n-Dimensional Polynomial Chaotic System With Applications
Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper...
Saved in:
Published in | IEEE transactions on circuits and systems. I, Regular papers Vol. 69; no. 2; pp. 784 - 797 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional polynomial chaotic system (<inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS) that can generate <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula> chaotic maps with any desired LEs. The <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS is constructed from <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, we developed a chaos-based secure communication scheme. Simulation results show that <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps. |
---|---|
AbstractList | Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>-dimensional polynomial chaotic system (<inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS) that can generate <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula> chaotic maps with any desired LEs. The <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS is constructed from <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS, we developed a chaos-based secure communication scheme. Simulation results show that <inline-formula> <tex-math notation="LaTeX">n\text{D} </tex-math></inline-formula>-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps. Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can be reflected by the Lyapunov exponents (LEs). Using the inherent relationship between the parameters of a chaotic map and its LEs, this paper proposes an [Formula Omitted]-dimensional polynomial chaotic system ([Formula Omitted]-PCS) that can generate [Formula Omitted] chaotic maps with any desired LEs. The [Formula Omitted]-PCS is constructed from [Formula Omitted] parametric polynomials with arbitrary orders, and its parameter matrix is configured using the preliminaries in linear algebra. Theoretical analysis proves that the [Formula Omitted]-PCS can produce high-dimensional chaotic maps with any desired LEs. To show the effects of the [Formula Omitted]-PCS, two high-dimensional chaotic maps with hyperchaotic behaviors were generated. A microcontroller-based hardware platform was developed to implement the two chaotic maps, and the test results demonstrated the randomness properties of their chaotic signals. Performance evaluations indicate that the high-dimensional chaotic maps generated from [Formula Omitted]-PCS have the desired LEs and more complicated dynamic behaviors compared with other high-dimensional chaotic maps. In addition, to demonstrate the applications of [Formula Omitted]-PCS, we developed a chaos-based secure communication scheme. Simulation results show that [Formula Omitted]-PCS has a stronger ability to resist channel noise than other high-dimensional chaotic maps. |
Author | Zhou, Yicong Hua, Zhongyun Huang, Hejiao Zhang, Yinxing Bao, Han |
Author_xml | – sequence: 1 givenname: Zhongyun orcidid: 0000-0002-3529-0541 surname: Hua fullname: Hua, Zhongyun email: huazyum@gmail.com organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China – sequence: 2 givenname: Yinxing surname: Zhang fullname: Zhang, Yinxing email: yxzhang23@163.com organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China – sequence: 3 givenname: Han orcidid: 0000-0002-2329-6890 surname: Bao fullname: Bao, Han email: charlesbao0319@gmail.com organization: School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China – sequence: 4 givenname: Hejiao orcidid: 0000-0001-8728-3012 surname: Huang fullname: Huang, Hejiao organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China – sequence: 5 givenname: Yicong orcidid: 0000-0002-4487-6384 surname: Zhou fullname: Zhou, Yicong email: yicongzhou@um.edu.mo organization: Department of Computer and Information Science, University of Macau, Macau, China |
BookMark | eNo9kEtLw0AUhQdRsK3-AHETcJ0678wsS3wVCgqtuBwyLzolycRMuui_N6HF1T2L7xwu3xxct7F1ADwguEQIyudduV0vMcRoSRAqBGdXYIYYEzkUkF9PmcpcECxuwTylA4RYQoJmQLb5S2hcm0Jsqzr7ivWpjU0YY7mv4hBMtj2lwTXZTxj22arr6mCqYYTTHbjxVZ3c_eUuwPfb6678yDef7-tytckNlmTIC1Nga7XW3jrKGKcE6ooUDHMvufUOEisYlppQrZ0VmhpHrZaUC2849IYswNN5t-vj79GlQR3isR-fTQpzTGgBEecjhc6U6WNKvfOq60NT9SeFoJoMqcmQmgypi6Gx83juBOfcPy9ZUWCMyR-BsWP7 |
CODEN | ITCSCH |
CitedBy_id | crossref_primary_10_1109_MMUL_2023_3317322 crossref_primary_10_3390_fractalfract6080432 crossref_primary_10_3390_electronics13132627 crossref_primary_10_1088_1402_4896_ad167a crossref_primary_10_1109_TIE_2022_3206747 crossref_primary_10_1109_TCSII_2023_3300958 crossref_primary_10_1016_j_chaos_2023_113915 crossref_primary_10_1109_TCSII_2023_3240405 crossref_primary_10_1016_j_vlsi_2024_102200 crossref_primary_10_1002_cpe_8007 crossref_primary_10_1109_TII_2023_3327566 crossref_primary_10_1016_j_jisa_2024_103698 crossref_primary_10_1016_j_chaos_2023_113841 crossref_primary_10_1088_1402_4896_acd306 crossref_primary_10_1007_s11042_023_17200_0 crossref_primary_10_1109_ACCESS_2023_3302012 crossref_primary_10_1140_epjp_s13360_023_04504_1 crossref_primary_10_1007_s11071_024_09517_8 crossref_primary_10_1109_TII_2024_3353798 crossref_primary_10_1016_j_chaos_2024_115001 crossref_primary_10_1007_s11071_023_08312_1 crossref_primary_10_1088_1402_4896_ad1473 crossref_primary_10_1140_epjs_s11734_023_00993_4 crossref_primary_10_1016_j_chaos_2022_112519 crossref_primary_10_1088_1402_4896_ad4f64 crossref_primary_10_1016_j_apm_2023_10_004 crossref_primary_10_1109_TIM_2024_3368470 crossref_primary_10_1016_j_vlsi_2023_102071 |
Cites_doi | 10.1063/1.4823332 10.1017/cbo9781139343473 10.1007/s11071-017-3601-3 10.1109/TCSI.2021.3075550 10.3390/e21090819 10.1016/j.chaos.2005.11.087 10.1142/S0218127418501444 10.1109/TCYB.2018.2834356 10.1016/S0895-7177(00)00256-9 10.1109/TCSI.2020.3019030 10.1007/s11071-015-2525-z 10.1109/TCSII.2019.2927371 10.1142/S0218127405014052 10.1109/TSMC.2015.2398836 10.1109/TCAD.2020.3002568 10.1109/TCYB.2018.2825253 10.1109/TSP.2018.2858212 10.1140/epjst/e2017-70058-2 10.1016/j.matcom.2014.11.006 10.1109/TSP.2012.2195659 10.1109/TCSI.2017.2717943 10.1007/978-0-387-48947-6 10.1016/j.cjph.2020.11.014 10.1109/TCSI.2018.2888688 10.1152/ajpheart.2000.278.6.h2039 10.1109/TCYB.2018.2831782 10.1007/s11571-020-09583-9 10.1142/S0218127417501036 10.1142/S0218127417500912 10.1109/TCSI.2019.2948789 10.1007/978-3-319-30279-9 10.1016/0375-9601(95)00122-J 10.1016/j.optlaseng.2019.105995 10.4324/9780429502309 10.1145/1268776.1268777 10.1049/iet-ipr.2018.5142 10.1016/j.sigpro.2017.08.020 10.1109/TCYB.2015.2483621 10.1109/TIE.2018.2833049 10.1587/transfun.E99.A.363 10.1002/cta.2062 10.1007/s11071-018-4440-6 10.1109/TCSI.2014.2304655 10.1109/TC.2021.3051387 10.1109/TCSII.2015.2435831 10.1109/TCSI.2020.2993674 10.1016/j.physleta.2016.01.040 10.1109/TCSVT.2017.2703946 10.1109/TNNLS.2019.2943548 10.1142/S0218127419300234 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCSI.2021.3117865 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0806 |
EndPage | 797 |
ExternalDocumentID | 10_1109_TCSI_2021_3117865 9577222 |
Genre | orig-research |
GrantInformation_xml | – fundername: Shenzhen College Stability Support Plan grantid: GXWD20201230155427003-20200824210638001 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515011406 funderid: 10.13039/501100021171 – fundername: Research Committee at University of Macau grantid: MYRG2018-00136-FST funderid: 10.13039/501100004733 – fundername: National Natural Science Foundation of China grantid: 62071142 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACIWK AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF M43 O9- OCL PZZ RIA RIE RIG RNS VJK XFK AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c293t-7c72ddbbbfde4556430ba37526f96dfe03d8529b34bbed8b4ce4db9468fc60fc3 |
IEDL.DBID | RIE |
ISSN | 1549-8328 |
IngestDate | Thu Oct 10 18:23:11 EDT 2024 Fri Aug 23 01:04:39 EDT 2024 Wed Jun 26 19:26:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-7c72ddbbbfde4556430ba37526f96dfe03d8529b34bbed8b4ce4db9468fc60fc3 |
ORCID | 0000-0002-3529-0541 0000-0002-2329-6890 0000-0001-8728-3012 0000-0002-4487-6384 |
PQID | 2623470166 |
PQPubID | 85411 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2623470166 crossref_primary_10_1109_TCSI_2021_3117865 ieee_primary_9577222 |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems. I, Regular papers |
PublicationTitleAbbrev | TCSI |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 Shores (ref42) 2007 ref24 Schuster (ref1) 2006 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref6 doi: 10.1063/1.4823332 – ident: ref5 doi: 10.1017/cbo9781139343473 – ident: ref38 doi: 10.1007/s11071-017-3601-3 – ident: ref8 doi: 10.1109/TCSI.2021.3075550 – ident: ref48 doi: 10.3390/e21090819 – ident: ref24 doi: 10.1016/j.chaos.2005.11.087 – ident: ref34 doi: 10.1142/S0218127418501444 – ident: ref25 doi: 10.1109/TCYB.2018.2834356 – ident: ref23 doi: 10.1016/S0895-7177(00)00256-9 – ident: ref9 doi: 10.1109/TCSI.2020.3019030 – ident: ref49 doi: 10.1007/s11071-015-2525-z – ident: ref50 doi: 10.1109/TCSII.2019.2927371 – ident: ref35 doi: 10.1142/S0218127405014052 – ident: ref30 doi: 10.1109/TSMC.2015.2398836 – ident: ref11 doi: 10.1109/TCAD.2020.3002568 – ident: ref26 doi: 10.1109/TCYB.2018.2825253 – ident: ref21 doi: 10.1109/TSP.2018.2858212 – ident: ref43 doi: 10.1140/epjst/e2017-70058-2 – ident: ref37 doi: 10.1016/j.matcom.2014.11.006 – ident: ref28 doi: 10.1109/TSP.2012.2195659 – ident: ref32 doi: 10.1109/TCSI.2017.2717943 – volume-title: Applied Linear Algebra and Matrix Analysis year: 2007 ident: ref42 doi: 10.1007/978-0-387-48947-6 contributor: fullname: Shores – ident: ref14 doi: 10.1016/j.cjph.2020.11.014 – ident: ref19 doi: 10.1109/TCSI.2018.2888688 – ident: ref46 doi: 10.1152/ajpheart.2000.278.6.h2039 – volume-title: Deterministic Chaos: An Introduction year: 2006 ident: ref1 contributor: fullname: Schuster – ident: ref22 doi: 10.1109/TCYB.2018.2831782 – ident: ref47 doi: 10.1007/s11571-020-09583-9 – ident: ref31 doi: 10.1142/S0218127417501036 – ident: ref4 doi: 10.1142/S0218127417500912 – ident: ref15 doi: 10.1109/TCSI.2019.2948789 – ident: ref2 doi: 10.1007/978-3-319-30279-9 – ident: ref44 doi: 10.1016/0375-9601(95)00122-J – ident: ref16 doi: 10.1016/j.optlaseng.2019.105995 – ident: ref7 doi: 10.4324/9780429502309 – ident: ref45 doi: 10.1145/1268776.1268777 – ident: ref51 doi: 10.1049/iet-ipr.2018.5142 – ident: ref33 doi: 10.1016/j.sigpro.2017.08.020 – ident: ref40 doi: 10.1109/TCYB.2015.2483621 – ident: ref18 doi: 10.1109/TIE.2018.2833049 – ident: ref29 doi: 10.1587/transfun.E99.A.363 – ident: ref36 doi: 10.1002/cta.2062 – ident: ref17 doi: 10.1007/s11071-018-4440-6 – ident: ref39 doi: 10.1109/TCSI.2014.2304655 – ident: ref3 doi: 10.1109/TC.2021.3051387 – ident: ref13 doi: 10.1109/TCSII.2015.2435831 – ident: ref12 doi: 10.1109/TCSI.2020.2993674 – ident: ref27 doi: 10.1016/j.physleta.2016.01.040 – ident: ref41 doi: 10.1109/TCSVT.2017.2703946 – ident: ref10 doi: 10.1109/TNNLS.2019.2943548 – ident: ref20 doi: 10.1142/S0218127419300234 |
SSID | ssj0029031 |
Score | 2.5665557 |
Snippet | Designing high-dimensional chaotic maps with expected dynamic properties is an attractive but challenging task. The dynamic properties of a chaotic system can... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 784 |
SubjectTerms | Cats Channel noise Chaos theory Chaotic communication Chaotic system Complexity theory Degradation Dynamical systems Eigenvalues and eigenfunctions Hardware hardware implementation Liapunov exponents Linear algebra Mathematical analysis Microcontrollers nonlinear system Parameters Performance evaluation Polynomials random number generator secure communication |
Title | n-Dimensional Polynomial Chaotic System With Applications |
URI | https://ieeexplore.ieee.org/document/9577222 https://www.proquest.com/docview/2623470166 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwKohCQRmYEG4dx3l4rAqoIBUh0YpuUfxSEahBkA7w6zknaVUBA5uHWLLuHN_3-e4-A5zLwFpkAZpoYxnhGgkKBoWACEWtbyKOGN5dDYzuo-GE303DaQMuV70wxpiy-Mx03bDM5etcLdxVWU-EiAUZHrgbsRBVr9aKXAkaVNqoXBDcpUmdwfSp6I0Hj7fIBJmPBNWPExdH1mJQ-ajKr5O4DC83OzBaLqyqKnnpLgrZVV8_NBv_u_Jd2K5xptevNsYeNMx8H7bW1AdbIObkymn7V7oc3kP--ul6lHE4mGU5zvMqOXPv6bmYef21TPcBTG6ux4MhqV9SIArDeUFiFTOtpZRWGx6GiEKozII4ZJEVkbaGBjoJmZABl9LoRHJluJaCR4lVEbUqOITmPJ-bI_C4C_raj2kiLM-SUGSuxwR5tMgselm34WJp2_StEsxIS6JBReockTpHpLUj2tBytlp9WJupDZ2lN9L6l_pIGQI1HiNCjY7_nnUCm8z1JpQl1R1oFu8Lc4qIoZBn5Vb5BuGEvIw |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1VZQAGvgqiUCADEyJtPhwnHqtC1UJbIdGKblYc2yoCNQjSAX495yStKmBg8xBL1p3je8939wxwKXytkQVIWyrt2UQiQcGg4NsscbSrKEEMb64GhiPam5C7aTCtwPWqF0YplRefqaYZ5rl8mSYLc1XWYgFiQQ8P3A3E1REturVW9Io5fqGOSpiN-zQqc5iuw1rjzmMfuaDnIkV1w8hEkrUolD-r8usszgNMdxeGy6UVdSUvzUUmmsnXD9XG_659D3ZKpGm1i62xDxU1P4DtNf3BGrC5fWPU_QtlDushff00Xco47MziFOdZhaC59fSczaz2Wq77ECbd23GnZ5dvKdgJBvTMDpPQk1IIoaUiQYA4xBGxHwYe1YxKrRxfRoHHhE-EUDISJFFECkZopBPq6MQ_guo8natjsIgJ-9INnYhpEkcBi02XCTJpFmv0s6zD1dK2_K2QzOA51XAYN47gxhG8dEQdasZWqw9LM9WhsfQGL3-qD-4hVCMhYlR68vesC9jsjYcDPuiP7k9hyzOdCnmBdQOq2ftCnSF-yMR5vm2-AexSv9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=n+-Dimensional+Polynomial+Chaotic+System+With+Applications&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Hua%2C+Zhongyun&rft.au=Zhang%2C+Yinxing&rft.au=Bao%2C+Han&rft.au=Huang%2C+Hejiao&rft.date=2022-02-01&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=69&rft.issue=2&rft.spage=784&rft.epage=797&rft_id=info:doi/10.1109%2FTCSI.2021.3117865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSI_2021_3117865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon |