n-Dimensional Polynomial Chaotic System With Applications

Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 2; pp. 784 - 797
Main Authors Hua, Zhongyun, Zhang, Yinxing, Bao, Han, Huang, Hejiao, Zhou, Yicong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional polynomial chaotic system (<inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS) that can generate <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula> chaotic maps with any desired LEs. The <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS is constructed from <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, we developed a chaos-based secure communication scheme. Simulation results show that <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps.
AbstractList Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional polynomial chaotic system (<inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS) that can generate <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula> chaotic maps with any desired LEs. The <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS is constructed from <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, we developed a chaos-based secure communication scheme. Simulation results show that <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps.
Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an [Formula Omitted]-dimensional polynomial chaotic system ([Formula Omitted]-PCS) that can generate [Formula Omitted] chaotic maps with any desired LEs. The [Formula Omitted]-PCS is constructed from [Formula Omitted] parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the [Formula Omitted]-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the [Formula Omitted]-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from [Formula Omitted]-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of [Formula Omitted]-PCS, we developed a chaos-based secure communication scheme. Simulation results show that [Formula Omitted]-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps.
Author Zhou, Yicong
Hua, Zhongyun
Huang, Hejiao
Zhang, Yinxing
Bao, Han
Author_xml – sequence: 1
  givenname: Zhongyun
  orcidid: 0000-0002-3529-0541
  surname: Hua
  fullname: Hua, Zhongyun
  email: huazyum@gmail.com
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China
– sequence: 2
  givenname: Yinxing
  surname: Zhang
  fullname: Zhang, Yinxing
  email: yxzhang23@163.com
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China
– sequence: 3
  givenname: Han
  orcidid: 0000-0002-2329-6890
  surname: Bao
  fullname: Bao, Han
  email: charlesbao0319@gmail.com
  organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
– sequence: 4
  givenname: Hejiao
  orcidid: 0000-0001-8728-3012
  surname: Huang
  fullname: Huang, Hejiao
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China
– sequence: 5
  givenname: Yicong
  orcidid: 0000-0002-4487-6384
  surname: Zhou
  fullname: Zhou, Yicong
  email: yicongzhou@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Macau, China
BookMark eNo9kEtLw0AUhQdRsK3-AHETcJ0678wsS3wVCgqtuBwyLzolycRMuui_N6HF1T2L7xwu3xxct7F1ADwguEQIyudduV0vMcRoSRAqBGdXYIYYEzkUkF9PmcpcECxuwTylA4RYQoJmQLb5S2hcm0Jsqzr7ivWpjU0YY7mv4hBMtj2lwTXZTxj22arr6mCqYYTTHbjxVZ3c_eUuwPfb6678yDef7-tytckNlmTIC1Nga7XW3jrKGKcE6ooUDHMvufUOEisYlppQrZ0VmhpHrZaUC2849IYswNN5t-vj79GlQR3isR-fTQpzTGgBEecjhc6U6WNKvfOq60NT9SeFoJoMqcmQmgypi6Gx83juBOfcPy9ZUWCMyR-BsWP7
CODEN ITCSCH
CitedBy_id crossref_primary_10_1109_MMUL_2023_3317322
crossref_primary_10_3390_fractalfract6080432
crossref_primary_10_3390_electronics13132627
crossref_primary_10_1088_1402_4896_ad167a
crossref_primary_10_1109_TIE_2022_3206747
crossref_primary_10_1109_TCSII_2023_3300958
crossref_primary_10_1016_j_chaos_2023_113915
crossref_primary_10_1109_TCSII_2023_3240405
crossref_primary_10_1016_j_vlsi_2024_102200
crossref_primary_10_1002_cpe_8007
crossref_primary_10_1109_TII_2023_3327566
crossref_primary_10_1016_j_jisa_2024_103698
crossref_primary_10_1016_j_chaos_2023_113841
crossref_primary_10_1088_1402_4896_acd306
crossref_primary_10_1007_s11042_023_17200_0
crossref_primary_10_1109_ACCESS_2023_3302012
crossref_primary_10_1140_epjp_s13360_023_04504_1
crossref_primary_10_1007_s11071_024_09517_8
crossref_primary_10_1109_TII_2024_3353798
crossref_primary_10_1016_j_chaos_2024_115001
crossref_primary_10_1007_s11071_023_08312_1
crossref_primary_10_1088_1402_4896_ad1473
crossref_primary_10_1140_epjs_s11734_023_00993_4
crossref_primary_10_1016_j_chaos_2022_112519
crossref_primary_10_1088_1402_4896_ad4f64
crossref_primary_10_1016_j_apm_2023_10_004
crossref_primary_10_1109_TIM_2024_3368470
crossref_primary_10_1016_j_vlsi_2023_102071
Cites_doi 10.1063/1.4823332
10.1017/cbo9781139343473
10.1007/s11071-017-3601-3
10.1109/TCSI.2021.3075550
10.3390/e21090819
10.1016/j.chaos.2005.11.087
10.1142/S0218127418501444
10.1109/TCYB.2018.2834356
10.1016/S0895-7177(00)00256-9
10.1109/TCSI.2020.3019030
10.1007/s11071-015-2525-z
10.1109/TCSII.2019.2927371
10.1142/S0218127405014052
10.1109/TSMC.2015.2398836
10.1109/TCAD.2020.3002568
10.1109/TCYB.2018.2825253
10.1109/TSP.2018.2858212
10.1140/epjst/e2017-70058-2
10.1016/j.matcom.2014.11.006
10.1109/TSP.2012.2195659
10.1109/TCSI.2017.2717943
10.1007/978-0-387-48947-6
10.1016/j.cjph.2020.11.014
10.1109/TCSI.2018.2888688
10.1152/ajpheart.2000.278.6.h2039
10.1109/TCYB.2018.2831782
10.1007/s11571-020-09583-9
10.1142/S0218127417501036
10.1142/S0218127417500912
10.1109/TCSI.2019.2948789
10.1007/978-3-319-30279-9
10.1016/0375-9601(95)00122-J
10.1016/j.optlaseng.2019.105995
10.4324/9780429502309
10.1145/1268776.1268777
10.1049/iet-ipr.2018.5142
10.1016/j.sigpro.2017.08.020
10.1109/TCYB.2015.2483621
10.1109/TIE.2018.2833049
10.1587/transfun.E99.A.363
10.1002/cta.2062
10.1007/s11071-018-4440-6
10.1109/TCSI.2014.2304655
10.1109/TC.2021.3051387
10.1109/TCSII.2015.2435831
10.1109/TCSI.2020.2993674
10.1016/j.physleta.2016.01.040
10.1109/TCSVT.2017.2703946
10.1109/TNNLS.2019.2943548
10.1142/S0218127419300234
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSI.2021.3117865
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 797
ExternalDocumentID 10_1109_TCSI_2021_3117865
9577222
Genre orig-research
GrantInformation_xml – fundername: Shenzhen College Stability Support Plan
  grantid: GXWD20201230155427003-20200824210638001
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515011406
  funderid: 10.13039/501100021171
– fundername: Research Committee at University of Macau
  grantid: MYRG2018-00136-FST
  funderid: 10.13039/501100004733
– fundername: National Natural Science Foundation of China
  grantid: 62071142
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACIWK
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RIG
RNS
VJK
XFK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c293t-7c72ddbbbfde4556430ba37526f96dfe03d8529b34bbed8b4ce4db9468fc60fc3
IEDL.DBID RIE
ISSN 1549-8328
IngestDate Thu Oct 10 18:23:11 EDT 2024
Fri Aug 23 01:04:39 EDT 2024
Wed Jun 26 19:26:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7c72ddbbbfde4556430ba37526f96dfe03d8529b34bbed8b4ce4db9468fc60fc3
ORCID 0000-0002-3529-0541
0000-0002-2329-6890
0000-0001-8728-3012
0000-0002-4487-6384
PQID 2623470166
PQPubID 85411
PageCount 14
ParticipantIDs proquest_journals_2623470166
crossref_primary_10_1109_TCSI_2021_3117865
ieee_primary_9577222
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
Shores (ref42) 2007
ref24
Schuster (ref1) 2006
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref6
  doi: 10.1063/1.4823332
– ident: ref5
  doi: 10.1017/cbo9781139343473
– ident: ref38
  doi: 10.1007/s11071-017-3601-3
– ident: ref8
  doi: 10.1109/TCSI.2021.3075550
– ident: ref48
  doi: 10.3390/e21090819
– ident: ref24
  doi: 10.1016/j.chaos.2005.11.087
– ident: ref34
  doi: 10.1142/S0218127418501444
– ident: ref25
  doi: 10.1109/TCYB.2018.2834356
– ident: ref23
  doi: 10.1016/S0895-7177(00)00256-9
– ident: ref9
  doi: 10.1109/TCSI.2020.3019030
– ident: ref49
  doi: 10.1007/s11071-015-2525-z
– ident: ref50
  doi: 10.1109/TCSII.2019.2927371
– ident: ref35
  doi: 10.1142/S0218127405014052
– ident: ref30
  doi: 10.1109/TSMC.2015.2398836
– ident: ref11
  doi: 10.1109/TCAD.2020.3002568
– ident: ref26
  doi: 10.1109/TCYB.2018.2825253
– ident: ref21
  doi: 10.1109/TSP.2018.2858212
– ident: ref43
  doi: 10.1140/epjst/e2017-70058-2
– ident: ref37
  doi: 10.1016/j.matcom.2014.11.006
– ident: ref28
  doi: 10.1109/TSP.2012.2195659
– ident: ref32
  doi: 10.1109/TCSI.2017.2717943
– volume-title: Applied Linear Algebra and Matrix Analysis
  year: 2007
  ident: ref42
  doi: 10.1007/978-0-387-48947-6
  contributor:
    fullname: Shores
– ident: ref14
  doi: 10.1016/j.cjph.2020.11.014
– ident: ref19
  doi: 10.1109/TCSI.2018.2888688
– ident: ref46
  doi: 10.1152/ajpheart.2000.278.6.h2039
– volume-title: Deterministic Chaos: An Introduction
  year: 2006
  ident: ref1
  contributor:
    fullname: Schuster
– ident: ref22
  doi: 10.1109/TCYB.2018.2831782
– ident: ref47
  doi: 10.1007/s11571-020-09583-9
– ident: ref31
  doi: 10.1142/S0218127417501036
– ident: ref4
  doi: 10.1142/S0218127417500912
– ident: ref15
  doi: 10.1109/TCSI.2019.2948789
– ident: ref2
  doi: 10.1007/978-3-319-30279-9
– ident: ref44
  doi: 10.1016/0375-9601(95)00122-J
– ident: ref16
  doi: 10.1016/j.optlaseng.2019.105995
– ident: ref7
  doi: 10.4324/9780429502309
– ident: ref45
  doi: 10.1145/1268776.1268777
– ident: ref51
  doi: 10.1049/iet-ipr.2018.5142
– ident: ref33
  doi: 10.1016/j.sigpro.2017.08.020
– ident: ref40
  doi: 10.1109/TCYB.2015.2483621
– ident: ref18
  doi: 10.1109/TIE.2018.2833049
– ident: ref29
  doi: 10.1587/transfun.E99.A.363
– ident: ref36
  doi: 10.1002/cta.2062
– ident: ref17
  doi: 10.1007/s11071-018-4440-6
– ident: ref39
  doi: 10.1109/TCSI.2014.2304655
– ident: ref3
  doi: 10.1109/TC.2021.3051387
– ident: ref13
  doi: 10.1109/TCSII.2015.2435831
– ident: ref12
  doi: 10.1109/TCSI.2020.2993674
– ident: ref27
  doi: 10.1016/j.physleta.2016.01.040
– ident: ref41
  doi: 10.1109/TCSVT.2017.2703946
– ident: ref10
  doi: 10.1109/TNNLS.2019.2943548
– ident: ref20
  doi: 10.1142/S0218127419300234
SSID ssj0029031
Score 2.5665557
Snippet Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 784
SubjectTerms Cats
Channel noise
Chaos theory
Chaotic communication
Chaotic system
Complexity theory
Degradation
Dynamical systems
Eigenvalues and eigenfunctions
Hardware
hardware implementation
Liapunov exponents
Linear algebra
Mathematical analysis
Microcontrollers
nonlinear system
Parameters
Performance evaluation
Polynomials
random number generator
secure communication
Title n-Dimensional Polynomial Chaotic System With Applications
URI https://ieeexplore.ieee.org/document/9577222
https://www.proquest.com/docview/2623470166
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQRmYEG4dx3l4rAqoIBUh0YpuUfxSEahBkA7w6zknaVUBA5uHWLLuHN_3-e4-A5zLwFpkAZpoYxnhGgkKBoWACEWtbyKOGN5dDYzuo-GE303DaQMuV70wxpiy-Mx03bDM5etcLdxVWU-EiAUZHrgbsRBVr9aKXAkaVNqoXBDcpUmdwfSp6I0Hj7fIBJmPBNWPExdH1mJQ-ajKr5O4DC83OzBaLqyqKnnpLgrZVV8_NBv_u_Jd2K5xptevNsYeNMx8H7bW1AdbIObkymn7V7oc3kP--ul6lHE4mGU5zvMqOXPv6bmYef21TPcBTG6ux4MhqV9SIArDeUFiFTOtpZRWGx6GiEKozII4ZJEVkbaGBjoJmZABl9LoRHJluJaCR4lVEbUqOITmPJ-bI_C4C_raj2kiLM-SUGSuxwR5tMgselm34WJp2_StEsxIS6JBReockTpHpLUj2tBytlp9WJupDZ2lN9L6l_pIGQI1HiNCjY7_nnUCm8z1JpQl1R1oFu8Lc4qIoZBn5Vb5BuGEvIw
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZQAGvgqiUCADEyJtPhwnHqtC1UJbIdGKblYc2yoCNQjSAX495yStKmBg8xBL1p3je8939wxwKXytkQVIWyrt2UQiQcGg4NsscbSrKEEMb64GhiPam5C7aTCtwPWqF0YplRefqaYZ5rl8mSYLc1XWYgFiQQ8P3A3E1REturVW9Io5fqGOSpiN-zQqc5iuw1rjzmMfuaDnIkV1w8hEkrUolD-r8usszgNMdxeGy6UVdSUvzUUmmsnXD9XG_659D3ZKpGm1i62xDxU1P4DtNf3BGrC5fWPU_QtlDushff00Xco47MziFOdZhaC59fSczaz2Wq77ECbd23GnZ5dvKdgJBvTMDpPQk1IIoaUiQYA4xBGxHwYe1YxKrRxfRoHHhE-EUDISJFFECkZopBPq6MQ_guo8natjsIgJ-9INnYhpEkcBi02XCTJpFmv0s6zD1dK2_K2QzOA51XAYN47gxhG8dEQdasZWqw9LM9WhsfQGL3-qD-4hVCMhYlR68vesC9jsjYcDPuiP7k9hyzOdCnmBdQOq2ftCnSF-yMR5vm2-AexSv9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=n+-Dimensional+Polynomial+Chaotic+System+With+Applications&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Hua%2C+Zhongyun&rft.au=Zhang%2C+Yinxing&rft.au=Bao%2C+Han&rft.au=Huang%2C+Hejiao&rft.date=2022-02-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=69&rft.issue=2&rft.spage=784&rft.epage=797&rft_id=info:doi/10.1109%2FTCSI.2021.3117865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2021_3117865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon