A Multi-Objective Optimization Approach for Question Routing in Community Question Answering Services

Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 29; no. 9; pp. 1779 - 1792
Main Authors Cheng, Xiang, Zhu, Shuguang, Su, Sen, Chen, Gang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and answer quality of CQA services. To address this problem, question routing has been proposed which aims at routing new questions to suitable answerers, who have both high possibility and high ability to answer the questions. In this paper, we formulate question routing as a multi-objective ranking problem, and present a multi-objective learning-to-rank approach for question routing (MLQR), which can simultaneously optimize the answering possibility and answer quality of routed users. In MLQR, realizing that questions are relatively short and usually attached with tags, we first propose a tagword topic model (TTM) to derive topical representations of questions. Based on TTM, we then develop features for each question-user pair, which are captured at both platform level and thread level. In particular, the platform-level features summarize the information of a user from his/her history posts in the CQA platform, while the thread-level features model the pairwise competitions of a user with others in his/her answered threads. Finally, we extend a state-of-the-art learning-to-rank algorithm for training a multi-objective ranking model. Extensive experimental results on real-world datasets show that our MLQR can outperform state-of-the-art methods in terms of both answering possibility and answer quality.
AbstractList Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and answer quality of CQA services. To address this problem, question routing has been proposed which aims at routing new questions to suitable answerers, who have both high possibility and high ability to answer the questions. In this paper, we formulate question routing as a multi-objective ranking problem, and present a multi-objective learning-to-rank approach for question routing (MLQR), which can simultaneously optimize the answering possibility and answer quality of routed users. In MLQR, realizing that questions are relatively short and usually attached with tags, we first propose a tagword topic model (TTM) to derive topical representations of questions. Based on TTM, we then develop features for each question-user pair, which are captured at both platform level and thread level. In particular, the platform-level features summarize the information of a user from his/her history posts in the CQA platform, while the thread-level features model the pairwise competitions of a user with others in his/her answered threads. Finally, we extend a state-of-the-art learning-to-rank algorithm for training a multi-objective ranking model. Extensive experimental results on real-world datasets show that our MLQR can outperform state-of-the-art methods in terms of both answering possibility and answer quality.
Author Xiang Cheng
Shuguang Zhu
Sen Su
Gang Chen
Author_xml – sequence: 1
  givenname: Xiang
  surname: Cheng
  fullname: Cheng, Xiang
– sequence: 2
  givenname: Shuguang
  surname: Zhu
  fullname: Zhu, Shuguang
– sequence: 3
  givenname: Sen
  surname: Su
  fullname: Su, Sen
– sequence: 4
  givenname: Gang
  surname: Chen
  fullname: Chen, Gang
BookMark eNpFkE9PwzAMxSMEEtvgAyAulTh3xEmaNMdqjD9iaALGuWo7FzKtyUjbofHpadkEJ1t-z_bTb0iOrbNIyAXQMQDV14vHm-mYUVBjJrWkND4iA4iiOGSg4bjrqYBQcKFOybCuV7RzqBgGBJPgqV03JpznKywas8VgvmlMZb6zxjgbJJuNd1nxEZTOB88t1r_TF9c2xr4HxgYTV1WtNc3uX01s_YW-11_Rb02B9Rk5KbN1jeeHOiJvt9PF5D6cze8eJsksLJjmTagwxpwvMy4olCovOcsjLmKuKcs5iqxUPGOca1HGupQFgqQF5BRYLpdL0JKPyNX-bhf6s4-TrlzrbfcyZaCEEJJF0Llg7yq8q2uPZbrxpsr8LgWa9jTTnmba00wPNLudy_2OQcQ_v9JUSCX5D7qLczA
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_dss_2019_113164
crossref_primary_10_1016_j_ipm_2022_103112
crossref_primary_10_1016_j_ipm_2024_103773
crossref_primary_10_1007_s10489_018_1286_z
crossref_primary_10_1108_DTA_02_2019_0025
crossref_primary_10_1109_TLT_2022_3162572
crossref_primary_10_1109_MIS_2020_2997714
crossref_primary_10_1016_j_eswa_2021_115044
crossref_primary_10_1016_j_ins_2023_02_018
crossref_primary_10_1016_j_ipm_2020_102408
crossref_primary_10_1145_3301442
crossref_primary_10_1016_j_ins_2020_07_077
crossref_primary_10_1142_S0219649222500629
crossref_primary_10_1016_j_ins_2020_04_043
crossref_primary_10_1016_j_eswa_2023_121576
crossref_primary_10_1109_ACCESS_2020_2974893
Cites_doi 10.1145/2124295.2124350
10.1145/2180868.2180872
10.1145/1871437.1871678
10.1145/2396761.2398669
10.1145/2396761.2398493
10.1145/2488388.2488497
10.1145/2063576.2063885
10.1145/2187836.2187939
10.1145/2009916.2009975
10.1587/transinf.E94.D.1854
10.1145/1458082.1458204
10.1109/ICDM.2014.60
10.1109/TKDE.2014.2356461
10.1145/2488388.2488514
10.1109/TSC.2015.2446991
10.1145/2396761.2398459
10.1145/1401890.1401994
10.1145/2187980.2188201
10.1214/aos/1013203451
10.1109/ICDMW.2015.181
10.1145/2505515.2505670
10.1145/1964858.1964870
10.1109/ICDE.2009.44
10.1145/1273496.1273513
10.1145/2348283.2348387
10.1145/2505515.2505720
10.1145/1454008.1454026
10.1145/2645710.2645736
10.1073/pnas.0307752101
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2017.2696008
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1792
ExternalDocumentID 10_1109_TKDE_2017_2696008
7904676
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61502047
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-7e8eb3da3401f7bf32b53483902b3e4af73a23394f89f6ce160c1b012b6dd1963
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Thu Oct 10 17:19:50 EDT 2024
Fri Aug 23 01:04:24 EDT 2024
Wed Jun 26 19:28:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7e8eb3da3401f7bf32b53483902b3e4af73a23394f89f6ce160c1b012b6dd1963
PQID 2174446251
PQPubID 85438
PageCount 14
ParticipantIDs crossref_primary_10_1109_TKDE_2017_2696008
ieee_primary_7904676
proquest_journals_2174446251
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
pedro (ref14) 2014
ref15
ref31
ref30
fan (ref24) 2008; 9
ref33
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
burges (ref17) 2006
dror (ref25) 2011
ref23
ref26
ref20
ref22
ref21
blei (ref9) 2003; 3
burges (ref8) 2010
ref28
ref27
ref29
ref7
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1145/2124295.2124350
– ident: ref29
  doi: 10.1145/2180868.2180872
– ident: ref2
  doi: 10.1145/1871437.1871678
– ident: ref20
  doi: 10.1145/2396761.2398669
– ident: ref28
  doi: 10.1145/2396761.2398493
– ident: ref26
  doi: 10.1145/2488388.2488497
– ident: ref3
  doi: 10.1145/2063576.2063885
– volume: 3
  start-page: 993
  year: 2003
  ident: ref9
  article-title: Latent Dirichlet allocation
  publication-title: J Mach Learn Res
  contributor:
    fullname: blei
– volume: 9
  start-page: 1871
  year: 2008
  ident: ref24
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J Mach Learn Res
  contributor:
    fullname: fan
– ident: ref34
  doi: 10.1145/2187836.2187939
– year: 2010
  ident: ref8
  article-title: From RankNet to LambdaRank to LambdaMart: An overview
  publication-title: Microsoft Research
  contributor:
    fullname: burges
– ident: ref13
  doi: 10.1145/2009916.2009975
– ident: ref16
  doi: 10.1587/transinf.E94.D.1854
– ident: ref19
  doi: 10.1145/1458082.1458204
– ident: ref11
  doi: 10.1109/ICDM.2014.60
– ident: ref30
  doi: 10.1109/TKDE.2014.2356461
– ident: ref10
  doi: 10.1145/2488388.2488514
– ident: ref1
  doi: 10.1109/TSC.2015.2446991
– ident: ref6
  doi: 10.1145/2396761.2398459
– ident: ref27
  doi: 10.1145/1401890.1401994
– ident: ref4
  doi: 10.1145/2187980.2188201
– start-page: 1109
  year: 2011
  ident: ref25
  article-title: I want to answer; who has a question?: Yahoo! answers recommender system
  publication-title: Proc 17th ACM SIGKDD Int Conf Knowl Discovery Data Mining
  contributor:
    fullname: dror
– ident: ref18
  doi: 10.1214/aos/1013203451
– ident: ref31
  doi: 10.1109/ICDMW.2015.181
– start-page: 193
  year: 2006
  ident: ref17
  article-title: Learning to rank with nonsmooth cost functions
  publication-title: Proc Neural Inf Process Syst
  contributor:
    fullname: burges
– ident: ref5
  doi: 10.1145/2505515.2505670
– ident: ref21
  doi: 10.1145/1964858.1964870
– ident: ref12
  doi: 10.1109/ICDE.2009.44
– ident: ref15
  doi: 10.1145/1273496.1273513
– ident: ref33
  doi: 10.1145/2348283.2348387
– ident: ref7
  doi: 10.1145/2505515.2505720
– ident: ref32
  doi: 10.1145/1454008.1454026
– start-page: 193
  year: 2014
  ident: ref14
  article-title: Question recommendation for collaborative question answering systems with RankSLDA
  publication-title: Proc 8th ACM Conf Recommender Syst
  doi: 10.1145/2645710.2645736
  contributor:
    fullname: pedro
– ident: ref22
  doi: 10.1073/pnas.0307752101
SSID ssj0008781
Score 2.3843646
Snippet Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1779
SubjectTerms Answering services
Communities
Community question answering services
Feature extraction
History
Knowledge discovery
Machine learning
Multiple objective analysis
multiple-objective optimization
Optimization
question routing
Ranking
Routing
State of the art
Training
Training data
Title A Multi-Objective Optimization Approach for Question Routing in Community Question Answering Services
URI https://ieeexplore.ieee.org/document/7904676
https://www.proquest.com/docview/2174446251
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO-nB6aY4nZKDJ7Gza9qkOQ51DEV3UditNGkKKnbiOkT_el_SdA714K20TQh5yXvfl7wfACc8UIqhIfa0zpmHFi_2pIhTT6RRKGNkPlFqvS3u2OQhvJ5FswacrWJhtNbW-UwPzKO9y8_mammOys65QDbHWROaXIgqVmuldWNuC5Iiu0BOREPubjCHvji_v7m8Mk5cfBAwBOymkuSaDbJFVX5pYmtexm24rQdWeZU8D5alHKjPHzkb_zvybdhyOJOMqoWxAw1ddKBd13Agbkt3YHMtIWEX9IjYiFxvKp8qTUimqFNeXLAmGbkM5AShLrFnpeat8SrC5uSxIC7epPz4_joqFu-2e1LrpV14GF_dX0w8V4jBU4gGSo_rGDl3llIkYzmXOQ1kREOEVn4gqQ7TnNM0oFSEeSxypvSQ-Woo0fRJlmVmi-9Bq5gXeh9IxBQdskyl2g9DyXhK4yDPBM2wiQiY6sFpLZrktcq3kVie4ovEyDExckycHHvQNVO9-tHNcg_6tTATtyMXiaFeSH0Rzh383eoQNkzflf9YH1rl21IfIeAo5bFdaV_8KNLY
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgAD5SnK0wMTIiWNEzseKx4qlMdSJLYodhwJECmiqRD8es6OUypgYIuSOLF89t332fcAOOSBUgwNsad1zjy0eLEnRZx6Io1CGSPziVLrbXHL-vfh1UP00IDjaSyM1to6n-mOubRn-dlITcxW2QkXyOY4m4N5xNUxq6K1pno35rYkKfILZEU05O4Ms-uLk-Hg7Ny4cfFOwBCym1qSM1bIllX5pYutgblowU3dtcqv5LkzKWVHff7I2vjfvq_AskOapFdNjVVo6GINWnUVB-IW9RoszaQkXAfdIzYm17uTT5UuJHeoVV5cuCbpuRzkBMEusbul5q7xK8Lm5LEgLuKk_Ph-2ivG7_bzpNZMG3B_cT487XuuFIOnEA-UHtcxsu4spUjHci5zGsiIhgiu_EBSHaY5p2lAqQjzWORM6S7zVVei8ZMsy8wi34RmMSr0FpCIKdplmUq1H4aS8ZTGQZ4JmmETETDVhqNaNMlrlXEjsUzFF4mRY2LkmDg5tmHdDPX0RTfKbdithZm4NTlODPlC8ouAbvvvVgew0B_eXCfXl7eDHVg0_6m8yXahWb5N9B7Cj1Lu21n3BSnB1iM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Optimization+Approach+for+Question+Routing+in+Community+Question+Answering+Services&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Xiang+Cheng&rft.au=Shuguang+Zhu&rft.au=Sen+Su&rft.au=Gang+Chen&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=29&rft.issue=9&rft.spage=1779&rft.epage=1792&rft_id=info:doi/10.1109%2FTKDE.2017.2696008&rft.externalDocID=7904676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon