A Hierarchical Features-Based Model for Freight Train Defect Inspection
The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dyna...
Saved in:
Published in | IEEE sensors journal Vol. 20; no. 5; pp. 2671 - 2678 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2019.2954124 |
Cover
Loading…
Abstract | The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dynamic background. The deep learning method has the merit of extracting robust multi-scale information from images. In this paper, a hierarchical features-based instance detection (HID) model was developed for instance-level defect detections. A deep residual neural network model was firstly used to extract invariant and discriminative features. Then, acquired multi-scale features were processed by a region proposal neural network to generate a coarse defect region and make defect classification. Finally, instance-level predictions were made on the coarse defect region using acquired features. Experiments on the collected dataset that has six types of defects demonstrated the effectiveness of the HID. Additionally, comparisons with the state-of-the-art approaches further demonstrated its promising performance. We also verified its high performance in transfer learning. |
---|---|
AbstractList | The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dynamic background. The deep learning method has the merit of extracting robust multi-scale information from images. In this paper, a hierarchical features-based instance detection (HID) model was developed for instance-level defect detections. A deep residual neural network model was firstly used to extract invariant and discriminative features. Then, acquired multi-scale features were processed by a region proposal neural network to generate a coarse defect region and make defect classification. Finally, instance-level predictions were made on the coarse defect region using acquired features. Experiments on the collected dataset that has six types of defects demonstrated the effectiveness of the HID. Additionally, comparisons with the state-of-the-art approaches further demonstrated its promising performance. We also verified its high performance in transfer learning. |
Author | Liu, Jie Hu, Youmin Xiao, Ling Wu, Bo |
Author_xml | – sequence: 1 givenname: Ling orcidid: 0000-0002-4650-8841 surname: Xiao fullname: Xiao, Ling organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Bo surname: Wu fullname: Wu, Bo organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Youmin surname: Hu fullname: Hu, Youmin email: youmhwh@hust.edu.cn organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China – sequence: 4 givenname: Jie orcidid: 0000-0002-0750-1030 surname: Liu fullname: Liu, Jie organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, China |
BookMark | eNp9kD9PwzAUxC1UJNrCB0AslphT_GwnjsdS-g8VGCgSW-Q6L9RVSIqdDnx7ErViYGC6N9zvne4GpFfVFRJyDWwEwPTd4-v0ecQZ6BHXsQQuz0gf4jiNQMm0192CRVKo9wsyCGHHWqeKVZ_Mx3Th0Btvt86aks7QNAePIbo3AXP6VOdY0qL2dObRfWwbuvbGVfQBC7QNXVZh36qrq0tyXpgy4NVJh-RtNl1PFtHqZb6cjFeR5Vo0USplzhnmKPOCcYgZGExAbFTBNgBohOBpruMNCLvRWmBiwJgkkUwwqSRaMSS3x797X38dMDTZrj74qo3MuIg5aJEoaF1wdFlfh-CxyPbefRr_nQHLur2ybq-s2ys77dUy6g9jXWO6bk1bufyXvDmSDhF_k1LNUpUK8QPvc3iQ |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s10489_024_05676_8 crossref_primary_10_1109_JSEN_2021_3062021 crossref_primary_10_1109_TII_2022_3224989 crossref_primary_10_1038_s41598_025_85630_x crossref_primary_10_1109_TIM_2020_3023509 crossref_primary_10_1117_1_JEI_29_4_043004 crossref_primary_10_3390_app122010572 crossref_primary_10_1109_TIM_2022_3176901 crossref_primary_10_1007_s13198_021_01509_w crossref_primary_10_1109_JSEN_2024_3448308 crossref_primary_10_1109_TIM_2023_3341113 crossref_primary_10_1111_jfpe_13620 crossref_primary_10_1109_JSEN_2020_2977366 crossref_primary_10_3390_s23239360 crossref_primary_10_1109_JSEN_2020_3029556 crossref_primary_10_1109_ACCESS_2022_3183102 crossref_primary_10_1007_s13198_021_01446_8 crossref_primary_10_1016_j_engappai_2025_110018 |
Cites_doi | 10.1109/WACV.2016.7477557 10.1016/j.ymssp.2017.06.022 10.1177/0954409715619603 10.1109/CVPR.2016.80 10.1109/CVPR.2017.243 10.1049/iet-its.2015.0026 10.1088/1361-6501/aaaca6 10.1109/RRCON.1998.668098 10.1109/CVPR.2015.7298965 10.1109/CVPR.2017.472 10.1145/2638728.2641339 10.1109/TSMCC.2007.893278 10.1177/0954409715588119 10.1109/ICIP.2018.8451188 10.1016/j.patrec.2005.10.010 10.1016/j.measurement.2016.07.054 10.1109/TITS.2017.2720721 10.1145/3345252.3345294 10.1049/iet-its.2016.0338 10.1088/1742-6596/305/1/012024 10.1109/CVPR.2013.153 10.1109/TIM.2011.2119110 10.1109/TGRS.2016.2584107 10.1016/j.measurement.2016.01.023 10.1109/CVPR.2018.00935 10.1109/TIP.2013.2277824 10.1109/ICCV.2017.322 10.1016/j.neucom.2016.10.018 10.1016/j.neucom.2017.07.032 10.1109/TIM.2015.2479101 10.1109/CVPR.2016.90 10.1117/12.2246551 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2019.2954124 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 2678 |
ExternalDocumentID | 10_1109_JSEN_2019_2954124 8908783 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201806160119 funderid: 10.13039/501100004543 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-844d20ede4df021501ae613b7f0b11ea3328d95b13cb993e6a1aa664030474ec3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:13:18 EDT 2025 Tue Jul 01 03:36:51 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed Aug 27 02:26:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-844d20ede4df021501ae613b7f0b11ea3328d95b13cb993e6a1aa664030474ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0750-1030 0000-0002-4650-8841 |
PQID | 2352193671 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2019_2954124 crossref_citationtrail_10_1109_JSEN_2019_2954124 ieee_primary_8908783 proquest_journals_2352193671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 li (ref23) 2015 ref36 ref14 ref31 ref30 ref11 ref32 ref10 chen (ref7) 2010; 25 du (ref29) 2018; 10581 ref2 ref17 ref38 ref16 ref19 hu (ref18) 0 liu (ref1) 2005; 5 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref9 ref4 ref3 ref6 ref5 ren (ref33) 2015 |
References_xml | – volume: 10581 year: 2018 ident: ref29 article-title: A performance comparison of low- and high-level features learned by deep convolutional neural networks in epithelium and stroma classification publication-title: Proc SPIE – ident: ref21 doi: 10.1109/WACV.2016.7477557 – ident: ref27 doi: 10.1016/j.ymssp.2017.06.022 – ident: ref9 doi: 10.1177/0954409715619603 – year: 0 ident: ref18 article-title: Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network publication-title: IEEE Trans Ind Electron – start-page: 5455 year: 2015 ident: ref23 article-title: Visual saliency based on multiscale deep features publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref25 doi: 10.1109/CVPR.2016.80 – ident: ref32 doi: 10.1109/CVPR.2017.243 – ident: ref13 doi: 10.1049/iet-its.2015.0026 – ident: ref17 doi: 10.1088/1361-6501/aaaca6 – ident: ref6 doi: 10.1109/RRCON.1998.668098 – ident: ref35 doi: 10.1109/CVPR.2015.7298965 – ident: ref36 doi: 10.1109/CVPR.2017.472 – ident: ref22 doi: 10.1145/2638728.2641339 – ident: ref11 doi: 10.1109/TSMCC.2007.893278 – ident: ref4 doi: 10.1177/0954409715588119 – volume: 5 start-page: 26 year: 2005 ident: ref1 article-title: Principle and application of TFDS publication-title: Chin Railways – ident: ref20 doi: 10.1109/ICIP.2018.8451188 – ident: ref38 doi: 10.1016/j.patrec.2005.10.010 – ident: ref26 doi: 10.1016/j.measurement.2016.07.054 – ident: ref3 doi: 10.1109/TITS.2017.2720721 – ident: ref37 doi: 10.1145/3345252.3345294 – ident: ref19 doi: 10.1049/iet-its.2016.0338 – ident: ref5 doi: 10.1088/1742-6596/305/1/012024 – ident: ref24 doi: 10.1109/CVPR.2013.153 – ident: ref12 doi: 10.1109/TIM.2011.2119110 – ident: ref16 doi: 10.1109/TGRS.2016.2584107 – ident: ref2 doi: 10.1016/j.measurement.2016.01.023 – ident: ref34 doi: 10.1109/CVPR.2018.00935 – ident: ref10 doi: 10.1109/TIP.2013.2277824 – ident: ref31 doi: 10.1109/ICCV.2017.322 – volume: 25 start-page: 90 year: 2010 ident: ref7 article-title: Automatic identification method of center plate bolts missing in TFDS system publication-title: J Zhengzhou Univ Light Ind Natural Sci – ident: ref15 doi: 10.1016/j.neucom.2016.10.018 – start-page: 91 year: 2015 ident: ref33 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1016/j.neucom.2017.07.032 – ident: ref8 doi: 10.1109/TIM.2015.2479101 – ident: ref30 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1117/12.2246551 |
SSID | ssj0019757 |
Score | 2.3827207 |
Snippet | The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2671 |
SubjectTerms | Artificial neural networks Convolution Convolution neural network Data mining defect detection Defects Fasteners Feature extraction Freight traffic freight train Freight trains hierarchical features Image detection Image processing Image quality Inspection instance prediction Machine learning Multiscale analysis Neural networks Performance degradation Proposals Sensors Traffic safety |
Title | A Hierarchical Features-Based Model for Freight Train Defect Inspection |
URI | https://ieeexplore.ieee.org/document/8908783 https://www.proquest.com/docview/2352193671 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6FXAoHaAOogbTyoSdUB9vrrNfH8EjTSHApSLmt1o8VqNEGheQAvx6PdxNBi6qedg-2ZHnGnm88jw_gm-VpaayTVA6Eo7IsJTViYGhZZtoqx0z4YLbFdTq-lZPpYNqC75taGO99TD7zffyNsXw3tyt8KjvNNMtUlmzBVlCzulZrEzHQKnb1DAeYUZmoaRPB5EyfTn5dXmMSl-5jUIsL-cYGRVKVv27iaF5Ge3C1XlidVfK7v1qavn3-o2fj_678I-w2OJMMa8X4BC1fdWDnVffBDnxoCNDvnvbhx5CM77EWOVKjzAgiw1XwxOlZsHKOIGPajAR8S0aL-JZKbpBaglx4zAYhP6u6YHNeHcDt6PLmfEwbjgVqg6Ff0kxKJ5h3XroSzT_jhQ8W3qiSGc59kSQic3pgeGJNgDI-LXhRpKnEiKqS3iaH0K7mlf8MpAzIUdlEG6GETJ3KrBYW-xeGS0QUqewCW-96bpsG5MiDMcujI8J0joLKUVB5I6gunGymPNTdN_41eB83fjOw2fMu9NaizZvz-ZiLgDsDdE0VP3p_1jFsC_SsY7ZZD9rLxcp_CfBjab5GvXsBTo7UEg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROFAOlAIV4dH6wKnCwfZ61-sjBdLwyoUg5bZaP1ZFRJuKJof21-PxbqJCEepp92BL1ozt-cbz-AAOLc8qY52kMhWOyqqS1IjU0KrKtVWOmfDBbItB1r-Tl6N0tARHi1oY731MPvNd_I2xfDexM3wqO841y1WevIOVYPdl2lRrLWIGWsW-nuEIMyoTNWpjmJzp48vb8wGmcekuhrW4kM-sUKRV-ecujgam9wFu5ktr8koeurOp6do_L7o2_u_aN2C9RZrkpNkaH2HJ15uw9lf_wU1YbSnQf_zegu8npH-P1ciRHGVMEBvOgi9OvwU75whypo1JQLik9xhfU8kQySXImcd8EHJRNyWbk3ob7nrnw9M-bVkWqA2mfkpzKZ1g3nnpKgQAjJc-2HijKmY492WSiNzp1PDEmgBmfFbysswyiTFVJb1NPsFyPan9DpAqYEdlE22EEjJzKrdaWOxgGK4RUWayA2wu9cK2LciRCWNcRFeE6QIVVaCiilZRHfi6mPKz6b_x1uAtFPxiYCvzDuzPVVu0J_RXIQLyDOA1U3z39VlfYLU_vLkuri8GV3vwXqCfHXPP9mF5-jjzBwGMTM3nuAefAJgM118 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hierarchical+Features-Based+Model+for+Freight+Train+Defect+Inspection&rft.jtitle=IEEE+sensors+journal&rft.au=Xiao%2C+Ling&rft.au=Wu%2C+Bo&rft.au=Hu%2C+Youmin&rft.au=Liu%2C+Jie&rft.date=2020-03-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=5&rft.spage=2671&rft.epage=2678&rft_id=info:doi/10.1109%2FJSEN.2019.2954124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2019_2954124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |