A Multi-Objective Optimization Approach for Question Routing in Community Question Answering Services
Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and a...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 29; no. 9; pp. 1779 - 1792 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and answer quality of CQA services. To address this problem, question routing has been proposed which aims at routing new questions to suitable answerers, who have both high possibility and high ability to answer the questions. In this paper, we formulate question routing as a multi-objective ranking problem, and present a multi-objective learning-to-rank approach for question routing (MLQR), which can simultaneously optimize the answering possibility and answer quality of routed users. In MLQR, realizing that questions are relatively short and usually attached with tags, we first propose a tagword topic model (TTM) to derive topical representations of questions. Based on TTM, we then develop features for each question-user pair, which are captured at both platform level and thread level. In particular, the platform-level features summarize the information of a user from his/her history posts in the CQA platform, while the thread-level features model the pairwise competitions of a user with others in his/her answered threads. Finally, we extend a state-of-the-art learning-to-rank algorithm for training a multi-objective ranking model. Extensive experimental results on real-world datasets show that our MLQR can outperform state-of-the-art methods in terms of both answering possibility and answer quality. |
---|---|
AbstractList | Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people to help each other by sharing knowledge. Recently, with accumulation of users and contents, much concern has arisen over the efficiency and answer quality of CQA services. To address this problem, question routing has been proposed which aims at routing new questions to suitable answerers, who have both high possibility and high ability to answer the questions. In this paper, we formulate question routing as a multi-objective ranking problem, and present a multi-objective learning-to-rank approach for question routing (MLQR), which can simultaneously optimize the answering possibility and answer quality of routed users. In MLQR, realizing that questions are relatively short and usually attached with tags, we first propose a tagword topic model (TTM) to derive topical representations of questions. Based on TTM, we then develop features for each question-user pair, which are captured at both platform level and thread level. In particular, the platform-level features summarize the information of a user from his/her history posts in the CQA platform, while the thread-level features model the pairwise competitions of a user with others in his/her answered threads. Finally, we extend a state-of-the-art learning-to-rank algorithm for training a multi-objective ranking model. Extensive experimental results on real-world datasets show that our MLQR can outperform state-of-the-art methods in terms of both answering possibility and answer quality. |
Author | Xiang Cheng Shuguang Zhu Sen Su Gang Chen |
Author_xml | – sequence: 1 givenname: Xiang surname: Cheng fullname: Cheng, Xiang – sequence: 2 givenname: Shuguang surname: Zhu fullname: Zhu, Shuguang – sequence: 3 givenname: Sen surname: Su fullname: Su, Sen – sequence: 4 givenname: Gang surname: Chen fullname: Chen, Gang |
BookMark | eNpFkE9PwzAMxSMEEtvgAyAulTh3xEmaNMdqjD9iaALGuWo7FzKtyUjbofHpadkEJ1t-z_bTb0iOrbNIyAXQMQDV14vHm-mYUVBjJrWkND4iA4iiOGSg4bjrqYBQcKFOybCuV7RzqBgGBJPgqV03JpznKywas8VgvmlMZb6zxjgbJJuNd1nxEZTOB88t1r_TF9c2xr4HxgYTV1WtNc3uX01s_YW-11_Rb02B9Rk5KbN1jeeHOiJvt9PF5D6cze8eJsksLJjmTagwxpwvMy4olCovOcsjLmKuKcs5iqxUPGOca1HGupQFgqQF5BRYLpdL0JKPyNX-bhf6s4-TrlzrbfcyZaCEEJJF0Llg7yq8q2uPZbrxpsr8LgWa9jTTnmba00wPNLudy_2OQcQ_v9JUSCX5D7qLczA |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_dss_2019_113164 crossref_primary_10_1016_j_ipm_2022_103112 crossref_primary_10_1016_j_ipm_2024_103773 crossref_primary_10_1007_s10489_018_1286_z crossref_primary_10_1108_DTA_02_2019_0025 crossref_primary_10_1109_TLT_2022_3162572 crossref_primary_10_1109_MIS_2020_2997714 crossref_primary_10_1016_j_eswa_2021_115044 crossref_primary_10_1016_j_ins_2023_02_018 crossref_primary_10_1016_j_ipm_2020_102408 crossref_primary_10_1145_3301442 crossref_primary_10_1016_j_ins_2020_07_077 crossref_primary_10_1142_S0219649222500629 crossref_primary_10_1016_j_ins_2020_04_043 crossref_primary_10_1016_j_eswa_2023_121576 crossref_primary_10_1109_ACCESS_2020_2974893 |
Cites_doi | 10.1145/2124295.2124350 10.1145/2180868.2180872 10.1145/1871437.1871678 10.1145/2396761.2398669 10.1145/2396761.2398493 10.1145/2488388.2488497 10.1145/2063576.2063885 10.1145/2187836.2187939 10.1145/2009916.2009975 10.1587/transinf.E94.D.1854 10.1145/1458082.1458204 10.1109/ICDM.2014.60 10.1109/TKDE.2014.2356461 10.1145/2488388.2488514 10.1109/TSC.2015.2446991 10.1145/2396761.2398459 10.1145/1401890.1401994 10.1145/2187980.2188201 10.1214/aos/1013203451 10.1109/ICDMW.2015.181 10.1145/2505515.2505670 10.1145/1964858.1964870 10.1109/ICDE.2009.44 10.1145/1273496.1273513 10.1145/2348283.2348387 10.1145/2505515.2505720 10.1145/1454008.1454026 10.1145/2645710.2645736 10.1073/pnas.0307752101 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2017.2696008 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 1792 |
ExternalDocumentID | 10_1109_TKDE_2017_2696008 7904676 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61502047 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIC RIE RIG RNS RXW TAE TN5 UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-7e8eb3da3401f7bf32b53483902b3e4af73a23394f89f6ce160c1b012b6dd1963 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Thu Oct 10 17:19:50 EDT 2024 Fri Aug 23 01:04:24 EDT 2024 Wed Jun 26 19:28:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-7e8eb3da3401f7bf32b53483902b3e4af73a23394f89f6ce160c1b012b6dd1963 |
PQID | 2174446251 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TKDE_2017_2696008 ieee_primary_7904676 proquest_journals_2174446251 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 pedro (ref14) 2014 ref15 ref31 ref30 fan (ref24) 2008; 9 ref33 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 burges (ref17) 2006 dror (ref25) 2011 ref23 ref26 ref20 ref22 ref21 blei (ref9) 2003; 3 burges (ref8) 2010 ref28 ref27 ref29 ref7 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1145/2124295.2124350 – ident: ref29 doi: 10.1145/2180868.2180872 – ident: ref2 doi: 10.1145/1871437.1871678 – ident: ref20 doi: 10.1145/2396761.2398669 – ident: ref28 doi: 10.1145/2396761.2398493 – ident: ref26 doi: 10.1145/2488388.2488497 – ident: ref3 doi: 10.1145/2063576.2063885 – volume: 3 start-page: 993 year: 2003 ident: ref9 article-title: Latent Dirichlet allocation publication-title: J Mach Learn Res contributor: fullname: blei – volume: 9 start-page: 1871 year: 2008 ident: ref24 article-title: LIBLINEAR: A library for large linear classification publication-title: J Mach Learn Res contributor: fullname: fan – ident: ref34 doi: 10.1145/2187836.2187939 – year: 2010 ident: ref8 article-title: From RankNet to LambdaRank to LambdaMart: An overview publication-title: Microsoft Research contributor: fullname: burges – ident: ref13 doi: 10.1145/2009916.2009975 – ident: ref16 doi: 10.1587/transinf.E94.D.1854 – ident: ref19 doi: 10.1145/1458082.1458204 – ident: ref11 doi: 10.1109/ICDM.2014.60 – ident: ref30 doi: 10.1109/TKDE.2014.2356461 – ident: ref10 doi: 10.1145/2488388.2488514 – ident: ref1 doi: 10.1109/TSC.2015.2446991 – ident: ref6 doi: 10.1145/2396761.2398459 – ident: ref27 doi: 10.1145/1401890.1401994 – ident: ref4 doi: 10.1145/2187980.2188201 – start-page: 1109 year: 2011 ident: ref25 article-title: I want to answer; who has a question?: Yahoo! answers recommender system publication-title: Proc 17th ACM SIGKDD Int Conf Knowl Discovery Data Mining contributor: fullname: dror – ident: ref18 doi: 10.1214/aos/1013203451 – ident: ref31 doi: 10.1109/ICDMW.2015.181 – start-page: 193 year: 2006 ident: ref17 article-title: Learning to rank with nonsmooth cost functions publication-title: Proc Neural Inf Process Syst contributor: fullname: burges – ident: ref5 doi: 10.1145/2505515.2505670 – ident: ref21 doi: 10.1145/1964858.1964870 – ident: ref12 doi: 10.1109/ICDE.2009.44 – ident: ref15 doi: 10.1145/1273496.1273513 – ident: ref33 doi: 10.1145/2348283.2348387 – ident: ref7 doi: 10.1145/2505515.2505720 – ident: ref32 doi: 10.1145/1454008.1454026 – start-page: 193 year: 2014 ident: ref14 article-title: Question recommendation for collaborative question answering systems with RankSLDA publication-title: Proc 8th ACM Conf Recommender Syst doi: 10.1145/2645710.2645736 contributor: fullname: pedro – ident: ref22 doi: 10.1073/pnas.0307752101 |
SSID | ssj0008781 |
Score | 2.3843646 |
Snippet | Community Question Answering (CQA) has increasingly become an important service for people asking questions and providing answers online, which enables people... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1779 |
SubjectTerms | Answering services Communities Community question answering services Feature extraction History Knowledge discovery Machine learning Multiple objective analysis multiple-objective optimization Optimization question routing Ranking Routing State of the art Training Training data |
Title | A Multi-Objective Optimization Approach for Question Routing in Community Question Answering Services |
URI | https://ieeexplore.ieee.org/document/7904676 https://www.proquest.com/docview/2174446251 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO-nB6aY4nZKDJ7Gza9qkOQ51DEV3UditNGkKKnbiOkT_el_SdA714K20TQh5yXvfl7wfACc8UIqhIfa0zpmHFi_2pIhTT6RRKGNkPlFqvS3u2OQhvJ5FswacrWJhtNbW-UwPzKO9y8_mammOys65QDbHWROaXIgqVmuldWNuC5Iiu0BOREPubjCHvji_v7m8Mk5cfBAwBOymkuSaDbJFVX5pYmtexm24rQdWeZU8D5alHKjPHzkb_zvybdhyOJOMqoWxAw1ddKBd13Agbkt3YHMtIWEX9IjYiFxvKp8qTUimqFNeXLAmGbkM5AShLrFnpeat8SrC5uSxIC7epPz4_joqFu-2e1LrpV14GF_dX0w8V4jBU4gGSo_rGDl3llIkYzmXOQ1kREOEVn4gqQ7TnNM0oFSEeSxypvSQ-Woo0fRJlmVmi-9Bq5gXeh9IxBQdskyl2g9DyXhK4yDPBM2wiQiY6sFpLZrktcq3kVie4ovEyDExckycHHvQNVO9-tHNcg_6tTATtyMXiaFeSH0Rzh383eoQNkzflf9YH1rl21IfIeAo5bFdaV_8KNLY |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgAD5SnK0wMTIiWNEzseKx4qlMdSJLYodhwJECmiqRD8es6OUypgYIuSOLF89t332fcAOOSBUgwNsad1zjy0eLEnRZx6Io1CGSPziVLrbXHL-vfh1UP00IDjaSyM1to6n-mOubRn-dlITcxW2QkXyOY4m4N5xNUxq6K1pno35rYkKfILZEU05O4Ms-uLk-Hg7Ny4cfFOwBCym1qSM1bIllX5pYutgblowU3dtcqv5LkzKWVHff7I2vjfvq_AskOapFdNjVVo6GINWnUVB-IW9RoszaQkXAfdIzYm17uTT5UuJHeoVV5cuCbpuRzkBMEusbul5q7xK8Lm5LEgLuKk_Ph-2ivG7_bzpNZMG3B_cT487XuuFIOnEA-UHtcxsu4spUjHci5zGsiIhgiu_EBSHaY5p2lAqQjzWORM6S7zVVei8ZMsy8wi34RmMSr0FpCIKdplmUq1H4aS8ZTGQZ4JmmETETDVhqNaNMlrlXEjsUzFF4mRY2LkmDg5tmHdDPX0RTfKbdithZm4NTlODPlC8ouAbvvvVgew0B_eXCfXl7eDHVg0_6m8yXahWb5N9B7Cj1Lu21n3BSnB1iM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Optimization+Approach+for+Question+Routing+in+Community+Question+Answering+Services&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Xiang+Cheng&rft.au=Shuguang+Zhu&rft.au=Sen+Su&rft.au=Gang+Chen&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=29&rft.issue=9&rft.spage=1779&rft.epage=1792&rft_id=info:doi/10.1109%2FTKDE.2017.2696008&rft.externalDocID=7904676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |