A Hierarchical Features-Based Model for Freight Train Defect Inspection

The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dyna...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 5; pp. 2671 - 2678
Main Authors Xiao, Ling, Wu, Bo, Hu, Youmin, Liu, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2019.2954124

Cover

Loading…
Abstract The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dynamic background. The deep learning method has the merit of extracting robust multi-scale information from images. In this paper, a hierarchical features-based instance detection (HID) model was developed for instance-level defect detections. A deep residual neural network model was firstly used to extract invariant and discriminative features. Then, acquired multi-scale features were processed by a region proposal neural network to generate a coarse defect region and make defect classification. Finally, instance-level predictions were made on the coarse defect region using acquired features. Experiments on the collected dataset that has six types of defects demonstrated the effectiveness of the HID. Additionally, comparisons with the state-of-the-art approaches further demonstrated its promising performance. We also verified its high performance in transfer learning.
AbstractList The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing were developed. However, most of them used hand-engineered features, whose performance was easily degraded by the low image quality and dynamic background. The deep learning method has the merit of extracting robust multi-scale information from images. In this paper, a hierarchical features-based instance detection (HID) model was developed for instance-level defect detections. A deep residual neural network model was firstly used to extract invariant and discriminative features. Then, acquired multi-scale features were processed by a region proposal neural network to generate a coarse defect region and make defect classification. Finally, instance-level predictions were made on the coarse defect region using acquired features. Experiments on the collected dataset that has six types of defects demonstrated the effectiveness of the HID. Additionally, comparisons with the state-of-the-art approaches further demonstrated its promising performance. We also verified its high performance in transfer learning.
Author Liu, Jie
Hu, Youmin
Xiao, Ling
Wu, Bo
Author_xml – sequence: 1
  givenname: Ling
  orcidid: 0000-0002-4650-8841
  surname: Xiao
  fullname: Xiao, Ling
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Bo
  surname: Wu
  fullname: Wu, Bo
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Youmin
  surname: Hu
  fullname: Hu, Youmin
  email: youmhwh@hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-0750-1030
  surname: Liu
  fullname: Liu, Jie
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kD9PwzAUxC1UJNrCB0AslphT_GwnjsdS-g8VGCgSW-Q6L9RVSIqdDnx7ErViYGC6N9zvne4GpFfVFRJyDWwEwPTd4-v0ecQZ6BHXsQQuz0gf4jiNQMm0192CRVKo9wsyCGHHWqeKVZ_Mx3Th0Btvt86aks7QNAePIbo3AXP6VOdY0qL2dObRfWwbuvbGVfQBC7QNXVZh36qrq0tyXpgy4NVJh-RtNl1PFtHqZb6cjFeR5Vo0USplzhnmKPOCcYgZGExAbFTBNgBohOBpruMNCLvRWmBiwJgkkUwwqSRaMSS3x797X38dMDTZrj74qo3MuIg5aJEoaF1wdFlfh-CxyPbefRr_nQHLur2ybq-s2ys77dUy6g9jXWO6bk1bufyXvDmSDhF_k1LNUpUK8QPvc3iQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s10489_024_05676_8
crossref_primary_10_1109_JSEN_2021_3062021
crossref_primary_10_1109_TII_2022_3224989
crossref_primary_10_1038_s41598_025_85630_x
crossref_primary_10_1109_TIM_2020_3023509
crossref_primary_10_1117_1_JEI_29_4_043004
crossref_primary_10_3390_app122010572
crossref_primary_10_1109_TIM_2022_3176901
crossref_primary_10_1007_s13198_021_01509_w
crossref_primary_10_1109_JSEN_2024_3448308
crossref_primary_10_1109_TIM_2023_3341113
crossref_primary_10_1111_jfpe_13620
crossref_primary_10_1109_JSEN_2020_2977366
crossref_primary_10_3390_s23239360
crossref_primary_10_1109_JSEN_2020_3029556
crossref_primary_10_1109_ACCESS_2022_3183102
crossref_primary_10_1007_s13198_021_01446_8
crossref_primary_10_1016_j_engappai_2025_110018
Cites_doi 10.1109/WACV.2016.7477557
10.1016/j.ymssp.2017.06.022
10.1177/0954409715619603
10.1109/CVPR.2016.80
10.1109/CVPR.2017.243
10.1049/iet-its.2015.0026
10.1088/1361-6501/aaaca6
10.1109/RRCON.1998.668098
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.472
10.1145/2638728.2641339
10.1109/TSMCC.2007.893278
10.1177/0954409715588119
10.1109/ICIP.2018.8451188
10.1016/j.patrec.2005.10.010
10.1016/j.measurement.2016.07.054
10.1109/TITS.2017.2720721
10.1145/3345252.3345294
10.1049/iet-its.2016.0338
10.1088/1742-6596/305/1/012024
10.1109/CVPR.2013.153
10.1109/TIM.2011.2119110
10.1109/TGRS.2016.2584107
10.1016/j.measurement.2016.01.023
10.1109/CVPR.2018.00935
10.1109/TIP.2013.2277824
10.1109/ICCV.2017.322
10.1016/j.neucom.2016.10.018
10.1016/j.neucom.2017.07.032
10.1109/TIM.2015.2479101
10.1109/CVPR.2016.90
10.1117/12.2246551
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2019.2954124
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 2678
ExternalDocumentID 10_1109_JSEN_2019_2954124
8908783
Genre orig-research
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 201806160119
  funderid: 10.13039/501100004543
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-844d20ede4df021501ae613b7f0b11ea3328d95b13cb993e6a1aa664030474ec3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:13:18 EDT 2025
Tue Jul 01 03:36:51 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed Aug 27 02:26:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-844d20ede4df021501ae613b7f0b11ea3328d95b13cb993e6a1aa664030474ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0750-1030
0000-0002-4650-8841
PQID 2352193671
PQPubID 75733
PageCount 8
ParticipantIDs crossref_primary_10_1109_JSEN_2019_2954124
crossref_citationtrail_10_1109_JSEN_2019_2954124
ieee_primary_8908783
proquest_journals_2352193671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
li (ref23) 2015
ref36
ref14
ref31
ref30
ref11
ref32
ref10
chen (ref7) 2010; 25
du (ref29) 2018; 10581
ref2
ref17
ref38
ref16
ref19
hu (ref18) 0
liu (ref1) 2005; 5
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref9
ref4
ref3
ref6
ref5
ren (ref33) 2015
References_xml – volume: 10581
  year: 2018
  ident: ref29
  article-title: A performance comparison of low- and high-level features learned by deep convolutional neural networks in epithelium and stroma classification
  publication-title: Proc SPIE
– ident: ref21
  doi: 10.1109/WACV.2016.7477557
– ident: ref27
  doi: 10.1016/j.ymssp.2017.06.022
– ident: ref9
  doi: 10.1177/0954409715619603
– year: 0
  ident: ref18
  article-title: Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network
  publication-title: IEEE Trans Ind Electron
– start-page: 5455
  year: 2015
  ident: ref23
  article-title: Visual saliency based on multiscale deep features
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref25
  doi: 10.1109/CVPR.2016.80
– ident: ref32
  doi: 10.1109/CVPR.2017.243
– ident: ref13
  doi: 10.1049/iet-its.2015.0026
– ident: ref17
  doi: 10.1088/1361-6501/aaaca6
– ident: ref6
  doi: 10.1109/RRCON.1998.668098
– ident: ref35
  doi: 10.1109/CVPR.2015.7298965
– ident: ref36
  doi: 10.1109/CVPR.2017.472
– ident: ref22
  doi: 10.1145/2638728.2641339
– ident: ref11
  doi: 10.1109/TSMCC.2007.893278
– ident: ref4
  doi: 10.1177/0954409715588119
– volume: 5
  start-page: 26
  year: 2005
  ident: ref1
  article-title: Principle and application of TFDS
  publication-title: Chin Railways
– ident: ref20
  doi: 10.1109/ICIP.2018.8451188
– ident: ref38
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref26
  doi: 10.1016/j.measurement.2016.07.054
– ident: ref3
  doi: 10.1109/TITS.2017.2720721
– ident: ref37
  doi: 10.1145/3345252.3345294
– ident: ref19
  doi: 10.1049/iet-its.2016.0338
– ident: ref5
  doi: 10.1088/1742-6596/305/1/012024
– ident: ref24
  doi: 10.1109/CVPR.2013.153
– ident: ref12
  doi: 10.1109/TIM.2011.2119110
– ident: ref16
  doi: 10.1109/TGRS.2016.2584107
– ident: ref2
  doi: 10.1016/j.measurement.2016.01.023
– ident: ref34
  doi: 10.1109/CVPR.2018.00935
– ident: ref10
  doi: 10.1109/TIP.2013.2277824
– ident: ref31
  doi: 10.1109/ICCV.2017.322
– volume: 25
  start-page: 90
  year: 2010
  ident: ref7
  article-title: Automatic identification method of center plate bolts missing in TFDS system
  publication-title: J Zhengzhou Univ Light Ind Natural Sci
– ident: ref15
  doi: 10.1016/j.neucom.2016.10.018
– start-page: 91
  year: 2015
  ident: ref33
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1016/j.neucom.2017.07.032
– ident: ref8
  doi: 10.1109/TIM.2015.2479101
– ident: ref30
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1117/12.2246551
SSID ssj0019757
Score 2.3827207
Snippet The diagnosis of freight train defects is essential for railway traffic safety. Recently, many freight train defect detection systems based on image processing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2671
SubjectTerms Artificial neural networks
Convolution
Convolution neural network
Data mining
defect detection
Defects
Fasteners
Feature extraction
Freight traffic
freight train
Freight trains
hierarchical features
Image detection
Image processing
Image quality
Inspection
instance prediction
Machine learning
Multiscale analysis
Neural networks
Performance degradation
Proposals
Sensors
Traffic safety
Title A Hierarchical Features-Based Model for Freight Train Defect Inspection
URI https://ieeexplore.ieee.org/document/8908783
https://www.proquest.com/docview/2352193671
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6FXAoHaAOogbTyoSdUB9vrrNfH8EjTSHApSLmt1o8VqNEGheQAvx6PdxNBi6qedg-2ZHnGnm88jw_gm-VpaayTVA6Eo7IsJTViYGhZZtoqx0z4YLbFdTq-lZPpYNqC75taGO99TD7zffyNsXw3tyt8KjvNNMtUlmzBVlCzulZrEzHQKnb1DAeYUZmoaRPB5EyfTn5dXmMSl-5jUIsL-cYGRVKVv27iaF5Ge3C1XlidVfK7v1qavn3-o2fj_678I-w2OJMMa8X4BC1fdWDnVffBDnxoCNDvnvbhx5CM77EWOVKjzAgiw1XwxOlZsHKOIGPajAR8S0aL-JZKbpBaglx4zAYhP6u6YHNeHcDt6PLmfEwbjgVqg6Ff0kxKJ5h3XroSzT_jhQ8W3qiSGc59kSQic3pgeGJNgDI-LXhRpKnEiKqS3iaH0K7mlf8MpAzIUdlEG6GETJ3KrBYW-xeGS0QUqewCW-96bpsG5MiDMcujI8J0joLKUVB5I6gunGymPNTdN_41eB83fjOw2fMu9NaizZvz-ZiLgDsDdE0VP3p_1jFsC_SsY7ZZD9rLxcp_CfBjab5GvXsBTo7UEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5ROFAOlAIV4dH6wKnCwfZ61-sjBdLwyoUg5bZaP1ZFRJuKJof21-PxbqJCEepp92BL1ozt-cbz-AAOLc8qY52kMhWOyqqS1IjU0KrKtVWOmfDBbItB1r-Tl6N0tARHi1oY731MPvNd_I2xfDexM3wqO841y1WevIOVYPdl2lRrLWIGWsW-nuEIMyoTNWpjmJzp48vb8wGmcekuhrW4kM-sUKRV-ecujgam9wFu5ktr8koeurOp6do_L7o2_u_aN2C9RZrkpNkaH2HJ15uw9lf_wU1YbSnQf_zegu8npH-P1ciRHGVMEBvOgi9OvwU75whypo1JQLik9xhfU8kQySXImcd8EHJRNyWbk3ob7nrnw9M-bVkWqA2mfkpzKZ1g3nnpKgQAjJc-2HijKmY492WSiNzp1PDEmgBmfFbysswyiTFVJb1NPsFyPan9DpAqYEdlE22EEjJzKrdaWOxgGK4RUWayA2wu9cK2LciRCWNcRFeE6QIVVaCiilZRHfi6mPKz6b_x1uAtFPxiYCvzDuzPVVu0J_RXIQLyDOA1U3z39VlfYLU_vLkuri8GV3vwXqCfHXPP9mF5-jjzBwGMTM3nuAefAJgM118
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hierarchical+Features-Based+Model+for+Freight+Train+Defect+Inspection&rft.jtitle=IEEE+sensors+journal&rft.au=Xiao%2C+Ling&rft.au=Wu%2C+Bo&rft.au=Hu%2C+Youmin&rft.au=Liu%2C+Jie&rft.date=2020-03-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=20&rft.issue=5&rft.spage=2671&rft.epage=2678&rft_id=info:doi/10.1109%2FJSEN.2019.2954124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2019_2954124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon