Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data

Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data sharing. The non-independent-and-identically-distributed (non-i.i.d.) data samples invoke discrepancies between the global and local objectiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 9; no. 5; pp. 3099 - 3111
Main Authors Wu, Hongda, Wang, Ping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data sharing. The non-independent-and-identically-distributed (non-i.i.d.) data samples invoke discrepancies between the global and local objectives, making the FL model slow to converge. In this paper, we proposed Optimal Aggregation algorithm for better aggregation, which finds out the optimal subset of local updates of participating nodes in each global round, by identifying and excluding the adverse local updates via checking the relationship between the local gradient and the global gradient. Then, we proposed a P robabilistic N ode S election framework ( FedPNS ) to dynamically change the probability for each node to be selected based on the output of Optimal Aggregation . FedPNS can preferentially select nodes that propel faster model convergence. The convergence rate improvement of FedPNS over the commonly adopted Federated Averaging ( FedAvg ) algorithm is analyzed theoretically. Experimental results demonstrate the effectiveness of FedPNS in accelerating the FL convergence rate, as compared to FedAvg with random node selection.
AbstractList Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data sharing. The non-independent-and-identically-distributed (non-i.i.d.) data samples invoke discrepancies between the global and local objectives, making the FL model slow to converge. In this paper, we proposed Optimal Aggregation algorithm for better aggregation, which finds out the optimal subset of local updates of participating nodes in each global round, by identifying and excluding the adverse local updates via checking the relationship between the local gradient and the global gradient. Then, we proposed a P robabilistic N ode S election framework ( FedPNS ) to dynamically change the probability for each node to be selected based on the output of Optimal Aggregation . FedPNS can preferentially select nodes that propel faster model convergence. The convergence rate improvement of FedPNS over the commonly adopted Federated Averaging ( FedAvg ) algorithm is analyzed theoretically. Experimental results demonstrate the effectiveness of FedPNS in accelerating the FL convergence rate, as compared to FedAvg with random node selection.
Author Wu, Hongda
Wang, Ping
Author_xml – sequence: 1
  givenname: Hongda
  orcidid: 0000-0001-8244-928X
  surname: Wu
  fullname: Wu, Hongda
  email: hwu1226@cse.yorku.ca
  organization: Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
– sequence: 2
  givenname: Ping
  orcidid: 0000-0002-1599-5480
  surname: Wang
  fullname: Wang, Ping
  email: pingw@yorku.ca
  organization: Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
BookMark eNp9kE1LAzEQhoMoWGt_gHgJeN6ar02ao_RDC6U9tIK3kM3Oli01qdlU8d-7S4sHD55mDu8zL_PcoEsfPCB0R8mQUqIfN8v1dMgIY0NOheRaX6Ae41xknOm3y25nKhNSq2s0aJodIYSykeSc99BqGUrAa9iDS3XweBO-bCzxzDYJIh4H_wlxC94BrkLEMygh2gQlXoCNvvZb3DLL4LP5fIInNtlbdFXZfQOD8-yj19l0M37JFqvn-fhpkTmmecqULEWRW1sRWpSSVgXT5SjPrea5EwBVaQthhSYOqORSaUZI5YgEmuccRiPF--jhdPcQw8cRmmR24Rh9W2mYooxIIihpU_SUcjE0TYTKHGL9buO3ocR06kynznTqzFldy6g_jKuT7eSkaOv9v-T9iawB4LdJK9o-oPgPrfF8SQ
CODEN ITNSD5
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102164
crossref_primary_10_1007_s12652_025_04958_4
crossref_primary_10_1109_TNSE_2025_3528982
crossref_primary_10_1109_TNSE_2023_3320123
crossref_primary_10_3390_s24206711
crossref_primary_10_1109_TMLCN_2023_3302811
crossref_primary_10_3934_era_2024079
crossref_primary_10_1016_j_future_2024_01_007
crossref_primary_10_1016_j_ins_2024_121057
crossref_primary_10_1109_JIOT_2023_3277463
crossref_primary_10_1016_j_comnet_2024_110248
crossref_primary_10_1109_JIOT_2023_3299573
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1145_3638052
crossref_primary_10_3390_s24041342
crossref_primary_10_1109_OJCOMS_2024_3504852
crossref_primary_10_1109_JIOT_2024_3416943
crossref_primary_10_1109_TMC_2024_3504271
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_TNSE_2024_3507273
crossref_primary_10_1109_JIOT_2024_3403082
crossref_primary_10_1109_TCSS_2022_3216802
crossref_primary_10_3390_electronics12091972
crossref_primary_10_1109_TSC_2023_3332102
crossref_primary_10_1109_TNSM_2023_3288738
crossref_primary_10_1016_j_comnet_2023_109678
crossref_primary_10_1109_OJCOMS_2024_3458088
crossref_primary_10_3390_s22020450
crossref_primary_10_1109_JIOT_2023_3320250
crossref_primary_10_1145_3708495
crossref_primary_10_3390_electronics14050954
crossref_primary_10_1016_j_comnet_2025_111223
crossref_primary_10_1016_j_pmcj_2024_101948
crossref_primary_10_1109_TMC_2023_3331906
crossref_primary_10_3390_computers13050118
crossref_primary_10_1109_TGCN_2024_3350735
crossref_primary_10_1109_TMC_2024_3365477
crossref_primary_10_1109_TII_2024_3431020
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_1109_TMC_2024_3504284
crossref_primary_10_1016_j_ymssp_2023_111068
crossref_primary_10_1145_3718363
crossref_primary_10_1109_ACCESS_2023_3323617
crossref_primary_10_1109_TWC_2024_3357208
crossref_primary_10_1109_TWC_2024_3487986
crossref_primary_10_1109_JIOT_2024_3376548
crossref_primary_10_3390_app14072720
crossref_primary_10_1109_TNSE_2024_3398795
crossref_primary_10_1007_s10462_024_10969_y
crossref_primary_10_1109_TGRS_2024_3406817
crossref_primary_10_1109_JIOT_2024_3364247
crossref_primary_10_3390_math12203229
crossref_primary_10_1016_j_inffus_2024_102645
crossref_primary_10_1007_s42452_023_05498_2
crossref_primary_10_1088_1361_6501_acf7da
crossref_primary_10_1109_IOTM_001_2300187
crossref_primary_10_1109_JIOT_2024_3481213
crossref_primary_10_1109_TMC_2023_3276900
crossref_primary_10_1109_JIOT_2024_3373822
crossref_primary_10_1016_j_dcan_2022_08_001
crossref_primary_10_1016_j_jksuci_2024_101912
crossref_primary_10_3390_fi15060209
crossref_primary_10_1016_j_compeleceng_2023_109067
crossref_primary_10_1016_j_neucom_2023_126897
crossref_primary_10_1016_j_engappai_2024_108840
crossref_primary_10_1109_LCOMM_2023_3312793
crossref_primary_10_3390_s23229226
crossref_primary_10_1016_j_iswa_2024_200359
crossref_primary_10_1109_JIOT_2023_3263598
crossref_primary_10_1109_TGCN_2023_3309657
crossref_primary_10_1145_3678181
Cites_doi 10.1109/ICDCS.2019.00099
10.1109/TWC.2021.3052681
10.1109/JIOT.2016.2584538
10.1109/JPROC.2019.2941458
10.1109/JSAC.2019.2904348
10.1073/pnas.2024789118
10.21437/Interspeech.2014-274
10.1109/TCCN.2021.3084406
10.1109/TMC.2019.2908171
10.1109/MCE.2016.2590118
10.1109/ICASSP39728.2021.9413655
10.1109/INFOCOM41043.2020.9155494
10.1109/ICC.2019.8761315
10.1109/TWC.2020.3042530
10.1109/TWC.2020.3015671
10.1109/JSAC.2020.3036952
10.1109/TWC.2019.2946245
10.1109/MCOM.2018.1701095
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2022.3146399
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 3111
ExternalDocumentID 10_1109_TNSE_2022_3146399
9716797
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada; NSERC
  grantid: RGPIN-2019-06375
  funderid: 10.13039/501100000038
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-76d4b5aaf01bd61fb29d855a935c4eefdab4a490ce163679200fc06e1553e8873
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:54:38 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Tue Jul 01 03:10:44 EDT 2025
Wed Aug 27 02:29:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/Crown.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-76d4b5aaf01bd61fb29d855a935c4eefdab4a490ce163679200fc06e1553e8873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8244-928X
0000-0002-1599-5480
PQID 2712060410
PQPubID 2040409
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNSE_2022_3146399
proquest_journals_2712060410
crossref_primary_10_1109_TNSE_2022_3146399
ieee_primary_9716797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Shamir (ref29) 2014
ref11
Stich (ref27) 2019
ref2
Li (ref26) 2020
ref1
ref17
ref16
ref19
McMahan (ref6) 2017
ref18
Zhang (ref4) 2015
ref23
Krizhevsky (ref31)
ref25
Lin (ref14) 2018
ref22
ref21
ref28
Chen (ref24) 2020
Konenỳ (ref7) 2016
ref8
ref3
ref5
Li (ref9) 2020
Cho (ref20) 2020
LeCun (ref30) 2010
Zhao (ref10) 2018
References_xml – ident: ref13
  doi: 10.1109/ICDCS.2019.00099
– ident: ref19
  doi: 10.1109/TWC.2021.3052681
– year: 2020
  ident: ref24
  article-title: Optimal client sampling for federated learning
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref27
  article-title: Local SGD converges fast and communicates little
– start-page: 1273
  volume-title: Proc. Artif. Intell. Statist. Conf.
  year: 2017
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
– start-page: 1000
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2014
  ident: ref29
  article-title: Communication-efficient distributed optimization using an approximate Newton-type method
– ident: ref1
  doi: 10.1109/JIOT.2016.2584538
– year: 2010
  ident: ref30
  article-title: MNIST handwritten digit database
– ident: ref8
  doi: 10.1109/JPROC.2019.2941458
– year: 2018
  ident: ref10
  article-title: Federated learning with non-IID data
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2018
  ident: ref14
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
– ident: ref12
  doi: 10.1109/JSAC.2019.2904348
– year: 2016
  ident: ref7
  article-title: Federated learning: Strategies for improving communication efficiency
– ident: ref21
  doi: 10.1073/pnas.2024789118
– ident: ref15
  doi: 10.21437/Interspeech.2014-274
– ident: ref17
  doi: 10.1109/TCCN.2021.3084406
– ident: ref5
  doi: 10.1109/TMC.2019.2908171
– ident: ref31
  article-title: CIFAR-10 (Canadian institute for advanced research)
– ident: ref3
  doi: 10.1109/MCE.2016.2590118
– ident: ref25
  doi: 10.1109/ICASSP39728.2021.9413655
– ident: ref11
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: ref18
  doi: 10.1109/ICC.2019.8761315
– ident: ref22
  doi: 10.1109/TWC.2020.3042530
– ident: ref23
  doi: 10.1109/TWC.2020.3015671
– start-page: 308
  volume-title: Proc. IEEE Symp. Ser.-Oriented Syst. Eng.
  year: 2015
  ident: ref4
  article-title: Testing location-based function services for mobile applications
– start-page: 429
  volume-title: Proc. Mach. Learn. Syst.
  year: 2020
  ident: ref9
  article-title: Federated optimization in heterogeneous networks
– ident: ref28
  doi: 10.1109/JSAC.2020.3036952
– year: 2020
  ident: ref20
  article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies
– ident: ref16
  doi: 10.1109/TWC.2019.2946245
– ident: ref2
  doi: 10.1109/MCOM.2018.1701095
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2020
  ident: ref26
  article-title: On the convergence of fedavg on non-IID data
SSID ssj0001286333
Score 2.573432
Snippet Federated Learning (FL) is a distributed learning paradigm that enables a large number of resource-limited nodes to collaboratively train a model without data...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3099
SubjectTerms Agglomeration
Algorithms
Computational modeling
Convergence
Data models
Data retrieval
Elections
fast convergence
Federated learning
mobile edge computing
node selection
Nodes
Predictive models
Probabilistic logic
Servers
Training
Title Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
URI https://ieeexplore.ieee.org/document/9716797
https://www.proquest.com/docview/2712060410
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgjSgU5IEJkTYP5-ER9aEWqWWglbpFjn1hALUI0oVfz9lJq_IQYstwjk53tu_hu-8Arr1IGYiPwAmzhAIUHuWODLzIIesquJ9LEaNJDYwn0XDG7-fhvAa3m14YRLTFZ9g2n_YtXy_VyqTKOgbuKBZxHeoUuJW9Wlv5lCQKgqB6uPRc0ZlOHvsUAPo-xaXcGOIvpsfOUvlxAVurMtiH8Zqfspjkub0qsrb6-AbV-F-GD2Cvci_ZXbkfDqGGiyPY3QIdPIaHyVIje7Tzb0gpbGoLZ9lAGsgE1jVV6LYhExn5s2xgwCbIH9WsQmJ9YrRmslw4o1GP9WQhT2A26E-7Q6caq-Aosu2FE0eaZ6GUuetlOvLyzBc6CUMpglBxxFzLjEsuXIXkqxH7dI5y5UZoJgwh3UnBKTQWywWeAeMSE0EK9WOteIJekvGQqAIpZC5irZvgriWeqgpz3Iy-eElt7OGK1CgpNUpKKyU14Waz5LUE3PiL-NgIfUNYybsJrbVa0-pIvqd-7PkGKchzz39fdQE75t9lAVkLGsXbCi_J4yiyK7vVPgG64NGf
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PTAhUuLEeXhEQNUCDQNFYosc-8IAahGkC7-es5NWvITYMvgUy5_te_juO4AjHmtL8RF6UZGSgyLi0lMhjz3SrlIEpZIJ2tBAP4u79-LqIXqYgZNpLQwiuuQzbNtP95ZvRnpsQ2Wnlu4okckszJPej3hdrfUpopLGYRg2T5fcl6eD7O6SXMAgIM9UWFX8Rfm4bio_rmCnVzor0J_MqE4neWqPq6Kt37-RNf53yquw3BiY7KzeEWswg8N1WPpEO7gBt9nIILtzHXAIFjZwqbOsoyxpAju3eeiuJBMZWbSsY-kmyCI1rOFifWQkk42GXq93wS5UpTbhvnM5OO96TWMFT5N2r7wkNqKIlCp9XpiYl0UgTRpFSoaRFoilUYVQQvoayVqj6dNJKrUfo-0xhHQrhVswNxwNcRuYUJhKgjRIjBYp8rQgZMiEVFKVMjGmBf5kxXPdsI7b5hfPufM-fJlbkHILUt6A1ILjqchLTbnx1-ANu-jTgc16t2BvAmveHMq3PEh4YLmCuL_zu9QhLHQH_Zv8ppdd78Ki_U-dTrYHc9XrGPfJ_qiKA7ftPgDUPtTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Node+Selection+Toward+Faster+Convergence+for+Federated+Learning+on+Non-IID+Data&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wu%2C+Hongda&rft.au=Wang%2C+Ping&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=9&rft.issue=5&rft.spage=3099&rft_id=info:doi/10.1109%2FTNSE.2022.3146399&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon