Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis

Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications of 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the qu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 12; pp. 22862 - 22883
Main Authors Fei, Ben, Yang, Weidong, Chen, Wen-Ming, Li, Zhijun, Li, Yikang, Ma, Tao, Hu, Xing, Ma, Lipeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications of 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, view-based, convolution-based, graph-based, generative model-based, transformer-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
AbstractList Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications of 3D computer vision. The progress of deep learning (DL) has impressively improved the capability and robustness of point cloud completion. However, the quality of completed point clouds is still needed to be further enhanced to meet the practical utilization. Therefore, this work aims to conduct a comprehensive survey on various methods, including point-based, view-based, convolution-based, graph-based, generative model-based, transformer-based approaches, etc. And this survey summarizes the comparisons among these methods to provoke further research insights. Besides, this review sums up the commonly used datasets and illustrates the applications of point cloud completion. Eventually, we also discussed possible research trends in this promptly expanding field.
Author Li, Zhijun
Li, Yikang
Hu, Xing
Chen, Wen-Ming
Ma, Tao
Fei, Ben
Yang, Weidong
Ma, Lipeng
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0002-3219-9996
  surname: Fei
  fullname: Fei, Ben
  email: bfei21@m.fudan.edu.cn
  organization: Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Weidong
  surname: Yang
  fullname: Yang, Weidong
  email: wdyang@fudan.edu.cn
  organization: Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
– sequence: 3
  givenname: Wen-Ming
  orcidid: 0000-0003-0409-5118
  surname: Chen
  fullname: Chen, Wen-Ming
  email: chenwm@fudan.edu.cn
  organization: Academy for Engineering and Technology, Fudan University, Shanghai, China
– sequence: 4
  givenname: Zhijun
  orcidid: 0000-0002-3909-488X
  surname: Li
  fullname: Li, Zhijun
  email: zjli@ieee.org
  organization: Department of Automation, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Yikang
  surname: Li
  fullname: Li, Yikang
  email: liyikang@pjlab.org.cn
  organization: Shanghai AI Laboratory, Shanghai, China
– sequence: 6
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  email: matao@pjlab.org.cn
  organization: Shanghai AI Laboratory, Shanghai, China
– sequence: 7
  givenname: Xing
  surname: Hu
  fullname: Hu, Xing
  email: huxing@usst.edu.cn
  organization: School of Optical-Electrical Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 8
  givenname: Lipeng
  surname: Ma
  fullname: Ma, Lipeng
  email: lpma21@m.fudan.edu.cn
  organization: Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
