enchem.2019.100012_bib0170a) 2018; 30 Chen (10.1016/j.enchem.2019.100012_bib0228) 2017; 5 Moriwake (10.1016/j.enchem.2019.100012_bib0079) 2017; 7 Li (10.1016/j.enchem.2019.100012_bib0180) 2015; 3 Dai (10.1016/j.enchem.2019.100012_bib0148) 2014; 263 Ma (10.1016/j.enchem.2019.100012_bib0179) 2018; 57 Li (10.1016/j.enchem.2019.100012_bib0066) 2016; 2 Eames (10.1016/j.enchem.2019.100012_bib0284) 2014; 136 Zhao (10.1016/j.enchem.2019.100012_bib0021) 2012; 2 Lee (10.1016/j.enchem.2019.100012_bib0160) 2019; 119 Xu (10.1016/j.enchem.2019.100012_bib0188) 2018; 30 Qiang (10.1016/j.enchem.2019.100012_bib0266) 2017; 116 Hou (10.1016/j.enchem.2019.100012_bib0004) 2017; 7 Zhao (10.1016/j.enchem.2019.100012_bib0276) 2015; 3 Lim (10.1016/j.enchem.2019.100012_bib0191) 2016; 26 Ao (10.1016/j.enchem.2019.100012_bib0229) 2017; 359 Datta (10.1016/j.enchem.2019.100012_bib0127) 2013; 225 Li (10.1016/j.enchem.2019.100012_bib0198) 2018; 4 Yabuuchi (10.1016/j.enchem.2019.100012_bib0009) 2014; 114 Xu (10.1016/j.enchem.2019.100012_bib0075) 2017; 4 Fang (10.1016/j.enchem.2019.100012_bib0011) 2018; 4 Chen (10.1016/j.enchem.2019.100 |
References_xml | – volume: 137 start-page: 11566 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0071 article-title: Carbon electrodes for K-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06809 – volume: 13 start-page: 2473 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0317 article-title: Semiconducting crystalline two-dimensional polyimide nanosheets with superior sodium storage properties publication-title: ACS Nano – volume: 21 start-page: 65 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0145 article-title: Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.05.017 – volume: 12 start-page: 8323 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0153 article-title: Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes publication-title: ACS Nano doi: 10.1021/acsnano.8b03615 – volume: 12 start-page: 1592 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0185 article-title: Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage publication-title: ACS Nano doi: 10.1021/acsnano.7b08161 – volume: 48 start-page: 7070 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0040 article-title: High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries publication-title: Chem. Commun. doi: 10.1039/c2cc32730a – volume: 9 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0065 article-title: Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage publication-title: Adv. Energy Mater. – volume: 2 start-page: 5182 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0204 article-title: Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00041B – volume: 130 start-page: 145 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0094 article-title: Engineering capacitive contribution in nitrogen-doped carbon nanofiber films enabling high performance sodium storage publication-title: Carbon N Y doi: 10.1016/j.carbon.2017.12.126 – volume: 17 start-page: 1302 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0218 article-title: Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05280 – volume: 332 start-page: 260 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0258 article-title: Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.088 – volume: 48 start-page: 526 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0259 article-title: Superelastic 3D few-layer MoS2/carbon framework heterogeneous electrodes for highly reversible sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.060 – volume: 26 start-page: 5019 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0196 article-title: Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601323 – volume: 4 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0047 article-title: Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201700298 – volume: 315 start-page: 101 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0049 article-title: Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.01.020 – volume: 17 start-page: 3907 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0267 article-title: Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: from rational synthesis to in situ probing publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01485 – volume: 48 start-page: 72 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0281 article-title: Applications of 2D MXenes in energy conversion and storage systems publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00324F – volume: 2 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0036 article-title: Graphitic carbon materials for advanced sodium-ion batteries publication-title: Small Methods – volume: 358 start-page: 1400 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0050 article-title: The nanoscale circuitry of battery electrodes publication-title: Science doi: 10.1126/science.aao2808 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0162 article-title: Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.201801334 – volume: 14 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0178 article-title: Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries publication-title: Small doi: 10.1002/smll.201870074 – volume: 9 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0112 article-title: Partially reduced holey graphene oxide as high performance anode for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803215 – volume: 46 start-page: 20 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0303 article-title: Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.030 – volume: 8 start-page: 9606 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0029 article-title: Prediction and characterization of mxene nanosheet anodes for non-lithium-ion batteries publication-title: ACS Nano doi: 10.1021/nn503921j – volume: 16 start-page: 479 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0134 article-title: Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.021 – volume: 14 start-page: 1865 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0234 article-title: Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries publication-title: Nano Lett. doi: 10.1021/nl404637q – volume: 5 start-page: 9632 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0023 article-title: Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22864e – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0109 article-title: Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon publication-title: Adv. Mater. doi: 10.1002/adma.201606860 – volume: 359 start-page: 340 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0229 article-title: Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.064 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0291 article-title: Atomic cobalt covalently engineered interlayers for superior lithium-ion storage publication-title: Adv. Mater. – volume: 6 start-page: 6544 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0039 article-title: Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors publication-title: Nat. Commun. doi: 10.1038/ncomms7544 – volume: 3 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0321 article-title: 3D laser scribed graphene derived from carbon nanospheres : an ultrahigh-power electrode for supercapacitors publication-title: Small Methods doi: 10.1002/smtd.201900005 – volume: 5 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0265 article-title: 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401123 – volume: 54 start-page: 4533 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0295 article-title: Alkali-induced crumpling of Ti3C2T: x (MXene) to form 3D porous networks for sodium ion storage publication-title: Chem. Commun. doi: 10.1039/C8CC00649K – volume: 23 start-page: 4109 year: 2011 ident: 10.1016/j.enchem.2019.100012_bib0020 article-title: N.aTiO: lowest voltage ever reported oxide insertion electrode for sodium ion batteries publication-title: Chem. Mater. doi: 10.1021/cm202076g – volume: 8 start-page: 2954 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0129 article-title: Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00878F – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0078 article-title: Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601519 – volume: 131 start-page: 86 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0184 article-title: Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2018.01.095 – volume: 60 start-page: 172 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0072 article-title: Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.09.002 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0106 article-title: Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800108 – volume: 2 start-page: 8431 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0236 article-title: Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes publication-title: J. Mater. Chem. A doi: 10.1039/c3ta15248k – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0033 article-title: Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient publication-title: Adv. Energy Mater. – volume: 16 start-page: 1546 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0137 article-title: Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03903 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0007 article-title: The scale-up and commercialization of nonaqueous Na-ion battery technologies publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702869 – volume: 7 start-page: 6378 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0027 article-title: Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode publication-title: ACS Nano doi: 10.1021/nn4025674 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0135 article-title: Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery publication-title: Adv. Mater. – volume: 2 start-page: 529 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0222 article-title: Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13592F – volume: 49 start-page: 231 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0052 article-title: Na-ion battery anodes: materials and electrochemistry publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00482 – volume: 51 start-page: 1609 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0114 article-title: Laser-induced graphene publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00084 – volume: 17 start-page: 1302 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0232 article-title: Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05280 – year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0279 – volume: 3 start-page: 2094 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0299 article-title: Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01062 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0013 article-title: Ultrathin surface coating enables the stable sodium metal anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601526 – volume: 46 start-page: 3529 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0081 article-title: Sodium-ion batteries: present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 57 start-page: 8540 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0304 article-title: Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803511 – volume: 98 start-page: 162 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0014 article-title: A review of carbon materials and their composites with alloy metals for sodium ion battery anodes publication-title: Carbon N Y doi: 10.1016/j.carbon.2015.09.091 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0048 article-title: Alloy-based anode materials toward advanced sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201700622 – volume: 117 start-page: 18885 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0041 article-title: Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material publication-title: J. Phys. Chem. C. doi: 10.1021/jp407322k – volume: 26 start-page: 3854 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0239 article-title: Layered SnS2-reduced graphene oxide composite - a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material publication-title: Adv. Mater. doi: 10.1002/adma.201306314 – volume: 20 start-page: 11980 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0120 article-title: High-capacity anode materials for sodium-ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.201402511 – volume: 24 start-page: 3562 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0022 article-title: Sodium terephthalate as an organic anode material for sodium ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201201205 – volume: 1 start-page: 516 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0064 article-title: Electrochemically expandable soft carbon as anodes for Na-ion batteries publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00329 – volume: 5 start-page: 811 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0251 article-title: Tin-assisted Sb2S3 nanoparticles uniformly grafted on graphene effectively improves sodium-ion storage performance publication-title: ChemElectroChem doi: 10.1002/celc.201800016 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0105 article-title: Interphases in sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703082 – volume: 14 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0257 article-title: Penne-like MoS2/carbon nanocomposite as anode for sodium-ion-based dual-ion battery publication-title: Small – volume: 60 start-page: 179 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0283 article-title: MXetronics: electronic and photonic applications of MXenes publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.020 – volume: 53 start-page: 2610 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0082 article-title: Hard carbon anodes of sodium-ion batteries: undervalued rate capability publication-title: Chem. Commun. doi: 10.1039/C7CC00301C – volume: 7 start-page: 19 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0002 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem. doi: 10.1038/nchem.2085 – volume: 53 start-page: 11 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0270 article-title: Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.035 – volume: 49 start-page: 3131 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0217 article-title: SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance publication-title: Chem. Commun. doi: 10.1039/c3cc40448j – volume: 120 start-page: 380 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0181 article-title: In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2017.05.072 – volume: 8 start-page: 2963 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0031 article-title: Sodium intercalation chemistry in graphite publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02051D – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0305 article-title: Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance publication-title: Adv. Mater. – volume: 10 start-page: 2156 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0157 article-title: Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-016-1408-z – volume: 120 start-page: 5288 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0286 article-title: Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10366 – year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0107 article-title: Rational design of carbon nanomaterials for electrochemical sodium storage and capture publication-title: Adv. Mater. doi: 10.1002/adma.201970239 – volume: 12 start-page: 5897 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0024 article-title: Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction publication-title: Nano Lett. doi: 10.1021/nl303305c – volume: 28 start-page: 2259 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0208 article-title: Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage publication-title: Adv. Mater. doi: 10.1002/adma.201504412 – volume: 4 start-page: 1560 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0307 article-title: MoS-nanosheet-decorated 2D titanium carbide (MXene) as high-performance anodes for sodium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201700060 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0297 article-title: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries publication-title: Adv. Energy Mater. – volume: 10 start-page: 12 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0253 article-title: Template-free synthesis of Sb2S3 hollow microspheres as anode materials for lithium-ion and sodium-ion batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-017-0165-1 – volume: 28 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0171 article-title: Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802099 – volume: 26 start-page: 4037 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0235 article-title: Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability publication-title: Adv. Mater. doi: 10.1002/adma.201400794 – volume: 7 start-page: 19362 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0250 article-title: One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05509 – volume: 6 start-page: 56 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0098 article-title: Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries publication-title: ChemSusChem. doi: 10.1002/cssc.201200680 – volume: 263 start-page: 276 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0148 article-title: Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.012 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0156 article-title: In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage publication-title: Adv. Mater. – volume: 11 start-page: 506 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0035 article-title: Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms publication-title: ChemSusChem doi: 10.1002/cssc.201701664 – volume: 28 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0038 article-title: Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage publication-title: Adv. Funct. Mater. – volume: 28 start-page: 9824 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0123 article-title: Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201603212 – volume: 293 start-page: 626 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0030 article-title: Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.05.116 – volume: 3 start-page: 1137 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0045 article-title: Phosphorus: an anode of choice for sodium ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00312 – volume: 34 start-page: 249 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0322 article-title: Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.043 – volume: 3 start-page: 8800 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0206 article-title: Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00614G – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0043 article-title: Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes publication-title: Adv. Mater. – volume: 26 start-page: 4139 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0233 article-title: Tin phosphide as a promising anode material for Na-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201305638 – volume: 10 start-page: 3581 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0268 article-title: A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16580 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0116 article-title: Lignin laser lithography: a direct-write method for fabricating 3D graphene electrodes for microsupercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801840 – volume: 6 start-page: 6929 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0209 article-title: Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling publication-title: Nat. Commun. doi: 10.1038/ncomms7929 – volume: 7 start-page: 13318 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0316 article-title: Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate publication-title: Nat. Commun. doi: 10.1038/ncomms13318 – volume: 55 start-page: 328 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0099 article-title: Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance publication-title: Carbon N Y doi: 10.1016/j.carbon.2012.12.072 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0140 article-title: Layer-Tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode publication-title: Adv. Mater. doi: 10.1002/adma.201702372 – volume: 1 start-page: 449 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0163 article-title: A highly reversible room-temperature sodium metal anode publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00328 – volume: 151 start-page: 8 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0219 article-title: Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.009 – volume: 118 start-page: 16 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0074 article-title: Density functional theory calculations of alkali metal (Li, Na, and K) graphite intercalation compounds publication-title: J. Phys. Chem. C doi: 10.1021/jp4063753 – volume: 28 start-page: 5753 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0263 article-title: Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01988 – volume: 15 start-page: 7671 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0070 article-title: Potassium ion batteries with graphitic materials publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03667 – volume: 3 start-page: 21754 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0276 article-title: Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05781G – volume: 26 start-page: 3711 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0191 article-title: High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core–shell nanoparticles and reduced graphene oxide nanocomposites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201505548 – volume: 3 start-page: 2851 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0088 article-title: Insight into sodium insertion and the storage mechanism in hard carbon publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01761 – volume: 134 start-page: 222 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0245 article-title: Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2018.04.003 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0004 article-title: Carbon anode materials for advanced sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602898 – volume: 1 start-page: 505 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0294 article-title: Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00045 – volume: 24 start-page: 81 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0115 article-title: Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications publication-title: Nano Today doi: 10.1016/j.nantod.2018.12.003 – volume: 12 start-page: 12578 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0186 article-title: Construction of MoS2/C hierarchical tubular heterostructures for high performance sodium ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.8b07172 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0177 article-title: C-plasma of hierarchical graphene survives SnS bundles for ultrastable and high volumetric Na-ion storage publication-title: Adv. Mater. – volume: 5 start-page: 3498 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0216 article-title: Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries publication-title: ChemElectroChem doi: 10.1002/celc.201800941 – volume: 147 start-page: 1271 year: 2000 ident: 10.1016/j.enchem.2019.100012_bib0017a article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 13 start-page: 3093 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0125 article-title: Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir publication-title: Nano Lett. doi: 10.1021/nl400998t – volume: 334 start-page: 932 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0308 article-title: 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.007 – volume: 8 start-page: 1172 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0315 article-title: Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries publication-title: Nat. Commun. doi: 10.1038/s41467-017-01202-2 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0090 article-title: Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800855 – volume: 9 start-page: 26797 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0231 article-title: Ultrafast ionic liquid-assisted microwave synthesis of SnO microflowers and their superior sodium-ion storage performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06230 – volume: 99 start-page: 556 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0100 article-title: Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2015.12.066 – volume: 9 start-page: 3370 year: 2009 ident: 10.1016/j.enchem.2019.100012_bib0155 article-title: Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries publication-title: Nano Lett. doi: 10.1021/nl901670t – volume: 3 start-page: 1186 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0165 article-title: Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300139 – volume: 10 start-page: 897 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0273 article-title: Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-016-1346-9 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0080 article-title: Graphite as cointercalation electrode for sodium-ion batteries: electrode dynamics and the missing solid electrolyte interphase (SEI) publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702724 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0260 article-title: Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries publication-title: Adv. Energy Mater. – volume: 3 start-page: 71 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0062 article-title: Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05451B – volume: 9 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0103 article-title: Low-Temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803648 – year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0318 article-title: Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03467 – volume: 10 start-page: 4055 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0274 article-title: Phosphorus and phosphide nanomaterials for sodium-ion batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1671-7 – volume: 332 start-page: 237 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0223 article-title: Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.081 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0278 article-title: Necklace-like structures composed of Fe3N@C yolk – shell particles as an advanced anode for sodium-ion batteries publication-title: Adv. Mater. – volume: 28–30 start-page: 1172 year: 1988 ident: 10.1016/j.enchem.2019.100012_bib0015 article-title: Electrochemical intercalation of sodium in graphite publication-title: Solid State Ion. doi: 10.1016/0167-2738(88)90351-7 – volume: 4 start-page: eaat1687 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0198 article-title: A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances publication-title: Sci. Adv. doi: 10.1126/sciadv.aat1687 – volume: 16 start-page: 3321 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0269 article-title: MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00942 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0087 article-title: Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700403 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0188 article-title: Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: toward fast sodium storage by tunable pseudocapacitance publication-title: Adv. Mater. doi: 10.1002/adma.201800658 – volume: 41 start-page: 377 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0242 article-title: Ternary tin selenium sulfide (SnSe0.5S0.5) nano alloy as the high- performance anode for lithium-ion and sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.052 – volume: 55 start-page: 3408 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0174 article-title: Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510978 – volume: 4 start-page: 2130 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0189 article-title: Synthesis of grain-like MoS2 for high-performance sodium-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201800512 – volume: 17 start-page: 2034 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0132 article-title: New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00083 – volume: 13 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0243 article-title: Tin sulfide-based nanohybrid for high-performance anode of sodium-ion batteries publication-title: Small doi: 10.1002/smll.201700767 – volume: 27 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0176 article-title: Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin tin monoxide nanoarrays publication-title: Adv. Funct. Mater. – volume: 332 start-page: 548 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0244 article-title: One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.110 – volume: 4 start-page: 1167 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0011 article-title: A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries publication-title: Chem. doi: 10.1016/j.chempr.2018.03.006 – volume: 5 start-page: 4033 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0037 article-title: Expanded graphite as superior anode for sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms5033 – volume: 8 start-page: 3160 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0314 article-title: Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02589C – volume: 251 start-page: 379 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0205 article-title: Anatase TiO2 nanoparticles for high power sodium-ion anodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.11.083 – volume: 341 start-page: 1502 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0287 article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide publication-title: Science doi: 10.1126/science.1241488 – volume: 4 start-page: 6472 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0063 article-title: Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00950F – volume: 54 start-page: 3432 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0121 article-title: The emerging chemistry of sodium ion batteries for electrochemical energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410376 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0118 article-title: A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode publication-title: Adv. Mater. doi: 10.1002/adma.201704670 – volume: 47 start-page: 3303 year: 2002 ident: 10.1016/j.enchem.2019.100012_bib0084 article-title: Electrochemical insertion of sodium into hard carbons publication-title: Electrochim. Acta. doi: 10.1016/S0013-4686(02)00250-5 – volume: 269 start-page: 37 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0203 article-title: One-pot synthesis of bicrystalline titanium dioxide spheres with a core-shell structure as anode materials for lithium and sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.150 – volume: 7 start-page: 2000 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0275 article-title: Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.201301394 – volume: 26 start-page: 513 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0298 article-title: Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.005 – volume: 119 start-page: 5416 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0160 article-title: Sodium metal anodes: emerging solutions to dendrite growth publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00642 – volume: 2 start-page: 16098 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0282 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 49 start-page: 8973 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0201 article-title: Nanocrystalline anatase TiO: a new anode material for rechargeable sodium ion batteries publication-title: Chem. Commun. doi: 10.1039/c3cc45254a – volume: 10 start-page: 980 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0154 article-title: A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.194 – volume: 1 start-page: 2295 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0091 article-title: High-performance hard carbon anode: tunable local structures and sodium storage mechanism publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00354 – volume: 2 start-page: 962 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0021 article-title: Disodium terephthalate (NA2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200166 – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0192 article-title: Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture publication-title: Adv. Mater. doi: 10.1002/adma.201605607 – volume: 13 start-page: 450 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0311 article-title: Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.03.017 – volume: 8 start-page: 3531 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0172 article-title: Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02074C – volume: 5 start-page: 10946 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0227 article-title: Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01936J – volume: 52 start-page: 4337 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0277 article-title: The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode publication-title: Chem. Commun. doi: 10.1039/C5CC10585D – volume: 35 start-page: 331 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0323 article-title: Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.007 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0199 article-title: Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode publication-title: Adv. Energy Mater. – volume: 118 start-page: 23527 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0247 article-title: An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp507116t – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0119 article-title: MoS2/Graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702383 – volume: 23 start-page: 13724 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0230 article-title: Mesoporous tin-based oxide nanospheres/reduced graphene composites as advanced anodes for lithium-ion half/full cells and sodium-ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.201702225 – volume: 15 start-page: 5888 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0086 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 27 start-page: 6022 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0202 article-title: Anatase TiO: better anode material than amorphous and rutile phases of TiO2 for na-ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02348 – volume: 2 start-page: 861 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0320a article-title: High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate publication-title: Nat. Energy doi: 10.1038/s41560-017-0014-y – volume: 140 start-page: L169 year: 2006 ident: 10.1016/j.enchem.2019.100012_bib0051 article-title: Electrochemical insertion of sodium into carbon publication-title: J. Electrochem. Soc. doi: 10.1149/1.2221153 – volume: 23 start-page: 87 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0108 article-title: Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.040 – volume: 11 start-page: 5530 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0136 article-title: Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b00557 – volume: 6 start-page: 11173 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0285 article-title: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501144q – volume: 7 start-page: 11004 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0068 article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes publication-title: ACS Nano doi: 10.1021/nn404640c – volume: 5 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0214 article-title: Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201800519 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0168 article-title: Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance publication-title: Adv. Mater. doi: 10.1002/adma.201801013 – volume: 27 start-page: 6702 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0124 article-title: Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201503015 – volume: 53 start-page: 2152 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0256 article-title: Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201308354 – volume: 11 start-page: 12658 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0272 article-title: Cobalt sulfide quantum dot embedded n S-doped-1 carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b07132 – volume: 16 start-page: 62 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0262 article-title: Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.015 – volume: 3 start-page: 5820 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0180 article-title: Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06825D – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0200 article-title: Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage publication-title: Adv. Mater. – volume: 16 start-page: 61 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0288 article-title: MXene: a promising transition metal carbide anode for lithium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.01.002 – volume: 127 start-page: 658 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0093 article-title: Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2017.11.054 – volume: 27 start-page: 3096 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0254 article-title: High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00616 – volume: 3 start-page: 128 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0053 article-title: Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200346 – volume: 9 start-page: 3254 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0150 article-title: Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b00376 – volume: 159 start-page: A1801 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0025 article-title: Reversible insertion of sodium in tin publication-title: J. Electrochem. Soc. doi: 10.1149/2.037211jes – volume: 24 start-page: 3873 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0252 article-title: SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.201705855 – volume: 27 start-page: 2042 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0069 article-title: High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams publication-title: Adv. Mater. doi: 10.1002/adma.201405370 – volume: 190 start-page: 402 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0144 article-title: Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of sb-based anode for sodium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.136 – volume: 30 start-page: 4536 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0097 article-title: Defective hard carbon anode for Na-ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00645 – volume: 6 start-page: 2305 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0300 article-title: Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00868 – volume: 7 start-page: 18387 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0221 article-title: Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04338 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0193 article-title: Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors publication-title: Adv. Mater. – volume: 8 start-page: 1759 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0255 article-title: MoS2/graphene composite paper for sodium-ion battery electrodes publication-title: ACS Nano doi: 10.1021/nn406156b – volume: 6 start-page: 17105 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0296 article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides publication-title: Nat. Energy doi: 10.1038/nenergy.2017.105 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0139 article-title: Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801514 – volume: 10 start-page: 1529 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0271 article-title: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries publication-title: ACS Nano doi: 10.1021/acsnano.5b07081 – volume: 5 start-page: 10027 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0228 article-title: Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01634D – volume: 6 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0085 article-title: Correlation between microstructure and Na storage behavior in hard carbon publication-title: Adv. Energy Mater. – volume: 60 start-page: 866 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0161 article-title: Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.030 – volume: 2 start-page: 141 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0261 article-title: The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100494 – volume: 5 start-page: 1283 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0044 article-title: Atom-level understanding of the sodiation process in silicon anode material publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5002743 – volume: 317 start-page: 153 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0128 article-title: Long-term cycling stability of porous Sn anode for sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.060 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0104 article-title: Soft carbon as anode for high-performance sodium-based dual ion full battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602778 – volume: 14 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0141 article-title: Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes publication-title: Small doi: 10.1002/smll.201703576 – volume: 325 start-page: 25 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0210 article-title: Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.017 – volume: 4 start-page: 1584 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0324 article-title: Molecular-scale interfacial model for predicting electrode performance in rechargeable batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00822 – volume: 2 start-page: 2560 year: 2011 ident: 10.1016/j.enchem.2019.100012_bib0019 article-title: Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2012066 – volume: 8 start-page: 460 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0194 article-title: Alkaline earth metal vanadates as sodium-ion battery anodes publication-title: Nat. Commun. doi: 10.1038/s41467-017-00211-5 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0005 article-title: Recent progress and perspective in electrode materials for K-ion batteries publication-title: Adv. Energy Mater. – volume: 135 start-page: 187 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0095 article-title: Ultrastable and high-capacity carbon nanofiber anode derived from pitch/polyacrylonitrile hybrid for flexible sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2018.04.031 – volume: 134 start-page: 20805 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0026 article-title: Better cycling performances of bulk Sb in na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310347x – volume: 25 start-page: 761 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0055 article-title: Hard carbon derived from cellulose as anode for sodium ion batteries: dependence of electrochemical properties on structure publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2016.04.016 – volume: 10 start-page: 3334 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0290 article-title: Sodium-ion intercalation mechanism in MXene nanosheets publication-title: ACS Nano doi: 10.1021/acsnano.5b06958 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0187 article-title: Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage publication-title: Adv. Energy Mater. doi: 10.1201/b19635 – volume: 2 start-page: 710 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0034 article-title: Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200026 – volume: 12 start-page: 3783 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0077 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0151 article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives publication-title: Adv. Energy Mater. – volume: 6 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0211 article-title: Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501489 – volume: 148 start-page: A803 year: 2001 ident: 10.1016/j.enchem.2019.100012_bib0016 article-title: The mechanisms of lithium and sodium insertion in carbon materials publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379565 – volume: 5 start-page: eaau6264 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0164 article-title: Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes publication-title: Sci. Adv. doi: 10.1126/sciadv.aau6264 – volume: 2 start-page: 16424 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0237 article-title: A tin(ii) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03365E – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0170a article-title: 1D sub-nanotubes with anatase/bronze TiO2 nanocrystal wall for high-rate and long-life sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201804116 – volume: 8 start-page: 16684 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0213 article-title: Electrospun TiO2/C nanofibers as a high-capacity and cycle-stable anode for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03757 – volume: 3 start-page: 10320 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0110 article-title: Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA00727E – volume: 30 start-page: 1505 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0215 article-title: Exfoliation of layered Na-ion anode material Na2Ti3O7 for enhanced capacity and cyclability publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03753 – volume: 6 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0167 article-title: Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502568 – volume: 3 start-page: 18013 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0001 article-title: A cost and resource analysis of sodium-ion batteries publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 7 start-page: 5598 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0057 article-title: Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00861 – volume: 137 start-page: 165 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0056 article-title: Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2018.05.032 – volume: 2 start-page: 139 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0066 article-title: Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.003 – volume: 4 start-page: 1261 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0159 article-title: Sodium-ion hybrid capacitor of high power and energy density publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00437 – volume: 48 start-page: 448 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0264 article-title: An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.006 – volume: 16 start-page: 3955 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0138 article-title: Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01777 – volume: 52 start-page: 4633 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0149 article-title: High capacity and rate capability of amorphous phosphorus for sodium ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209689 – volume: 16 start-page: 399 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0220 article-title: SnO2 coated carbon cloth with surface modification as Na-ion battery anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.010 – volume: 27 start-page: 4274 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0207 article-title: Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00633 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0010 article-title: Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700087 – volume: 22 start-page: 232 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0126 article-title: Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.024 – volume: 9 start-page: 11933 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0152 article-title: Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder publication-title: ACS Nano doi: 10.1021/acsnano.5b04474 – volume: 23 start-page: 4248 year: 2011 ident: 10.1016/j.enchem.2019.100012_bib0280 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 25 start-page: 3045 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0028a article-title: An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201204877 – volume: 116 start-page: 286 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0266 article-title: Cooperatively assembled, nitrogen-doped, ordered mesoporous carbon/iron oxide nanocomposites for low-cost, long cycle life sodium-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2017.01.093 – volume: 14 start-page: 1255 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0130 article-title: Monodisperse antimony nanocrystals for high-rate li-ion and na-ion battery anodes: nano versus bulk publication-title: Nano Lett. doi: 10.1021/nl404165c – volume: 6 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0240 article-title: SnSe2 2D anodes for advanced sodium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601188 – volume: 9 start-page: 2847 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0306 article-title: All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01717G – volume: 3 start-page: 1670 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0182 article-title: β-SnSb for sodium ion battery anodes: phase transformations responsible for enhanced cycling stability revealed by in situ TEM publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00762 – volume: 137 start-page: 3124 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0313 article-title: Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00336 – volume: 342 start-page: 52 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0096 article-title: Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.098 – volume: 139 start-page: 248 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0083 article-title: Hard carbons derived from green phenolic resins for Na-ion batteries publication-title: Carbon N Y doi: 10.1016/j.carbon.2018.06.036 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0059 article-title: Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602894 – volume: 5 start-page: 19745 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0241 article-title: Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06577A – volume: 14 start-page: 271 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0111 article-title: The role of graphene for electrochemical energy storage publication-title: Nat. Mater. doi: 10.1038/nmat4170 – volume: 7 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0292 article-title: Na-ion intercalation and charge storage mechanism in 2D vanadium carbide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700959 – volume: 12 start-page: 88 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0042 article-title: Bismuth: a new anode for the Na-ion battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.012 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0089 article-title: Elucidation of the sodium-storage mechanism in hard carbons publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703217 – volume: 10 start-page: 1757 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0175 article-title: SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01628J – volume: 9 start-page: 1430 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0173 article-title: Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03262H – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0195 article-title: Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal-organic-framework array as reactor publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702769 – volume: 19 start-page: 279 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0061 article-title: Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.034 – volume: 136 start-page: 16270 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0284 article-title: Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508154e – volume: 40 start-page: 1 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0302 article-title: Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.002 – volume: 57 start-page: 8901 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0179 article-title: Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802672 – year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0006 article-title: Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes publication-title: Adv. Funct. Mater. – volume: 13 start-page: 537 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0312 article-title: Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.03.041 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0008 article-title: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703268 – volume: 31 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0113 article-title: Laser-induced graphene : from discovery to translation publication-title: Adv. Mater. doi: 10.1002/adma.201803621 – volume: 174 start-page: 970 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0146 article-title: Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.06.039 – volume: 28 start-page: 7672 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0190 article-title: Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage publication-title: Adv. Mater. doi: 10.1002/adma.201601723 – volume: 5 start-page: 12445 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0249 article-title: SbO/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02689G – volume: 26 start-page: 2901 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0142 article-title: Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201304962 – volume: 53 start-page: 10169 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0032a article-title: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403734 – volume: 3 start-page: 2671 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0309 article-title: A low cost, all-organic Na-ion battery based on polymeric cathode and anode publication-title: Sci. Rep. doi: 10.1038/srep02671 – volume: 25 start-page: 534 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0054 article-title: Sodium storage behavior in natural graphite using ether-based electrolyte systems publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402984 – volume: 15 start-page: 369 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0224 article-title: High rate SnO2-graphene dual aerogel anodes and their kinetics of lithiation and sodiation publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.04.018 – volume: 243 start-page: 585 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0073 article-title: First-principles study of alkali metal-graphite intercalation compounds publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.06.057 – volume: 27 start-page: 1210 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0143 article-title: Understanding the interaction of the carbonates and binder in Na-ion batteries: a combined bulk and surface study publication-title: Chem. Mater. doi: 10.1021/cm5039649 – volume: 3 start-page: 1604 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0012 article-title: Electrode materials of sodium-ion batteries toward practical application publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00609 – volume: 44 start-page: 66 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0147 article-title: Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.04.014 – volume: 11 start-page: 4792 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0301 article-title: Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities publication-title: ACS Nano doi: 10.1021/acsnano.7b01165 – volume: 13 start-page: 1462 year: 2011 ident: 10.1016/j.enchem.2019.100012_bib0246 article-title: High capacity Sb2O4 thin film electrodes for rechargeable sodium battery publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.09.020 – volume: 4 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0075 article-title: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201700146 – volume: 53 start-page: 5892 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0310 article-title: All organic sodium-ion batteries with Na4C8H2O6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400032 – volume: 225 start-page: 316 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0127 article-title: Tin and graphite based nanocomposites: potential anode for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.014 – volume: 28 start-page: 124 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0225 article-title: High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.044 – volume: 159 start-page: A1368 year: 2012 ident: 10.1016/j.enchem.2019.100012_bib0289 article-title: A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode publication-title: J. Electrochem. Soc. doi: 10.1149/2.003208jes – volume: 29 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0293 article-title: Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201702410 – volume: 6 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0058 article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600659 – volume: 57 start-page: 202 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0067 article-title: Reduced graphene oxide with superior cycling stability and rate capability for sodium storage publication-title: Carbon N Y doi: 10.1016/j.carbon.2013.01.064 – volume: 10 start-page: 4398 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0226 article-title: Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life publication-title: Nano Res. doi: 10.1007/s12274-017-1756-3 – volume: 7 start-page: 17264 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0248 article-title: Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04225 – volume: 4 start-page: 1485 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0319 article-title: Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device publication-title: Nat. Commun. doi: 10.1038/ncomms2481 – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0169 article-title: Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage publication-title: Adv. Mater. – volume: 23 start-page: 947 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0076 article-title: Sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200691 – volume: 12 start-page: 194 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0003 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 6 start-page: 12185 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0238 article-title: Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02695E – volume: 30 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0197 article-title: Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201802745 – volume: 8 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0060 article-title: Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703238 – volume: 30 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0133 article-title: Ti3C2Tx MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries publication-title: Nanotechnology – volume: 7 start-page: 36550 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0079 article-title: Why is sodium-intercalated graphite unstable? publication-title: RSC Adv. doi: 10.1039/C7RA06777A – volume: 6 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0092 article-title: Research update: hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries publication-title: APL Mater. doi: 10.1063/1.5013132 – volume: 4 start-page: 1870 year: 2013 ident: 10.1016/j.enchem.2019.100012_bib0166 article-title: Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms2878 – volume: 9 start-page: 23766 year: 2017 ident: 10.1016/j.enchem.2019.100012_bib0325 article-title: Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05687 – volume: 48 start-page: 1657 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0122 article-title: Tin and tin compounds for sodium ion battery anodes: phase transformations and performance publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00114 – volume: 2 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0101 article-title: Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500195 – volume: 28 start-page: 4126 year: 2016 ident: 10.1016/j.enchem.2019.100012_bib0131 article-title: Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201505918 – volume: 11 start-page: 1218 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0158 article-title: Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03016A – volume: 7 start-page: 2626 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0102 article-title: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507679x – volume: 114 start-page: 11636 year: 2014 ident: 10.1016/j.enchem.2019.100012_bib0009 article-title: Research development on sodium-ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500192f – volume: 11 start-page: 20905 year: 2019 ident: 10.1016/j.enchem.2019.100012_bib0117 article-title: Wettability-driven assembly of electrochemical microsupercapacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05635 – volume: 12 start-page: 3568 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0183 article-title: A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries publication-title: ACS Nano doi: 10.1021/acsnano.8b00643 – volume: 3 start-page: 5648 year: 2015 ident: 10.1016/j.enchem.2019.100012_bib0212 article-title: Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05611F – volume: 9 start-page: 353 year: 2010 ident: 10.1016/j.enchem.2019.100012_bib0046 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. doi: 10.1038/nmat2725 – volume: 97 start-page: 170 year: 2018 ident: 10.1016/j.enchem.2019.100012_bib0018 article-title: Internal structure-na storage mechanisms - electrochemical performance relations in carbons publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.04.006 |
SSID | ssj0002964937 |
Score | 2.5599902 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 100012 |
Title | Sodium-ion battery anodes: Status and future trends |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRcU3OXiTDXk3602KpYiK-EBvYZ9qqa1og-CvdyabJtEWUS8hGTZLNt-wOzM78y0hByYSnuGJop4IOUXCLiq49GiUCsV0mBivqK06v0j6t9HpfXzfal03spbyiXDlx9y6kv-gCjLAFatk_4Bs1SkI4B7whSsgDNdfYXw9Vk_5M0UERcGTiWRKY2XT3NCMzC0DsyUOwaTysq63isUXlX9IGjATQL7DMMeMtFcr0_lTJXp45-UCiKozfHvkr1oXbI_9_I0_H164zeCCX2dPlXNQEKcMDHB72JKr58imk2hDV4LGhOgXoa65c7UNGwxcwA2GiVl2zK2bf6XG_rZkVYmE0xy1QWZ7ybCXzPayQBYD8B28Nlk87l6dXVahN9xpZgWbajWUaVFlkfk3-0ENo6VhfdyskOXSbXCOrQ6skpYerZGwxt8p8Xcs_keORR8elWPRdyz66-S2d3LT7dPyEAwqwRKb0DSOjO8zGQhPgO8ZJqFM_cgYZIpLudQB6xjtm47hcax0yGQMywZLuPJCE-FhcBukPRqP9CZxVCdiQgYdgxsBaSRSwbk2yO_PlQZXeYuE01FmsmSIx4NKhtlPv3mL0OqtF8uQ8mP77T-23yFLtWbukvbkNdd7YAhOxH4J7Ceq-Fsd |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sodium-ion+battery+anodes%3A+Status+and+future+trends&rft.jtitle=EnergyChem&rft.au=Zhang%2C+Wenli&rft.au=Zhang%2C+Fan&rft.au=Ming%2C+Fangwang&rft.au=Alshareef%2C+Husam+N.&rft.date=2019-09-01&rft.issn=2589-7780&rft.eissn=2589-7780&rft.volume=1&rft.issue=2&rft.spage=100012&rft_id=info:doi/10.1016%2Fj.enchem.2019.100012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enchem_2019_100012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-7780&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-7780&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-7780&client=summon |