BookMark eNp9kE9LwzAYh4NMcE4_gHgJeO5M2qZpjrPzz2Dg0HmUkiVvNaNLatJN9u1t2fDgwVwS3jzPy4_fORpYZwGhK0rGlBJxu5wtX8cxieNxQgXrzgkaUsbyiBCaDfp3nEaCMHKGzkNYd9OUUTpE74XbNB4-wQazA_wCOwPf2FV4CtDgOUhvjf2I7mQAjZMpXjhjW1zUbqtxr9bQGmfxwjsFIXQollbjiZX1PphwgU4rWQe4PN4j9PZwvyyeovnz46yYzCMVi6SN-IpIkgvBcq4rUqmYap2QXOci0UpBzCqpUp6mucoVrQhU2SrTZKW7b8oEl8kI3Rz2Nt59bSG05dptfRcilDFPeUY7THQUP1DKuxA8VKUyrezzt16auqSk7Lss-y7Lvsvy2GVn0j9m481G-v2_zvXBMQDwy4uc8YyT5Aec-oHM
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_patcog_2024_110532
crossref_primary_10_1016_j_measurement_2024_116487
crossref_primary_10_1109_ACCESS_2024_3461828
crossref_primary_10_1016_j_measurement_2024_116246
crossref_primary_10_1016_j_isprsjprs_2023_09_008
crossref_primary_10_1111_cgf_15222
crossref_primary_10_1088_1361_6501_ad8fc2
crossref_primary_10_1109_ACCESS_2025_3547942
crossref_primary_10_1016_j_autcon_2023_105108
crossref_primary_10_1016_j_engappai_2023_107656
crossref_primary_10_3390_f16030513
crossref_primary_10_3390_sym16121680
crossref_primary_10_1016_j_oceaneng_2024_119112
crossref_primary_10_3390_app14020862
crossref_primary_10_1109_TVCG_2023_3344935
crossref_primary_10_1016_j_displa_2023_102456
crossref_primary_10_1016_j_neucom_2024_129037
crossref_primary_10_1016_j_neucom_2024_129313
crossref_primary_10_1016_j_ultras_2024_107381
crossref_primary_10_1109_TIP_2024_3512356
crossref_primary_10_1115_1_4056566
crossref_primary_10_1016_j_cag_2024_103915
crossref_primary_10_1016_j_ijrmms_2024_106005
crossref_primary_10_1111_cgf_15231
crossref_primary_10_1109_TIV_2024_3383108
crossref_primary_10_1109_TMM_2023_3318327
crossref_primary_10_1002_widm_1554
crossref_primary_10_1109_TRO_2025_3531816
crossref_primary_10_1007_s00371_024_03509_w
crossref_primary_10_3390_automation5040028
crossref_primary_10_3390_e26030235
crossref_primary_10_1109_TITS_2024_3388276
crossref_primary_10_1016_j_eswa_2023_122419
crossref_primary_10_3390_jmse11071339
crossref_primary_10_1016_j_patter_2024_101147
crossref_primary_10_1111_2041_210X_14412
crossref_primary_10_1007_s41315_023_00303_0
crossref_primary_10_1016_j_knosys_2024_112453
crossref_primary_10_1109_ACCESS_2024_3411029
crossref_primary_10_1007_s00521_024_10659_4
crossref_primary_10_1109_ACCESS_2023_3266340
crossref_primary_10_1080_15230406_2024_2320150
crossref_primary_10_3390_rs16203763
crossref_primary_10_1016_j_cad_2025_103848
crossref_primary_10_3390_e25071018
crossref_primary_10_1109_TMM_2024_3521854
crossref_primary_10_1109_JSTARS_2024_3478069
crossref_primary_10_1186_s13640_024_00659_8
crossref_primary_10_1016_j_compag_2024_109673
crossref_primary_10_1109_ACCESS_2025_3528245
crossref_primary_10_1109_TGRS_2025_3545783
crossref_primary_10_1038_s41598_024_68084_5
crossref_primary_10_1016_j_gmod_2024_101233
crossref_primary_10_3390_rs15174338
crossref_primary_10_1007_s40747_023_01325_8
crossref_primary_10_1016_j_jmb_2024_168543
crossref_primary_10_1016_j_isprsjprs_2024_07_009
crossref_primary_10_1007_s00371_023_03237_7
crossref_primary_10_1080_19424280_2024_2319796
crossref_primary_10_1016_j_inffus_2024_102388
crossref_primary_10_3390_agriculture13102026
crossref_primary_10_1109_ACCESS_2025_3536004
crossref_primary_10_1016_j_media_2024_103439
crossref_primary_10_1016_j_compbiomed_2023_107519
crossref_primary_10_3390_en17205177
crossref_primary_10_1007_s11263_023_01820_y
crossref_primary_10_1016_j_neucom_2025_129768
crossref_primary_10_1016_j_aej_2024_10_037
crossref_primary_10_1109_ACCESS_2023_3339657
crossref_primary_10_1186_s13007_025_01347_y
crossref_primary_10_1007_s00521_024_09624_y
crossref_primary_10_1109_TITS_2023_3344806
crossref_primary_10_2298_CSIS230725043Z
crossref_primary_10_3390_rs14153617
crossref_primary_10_1016_j_compag_2023_108512
crossref_primary_10_1109_LRA_2024_3483037
crossref_primary_10_1109_TVCG_2023_3236061
crossref_primary_10_3390_app14041510
Cites_doi 10.1109/CVPR52688.2022.00162
10.1109/CVPR46437.2021.00181
10.1109/CVPR46437.2021.01151
10.1007/978-3-030-61401-0_28
10.1109/IROS45743.2020.9340862
10.1609/aaai.v34i07.6734
10.1007/s41095-021-0229-5
10.1109/CVPR.2017.16
10.1109/CVPR.2019.00605
10.1109/MFI.2016.7849532
10.1109/CVPR.2019.00047
10.1109/CVPR46437.2021.01511
10.1007/978-3-030-89370-5_30
10.1109/CVPR.2017.693
10.1016/j.neucom.2021.07.035
10.1109/WACV.2019.00122
10.1007/978-3-319-49409-8_20
10.1243/PIME_PROC_1994_208_056_02
10.1109/WACV.2019.00117
10.1109/LRA.2022.3146585
10.1109/IROS51168.2021.9636483
10.1016/S0890-6955(02)00030-5
10.1145/3326362
10.1007/978-3-030-58595-2_31
10.1145/3474085.3475348
10.1016/j.neucom.2021.07.087
10.1109/ICCV48922.2021.01227
10.1109/TMM.2020.2976627
10.24963/ijcai.2019/517
10.1109/ICCV48922.2021.01294
10.1109/CVPR.2019.00352
10.1109/CVPR42600.2020.00087
10.1109/WACV45572.2020.9093430
10.1109/ICCV.2017.252
10.1609/aaai.v34i07.6827
10.1109/ICCV.2019.00825
10.1609/aaai.v35i4.16478
10.1007/978-3-030-01270-0_39
10.1109/CVPR52688.2022.00546
10.1109/ICIP42928.2021.9506234
10.1145/3436369.3437421
10.1109/ICCV.2017.19
10.1177/0278364913491297
10.1109/ICCV.2019.00651
10.1109/ICCV48922.2021.01226
10.1109/ICCV48922.2021.01228
10.1109/ICCV.2019.00730
10.1145/3394171.3413648
10.1109/CVPR.2019.00985
10.1109/CVPR46437.2021.00736
10.1109/LRA.2020.2994483
10.1007/978-3-030-58558-7_17
10.1109/JETCAS.2018.2885981
10.1109/TPAMI.2020.3005434
10.3390/ijgi10070482
10.1109/CVPR42600.2020.00700
10.1109/3DV50981.2020.00021
10.1109/CCDC.2019.8832956
10.1016/j.neucom.2019.12.032
10.1109/CVPR42600.2020.00201
10.1061/(ASCE)CP.1943-5487.0000028
10.1109/CVPR52688.2022.00040
10.1109/CVPR46437.2021.01013
10.1109/CVPR.2019.00910
10.1117/12.2586422
10.1007/978-3-030-58580-8_5
10.1109/CVPR52688.2022.00177
10.1109/MCG.2021.3065533
10.1109/CVPR46437.2021.01268
10.1109/CVPR.2018.00295
10.1109/ICCV48922.2021.01595
10.1109/LRA.2021.3097081
10.1109/CVPR46437.2021.01563
10.1109/TGRS.2021.3105551
10.1109/ICCVW.2019.00506
10.1109/3DV.2018.00088
10.1109/CVPR.2017.264
10.1016/j.cagd.2020.101925
10.1109/ACCESS.2020.2973003
10.1016/j.imavis.2021.104193
10.1016/j.neucom.2021.06.080
10.5194/isprs-annals-V-2-2020-933-2020
10.1109/CVPR.2018.00478
10.1109/ICCV48922.2021.00545
10.1109/ICPR48806.2021.9413104
10.1016/j.tust.2010.04.008
10.1109/CVPR46437.2021.00842
10.1109/ICCV48922.2021.00964
10.1109/CVPR46437.2021.00738
10.1007/978-3-030-60633-6_27
10.1109/LRA.2020.3048658
10.1109/CVPR42600.2020.00768
10.1109/CVPR.2018.00029
10.1109/CVPR46437.2021.01288
10.1109/CVPR.2019.00110
10.1109/CVPR46437.2021.00459
10.1109/CVPR.2018.00109
10.1109/TIP.2021.3073318
10.1109/CVPR.2018.00209
10.1007/s11831-019-09320-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3195555
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 22883
ExternalDocumentID 10_1109_TITS_2022_3195555
9857670
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: U2033029
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-7b0a0899587df0fc21dd308d893dcce25fac47448c8c1f0ef6b6d0bd93d1597a3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Sun Jun 29 12:34:14 EDT 2025
Tue Jul 01 04:29:10 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Aug 27 02:15:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-7b0a0899587df0fc21dd308d893dcce25fac47448c8c1f0ef6b6d0bd93d1597a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3219-9996
0000-0002-3909-488X
0000-0003-0409-5118
PQID 2747611599
PQPubID 75735
PageCount 22
ParticipantIDs ieee_primary_9857670
proquest_journals_2747611599
crossref_citationtrail_10_1109_TITS_2022_3195555
crossref_primary_10_1109_TITS_2022_3195555
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref52
ref55
fröhlich (ref129) 2004; 36
li (ref101) 2018
ref54
lyu (ref37) 2021
zhang (ref10) 2022
cheng (ref136) 2020
achlioptas (ref93) 2018
ref51
ref50
ref45
zhang (ref90) 2020
qi (ref19) 2017
wu (ref35) 2015
ref48
ref47
ref42
ref41
ref44
ref43
fan (ref5) 2022
ref49
ref8
ref9
ref4
spurek (ref114) 2021
ref40
yan (ref137) 2020
ref34
ref36
wang (ref106) 2020
ref31
zhao (ref57) 2021
ref30
ref33
ref38
huang (ref1) 2021
ref24
ref23
ref26
ref25
wu (ref39) 2021
ref22
liu (ref17) 2019
dosovitskiy (ref119) 2020
ref27
ref29
zhang (ref81) 2019
wen (ref21) 2022
chen (ref98) 2019
ref13
ref12
ref128
ref15
su (ref6) 2022
ref14
ref126
ref97
ref127
ref96
ref124
ref99
ref11
ma (ref7) 2022
ref16
ref18
egiazarian (ref100) 2019
groueix (ref20) 2018
ref133
ref134
ref92
ref131
ref95
xie (ref75) 2020
ref132
ref94
ref130
son (ref125) 2020
ref89
ref139
ref86
ref138
ref85
ref135
ref88
ref87
li (ref58) 2021
vaswani (ref118) 2017
ref82
ref84
ref83
ref80
ref79
ref78
li (ref69) 2018; 31
ref109
ref107
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
valsesia (ref108) 2018
nie (ref46) 2020
ref71
ref111
ref70
ref112
lu (ref3) 2020
ref73
ref72
ref110
wang (ref28) 2020
wang (ref63) 2022
ref68
parmar (ref120) 2018
ref67
ref117
ref64
ref115
ref116
ref66
ref113
ref65
ref60
ref122
ref123
ref62
goodfellow (ref91) 2014; 27
ref61
ref121
chang (ref32) 2015
mendoza (ref53) 2020
References_xml – ident: ref8
  doi: 10.1109/CVPR52688.2022.00162
– ident: ref99
  doi: 10.1109/CVPR46437.2021.00181
– start-page: 40
  year: 2018
  ident: ref93
  article-title: Learning representations and generative models for 3D point clouds
  publication-title: Proc Int Conf Mach Learn
– ident: ref84
  doi: 10.1109/CVPR46437.2021.01151
– ident: ref115
  doi: 10.1007/978-3-030-61401-0_28
– start-page: 216
  year: 2018
  ident: ref20
  article-title: A papier-mâché approach to learning 3D surface generation
  publication-title: Proc IEEE Conf Comput Vis and Pattern Recog
– ident: ref105
  doi: 10.1109/IROS45743.2020.9340862
– start-page: 5998
  year: 2017
  ident: ref118
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 4055
  year: 2018
  ident: ref120
  article-title: Image transformer
  publication-title: Proc Int Conf Mach Learn
– year: 2021
  ident: ref39
  article-title: Density-aware chamfer distance as a comprehensive metric for point cloud completion
  publication-title: arXiv 2111 12702
– ident: ref66
  doi: 10.1609/aaai.v34i07.6734
– ident: ref121
  doi: 10.1007/s41095-021-0229-5
– ident: ref18
  doi: 10.1109/CVPR.2017.16
– year: 2019
  ident: ref17
  article-title: Point-voxel CNN for efficient 3D deep learning
  publication-title: arXiv 1907 03739
– ident: ref23
  doi: 10.1109/CVPR.2019.00605
– ident: ref134
  doi: 10.1109/MFI.2016.7849532
– ident: ref24
  doi: 10.1109/CVPR.2019.00047
– ident: ref74
  doi: 10.1109/CVPR46437.2021.01511
– year: 2015
  ident: ref32
  article-title: ShapeNet: An information-rich 3D model repository
  publication-title: arXiv 1512 03012
– ident: ref77
  doi: 10.1007/978-3-030-89370-5_30
– ident: ref12
  doi: 10.1109/CVPR.2017.693
– ident: ref86
  doi: 10.1016/j.neucom.2021.07.035
– ident: ref94
  doi: 10.1109/WACV.2019.00122
– year: 2020
  ident: ref119
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
– ident: ref14
  doi: 10.1007/978-3-319-49409-8_20
– year: 2019
  ident: ref81
  article-title: Linked dynamic graph CNN: Learning on point cloud via linking hierarchical features
  publication-title: arXiv 1904 10014
– ident: ref127
  doi: 10.1243/PIME_PROC_1994_208_056_02
– start-page: 1912
  year: 2015
  ident: ref35
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref22
  doi: 10.1109/WACV.2019.00117
– ident: ref26
  doi: 10.1109/LRA.2022.3146585
– ident: ref124
  doi: 10.1109/IROS51168.2021.9636483
– volume: 31
  start-page: 820
  year: 2018
  ident: ref69
  article-title: PointCNN: Convolution on X-transformed points
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref128
  doi: 10.1016/S0890-6955(02)00030-5
– ident: ref80
  doi: 10.1145/3326362
– ident: ref56
  doi: 10.1007/978-3-030-58595-2_31
– ident: ref52
  doi: 10.1145/3474085.3475348
– ident: ref96
  doi: 10.1016/j.neucom.2021.07.087
– ident: ref33
  doi: 10.1109/ICCV48922.2021.01227
– ident: ref109
  doi: 10.1109/TMM.2020.2976627
– ident: ref83
  doi: 10.24963/ijcai.2019/517
– ident: ref76
  doi: 10.1109/ICCV48922.2021.01294
– ident: ref40
  doi: 10.1109/CVPR.2019.00352
– ident: ref42
  doi: 10.1109/CVPR42600.2020.00087
– ident: ref62
  doi: 10.1109/WACV45572.2020.9093430
– ident: ref92
  doi: 10.1109/ICCV.2017.252
– ident: ref31
  doi: 10.1609/aaai.v34i07.6827
– ident: ref82
  doi: 10.1109/ICCV.2019.00825
– ident: ref11
  doi: 10.1609/aaai.v35i4.16478
– ident: ref139
  doi: 10.1007/978-3-030-01270-0_39
– ident: ref4
  doi: 10.1109/CVPR52688.2022.00546
– year: 2022
  ident: ref7
  article-title: Completing partial point clouds with outliers by collaborative completion and segmentation
  publication-title: arXiv 2203 09772
– year: 2019
  ident: ref98
  article-title: Unpaired point cloud completion on real scans using adversarial training
  publication-title: arXiv 1904 00069
– year: 2019
  ident: ref100
  article-title: Latent-space Laplacian pyramids for adversarial representation learning with 3D point clouds
  publication-title: arXiv 1912 06466
– ident: ref79
  doi: 10.1109/ICIP42928.2021.9506234
– ident: ref61
  doi: 10.1145/3436369.3437421
– ident: ref13
  doi: 10.1109/ICCV.2017.19
– ident: ref34
  doi: 10.1177/0278364913491297
– start-page: 365
  year: 2020
  ident: ref75
  article-title: GRNet: Gridding residual network for dense point cloud completion
  publication-title: Proc Eur Conf Comput Vis
– ident: ref71
  doi: 10.1109/ICCV.2019.00651
– ident: ref67
  doi: 10.1109/ICCV48922.2021.01226
– ident: ref59
  doi: 10.1109/ICCV48922.2021.01228
– ident: ref41
  doi: 10.1109/ICCV.2019.00730
– ident: ref107
  doi: 10.1145/3394171.3413648
– year: 2020
  ident: ref28
  article-title: Cascaded refinement network for point cloud completion with self-supervision
  publication-title: arXiv 2010 08719
– ident: ref72
  doi: 10.1109/CVPR.2019.00985
– start-page: 1
  year: 2018
  ident: ref108
  article-title: Learning localized generative models for 3D point clouds via graph convolution
  publication-title: Proc Int Conf Learn Represent
– ident: ref113
  doi: 10.1109/CVPR46437.2021.00736
– ident: ref29
  doi: 10.1109/LRA.2020.2994483
– ident: ref43
  doi: 10.1007/978-3-030-58558-7_17
– ident: ref133
  doi: 10.1109/JETCAS.2018.2885981
– ident: ref2
  doi: 10.1109/TPAMI.2020.3005434
– year: 2021
  ident: ref114
  article-title: HyperPocket: Generative point cloud completion
  publication-title: arXiv 2102 05973
– ident: ref132
  doi: 10.3390/ijgi10070482
– year: 2022
  ident: ref63
  article-title: PointAttN: You only need attention for point cloud completion
  publication-title: arXiv 2203 08485
– ident: ref73
  doi: 10.1109/CVPR42600.2020.00700
– ident: ref138
  doi: 10.1109/3DV50981.2020.00021
– ident: ref65
  doi: 10.1109/CCDC.2019.8832956
– ident: ref95
  doi: 10.1016/j.neucom.2019.12.032
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00201
– year: 2021
  ident: ref37
  article-title: A conditional point diffusion-refinement paradigm for 3D point cloud completion
  publication-title: arXiv 2112 03530
– ident: ref130
  doi: 10.1061/(ASCE)CP.1943-5487.0000028
– ident: ref116
  doi: 10.1109/CVPR52688.2022.00040
– year: 2022
  ident: ref6
  article-title: Point cloud completion on structured feature map with feedback network
  publication-title: arXiv 2202 08583
– ident: ref102
  doi: 10.1109/CVPR46437.2021.01013
– ident: ref16
  doi: 10.1109/CVPR.2019.00910
– year: 2017
  ident: ref19
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: arXiv 1706 02413
– ident: ref87
  doi: 10.1117/12.2586422
– ident: ref78
  doi: 10.1007/978-3-030-58580-8_5
– ident: ref9
  doi: 10.1109/CVPR52688.2022.00177
– year: 2021
  ident: ref57
  article-title: Relationship-based point cloud completion
  publication-title: IEEE Trans Vis Comput Graph
– ident: ref54
  doi: 10.1109/MCG.2021.3065533
– ident: ref117
  doi: 10.1109/CVPR46437.2021.01268
– year: 2020
  ident: ref53
  article-title: Refinement of predicted missing parts enhance point cloud completion
  publication-title: arXiv 2010 04278
– ident: ref44
  doi: 10.1109/CVPR.2018.00295
– year: 2022
  ident: ref21
  article-title: PMP-Net++: Point cloud completion by transformer-enhanced multi-step point moving paths
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref123
  doi: 10.1109/ICCV48922.2021.01595
– ident: ref85
  doi: 10.1109/LRA.2021.3097081
– ident: ref50
  doi: 10.1109/CVPR46437.2021.01563
– ident: ref104
  doi: 10.1109/TGRS.2021.3105551
– ident: ref68
  doi: 10.1109/ICCVW.2019.00506
– ident: ref25
  doi: 10.1109/3DV.2018.00088
– year: 2022
  ident: ref5
  article-title: Reconstruction-aware prior distillation for semi-supervised point cloud completion
  publication-title: arXiv 2204 09186
– ident: ref38
  doi: 10.1109/CVPR.2017.264
– ident: ref47
  doi: 10.1016/j.cagd.2020.101925
– year: 2018
  ident: ref101
  article-title: Point cloud GAN
  publication-title: arXiv 1810 05795
– volume: 27
  start-page: 1
  year: 2014
  ident: ref91
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref55
  doi: 10.1109/ACCESS.2020.2973003
– ident: ref89
  doi: 10.1016/j.imavis.2021.104193
– ident: ref45
  doi: 10.1016/j.neucom.2021.06.080
– year: 2020
  ident: ref90
  article-title: PC-RGNN: Point cloud completion and graph neural network for 3D object detection
  publication-title: arXiv 2012 10412
– year: 2020
  ident: ref3
  article-title: Deep learning for 3D point cloud understanding: A survey
  publication-title: arXiv 2009 08920
– ident: ref51
  doi: 10.5194/isprs-annals-V-2-2020-933-2020
– ident: ref64
  doi: 10.1109/CVPR.2018.00478
– ident: ref112
  doi: 10.1109/ICCV48922.2021.00545
– ident: ref88
  doi: 10.1109/ICPR48806.2021.9413104
– ident: ref135
  doi: 10.1016/j.tust.2010.04.008
– year: 2020
  ident: ref106
  article-title: Learning geometry-image representation for 3D point cloud generation
  publication-title: arXiv 2011 14289
– ident: ref36
  doi: 10.1109/CVPR46437.2021.00842
– year: 2021
  ident: ref1
  article-title: A comprehensive survey on point cloud registration
  publication-title: arXiv 2103 02690
– year: 2020
  ident: ref46
  article-title: Skeleton-bridged point completion: From global inference to local adjustment
  publication-title: arXiv 2010 07428
– year: 2022
  ident: ref10
  article-title: SRPCN: Structure retrieval based point completion network
  publication-title: arXiv 2202 02669
– ident: ref126
  doi: 10.1109/ICCV48922.2021.00964
– ident: ref122
  doi: 10.1109/CVPR46437.2021.00738
– ident: ref60
  doi: 10.1007/978-3-030-60633-6_27
– ident: ref27
  doi: 10.1109/LRA.2020.3048658
– ident: ref103
  doi: 10.1109/CVPR42600.2020.00768
– ident: ref48
  doi: 10.1109/CVPR.2018.00029
– ident: ref97
  doi: 10.1109/CVPR46437.2021.01288
– year: 2021
  ident: ref58
  article-title: High-fidelity point cloud completion with low-resolution recovery and noise-aware upsampling
  publication-title: arXiv 2112 11271
– ident: ref49
  doi: 10.1109/CVPR.2019.00110
– ident: ref110
  doi: 10.1109/CVPR46437.2021.00459
– volume: 36
  start-page: 2w
  year: 2004
  ident: ref129
  article-title: Terrestrial laser scanning-New perspectives in 3D surveying
  publication-title: Int Arch Photogramm Remote Sens Spatial Inf Sci
– ident: ref70
  doi: 10.1109/CVPR.2018.00109
– year: 2020
  ident: ref136
  article-title: S3CNet: A sparse semantic scene completion network for LiDAR point clouds
  publication-title: arXiv 2012 09242
– year: 2020
  ident: ref137
  article-title: Sparse single sweep LiDAR point cloud segmentation via learning contextual shape priors from scene completion
  publication-title: arXiv 2012 03762
– ident: ref111
  doi: 10.1109/TIP.2021.3073318
– ident: ref15
  doi: 10.1109/CVPR.2018.00209
– start-page: 1
  year: 2020
  ident: ref125
  article-title: SAUM: Symmetry-aware upsampling module for consistent point cloud completion
  publication-title: Proc Asian Conf Comput Vis
– ident: ref131
  doi: 10.1007/s11831-019-09320-4
SSID ssj0014511
Score 2.6656287
SecondaryResourceType review_article
Snippet Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays a vital role in the applications of 3D computer...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22862
SubjectTerms 3D vision
Cloud computing
completion
Computer vision
Deep learning
Laser radar
point cloud
Point cloud compression
Shape
Solid modeling
Task analysis
Three dimensional models
Three-dimensional displays
Title Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis
URI https://ieeexplore.ieee.org/document/9857670
https://www.proquest.com/docview/2747611599
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJz34a4rTKTl4ErulWdM2R92UKUwEN9hFSpsfKo52zPbiX-9L2o6hIt4KfSmhL837vr73viB0zryYuyERjtAaCEpAhcM51Y4msRFfEX5ii2jGD_5o6t3P2KyBLle9MEopW3ymuubS5vJlJgrzq6zHQ0DHARD0DSBuZa_WKmNgdLasNir1HE5YncF0Ce9N7iZPwAQpBYLKGTNdfWsxyB6q8mMntuHldgeN64mVVSXv3SJPuuLzm2bjf2e-i7YrnImvyoWxhxoq3Udba-qDLfRs9oKlei1L2HGZJcCZxkOlFrgSXn1xriHOSdwf4sfsLc3xYJ4VEpuhRrY7S3HVagCmOE4lrlVODtD09mYyGDnVaQuOgJCfO0FCYpMDZGEgNdGCulL2SSgB0EghFGU6Fl4AbE6EwtVEaT_xJUkk3AZIFMT9Q9RMs1QdIUxc5QLMoYwGRkGNxmAO0dILYqmI5KyNSP3-I1FJkZsTMeaRpSSER8ZlkXFZVLmsjS5WQxalDsdfxi3jgpVh9fbbqFM7Oaq-1I_IsHIfYDHnx7-POkGb5tllCUsHNfNloU4BiOTJmV2BX0vi2MM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5kPagH3-Lqqjl4ErubZpu2OeqqrI8VwRW8SGnzUHFpRduLv95JH4uoiLdCJzR00sz3dWa-AOxzLxZuSKUjjUGCEjDpCMGMY2hsxVekn5RFNKNrf3jnXdzz-xk4nPbCaK3L4jPdtZdlLl9lsrC_ynoiRHQcIEGfxbjP3apba5ozsEpbpToq8xxBeZPDdKnojc_Ht8gFGUOKKji3fX1folB5rMqPvbgMMGdLMGqmVtWVvHSLPOnKj2-qjf-d-zIs1kiTHFVLYwVmdLoKC1_0B9fgwe4Gb_qpKmInVZ6AZIacaP1KaunVR-cYI50i_RNykz2nORlMskIRO9QKd2cpqZsN0JTEqSKNzsk63J2djgdDpz5vwZEY9HMnSGhss4A8DJShRjJXqT4NFUIaJaVm3MTSC5DPyVC6hmrjJ76iicLbCIqCuL8BrTRL9SYQ6moXgQ7jLLAaaixGc4yXXhArTZXgbaDN-49kLUZuz8SYRCUpoSKyLousy6LaZW04mA55rZQ4_jJesy6YGtZvvw2dxslR_a2-R5aX-wiMhdj6fdQezA3Ho6vo6vz6chvm7XOqgpYOtPK3Qu8gLMmT3XI1fgLFKdwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Review+of+Deep+Learning-Based+3D+Point+Cloud+Completion+Processing+and+Analysis&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Fei%2C+Ben&rft.au=Yang%2C+Weidong&rft.au=Chen%2C+Wen-Ming&rft.au=Li%2C+Zhijun&rft.date=2022-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=23&rft.issue=12&rft.spage=22862&rft.epage=22883&rft_id=info:doi/10.1109%2FTITS.2022.3195555&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3195555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon