Visibility-Based Persistent Monitoring of Piecewise Linear Features on a Terrain Using Multiple Aerial and Ground Robots
Persistent monitoring on terrains using mobile robotic sensors requires coordinated planning. Terrain features add visibility obstacles and limited fuel capacity of aerial robots leads to range restrictions that make the problem challenging. We address the visual-monitoring problem on piecewise line...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 18; no. 4; pp. 1692 - 1704 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Persistent monitoring on terrains using mobile robotic sensors requires coordinated planning. Terrain features add visibility obstacles and limited fuel capacity of aerial robots leads to range restrictions that make the problem challenging. We address the visual-monitoring problem on piecewise linear features within a terrain using multiple mobile robots for persistent operations. The planner must account for visual coverage, refueling aerial robots during the mission, and placement of refueling depots while also utilizing the available sensor diversity to minimize overall costs for the monitoring mission. Building on previous works on visibility in specific classes of polygons and fuel-constrained routing, we develop a discrete representation of the problem that allows the design and application of discrete optimization techniques to find optimal solutions. We develop a mixed-integer linear programming (MILP) formulation and discuss a branch-and-cut implementation to compute exact solutions. We also develop a construction heuristic based on the idea of competitive construction of robot paths using a step-increment strategy. We report the results from computational simulations and illustrate proof of concept using experiments on real robots. Note to Practitioners -This article is motivated by the need to perform persistent monitoring in applications, such as border patrol and perimeter surveillance. Unmanned aerial and ground robots can be used to perform these activities uninterruptedly. However, aerial robots have limited fuel capacity and need periodic refueling. Hence, the number of refueling depots and their placement within the environment also affects the monitoring task. Also, due to terrain variation, robots are subject to limited visibility. Therefore, we need to consider refueling constraints and terrain visibility aspects while planning optimal routes for the robots to perform visual monitoring. In this article, we present a general optimal routing formulation to compute exact solutions. We also present a fast heuristic for real-time applications that produce feasible solutions. The algorithms are validated in simulations. We also show a proof of concept using experiments in limited outdoor settings. |
---|---|
AbstractList | Persistent monitoring on terrains using mobile robotic sensors requires coordinated planning. Terrain features add visibility obstacles and limited fuel capacity of aerial robots leads to range restrictions that make the problem challenging. We address the visual-monitoring problem on piecewise linear features within a terrain using multiple mobile robots for persistent operations. The planner must account for visual coverage, refueling aerial robots during the mission, and placement of refueling depots while also utilizing the available sensor diversity to minimize overall costs for the monitoring mission. Building on previous works on visibility in specific classes of polygons and fuel-constrained routing, we develop a discrete representation of the problem that allows the design and application of discrete optimization techniques to find optimal solutions. We develop a mixed-integer linear programming (MILP) formulation and discuss a branch-and-cut implementation to compute exact solutions. We also develop a construction heuristic based on the idea of competitive construction of robot paths using a step-increment strategy. We report the results from computational simulations and illustrate proof of concept using experiments on real robots. Note to Practitioners -This article is motivated by the need to perform persistent monitoring in applications, such as border patrol and perimeter surveillance. Unmanned aerial and ground robots can be used to perform these activities uninterruptedly. However, aerial robots have limited fuel capacity and need periodic refueling. Hence, the number of refueling depots and their placement within the environment also affects the monitoring task. Also, due to terrain variation, robots are subject to limited visibility. Therefore, we need to consider refueling constraints and terrain visibility aspects while planning optimal routes for the robots to perform visual monitoring. In this article, we present a general optimal routing formulation to compute exact solutions. We also present a fast heuristic for real-time applications that produce feasible solutions. The algorithms are validated in simulations. We also show a proof of concept using experiments in limited outdoor settings. |
Author | Sujit, P. B. Tokekar, Pratap Maini, Parikshit |
Author_xml | – sequence: 1 givenname: Parikshit orcidid: 0000-0001-5229-4627 surname: Maini fullname: Maini, Parikshit email: pmaini@umn.edu organization: Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA – sequence: 2 givenname: Pratap orcidid: 0000-0002-3715-0382 surname: Tokekar fullname: Tokekar, Pratap email: tokekar@umd.edu organization: Department of Computer Science, University of Maryland, College Park, MD, USA – sequence: 3 givenname: P. B. orcidid: 0000-0002-7297-1493 surname: Sujit fullname: Sujit, P. B. email: sujit@iiserb.ac.in organization: Department of Electrical Engineering and Computer Science, Indian Institute of Science Education and Research Bhopal (IISERB), Bhopal, India |
BookMark | eNp9kE1LxDAURYMo-PkDxE3AdcekaabNchRHhRFFZ9yWNHmVJzUZkxT139sygwsXru5b3PMunEOy67wDQk45m3DO1MVy9nw9yVnOJoLxQhVqhxxwKatMlJXYHe9CZlJJuU8OY3xjLC8qxQ7I1wtGbLDD9J1d6giWPkKIGBO4RO-9w-QDulfqW_qIYOATI9AFOtCBzkGnPkCk3lFNlxCCRkdXcezf913CdQd0BgF1R7Wz9Cb4fogn3_gUj8leq7sIJ9s8Iqv59fLqNls83NxdzRaZyZVIWTnNhVWqsaYVeQlgCsNUU2hTMc6E1LnQtmmtbUttK6mAaWgbw4SVvFGmbMQROd_8XQf_0UNM9Zvvgxsm61yWqhBqyvjQ4puWCT7GAG29Dviuw3fNWT0KrkfB9Si43goemPIPYzDphN6lQUT3L3m2IREAfpcUL4vpVIofl7iM7A |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1109_TASE_2021_3061870 crossref_primary_10_1109_TASE_2021_3077689 crossref_primary_10_1002_rob_22466 crossref_primary_10_1049_cth2_12418 crossref_primary_10_1016_j_neucom_2024_128422 crossref_primary_10_1109_TVT_2024_3454101 crossref_primary_10_1109_TIE_2024_3374366 crossref_primary_10_3389_fcteg_2021_786877 crossref_primary_10_1109_TASE_2021_3126385 crossref_primary_10_1080_00207721_2024_2440104 crossref_primary_10_1109_TASE_2022_3204584 |
Cites_doi | 10.2514/6.2006-6455 10.1109/ICUAS.2015.7152432 10.1007/978-3-319-32552-1_61 10.1109/TNN.2010.2070518 10.1016/S0020-0190(00)00146-0 10.1109/JPROC.2006.876930 10.1109/TASE.2013.2279544 10.1109/VTCSpring.2019.8746387 10.1177/0278364913504011 10.1109/ICRA.2019.8794150 10.1007/978-3-642-56082-8 10.1007/978-3-540-68552-4_9 10.1137/1.9781611973105.60 10.1109/VTCSpring.2018.8417640 10.7551/mitpress/9407.001.0001 10.1109/ACC.2007.4282475 10.1007/BFb0028276 10.23919/ACC.2019.8815211 10.1109/IROS.2018.8593508 10.1007/PL00009271 10.1109/IROS.2015.7353849 10.1109/IROS.2018.8593960 10.1145/10515.10518 10.1007/PL00009467 10.3390/s150714887 10.1109/TITS.2012.2236555 10.1109/ICUAS.2017.7991314 10.1109/TAES.2019.2917578 10.1109/TASE.2019.2931894 10.1109/TPWRD.2009.2035427 10.1109/TASE.2015.2461213 10.1613/jair.4688 10.1109/TRO.2014.2380593 10.1016/j.engappai.2018.11.008 10.1061/(ASCE)1076-0342(2008)14:1(52) 10.1002/rob.21856 10.1109/CCTA.2018.8511587 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2020.3014949 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 1704 |
ExternalDocumentID | 10_1109_TASE_2020_3014949 9174665 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1566247 funderid: 10.13039/100000001 – fundername: IIIT Delhi – fundername: Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/P02839X/1 funderid: 10.13039/501100000266 – fundername: TCS Ph.D. Fellowship |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-7623d99bdcf327eec4c09b4ac801035a23adbfddf7ad859e0aefbc03d51b9c7b3 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Sun Jun 29 12:52:58 EDT 2025 Tue Jul 01 02:56:31 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 Wed Aug 27 02:26:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-7623d99bdcf327eec4c09b4ac801035a23adbfddf7ad859e0aefbc03d51b9c7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5229-4627 0000-0002-3715-0382 0000-0002-7297-1493 |
PQID | 2579439601 |
PQPubID | 27623 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TASE_2020_3014949 ieee_primary_9174665 crossref_citationtrail_10_1109_TASE_2020_3014949 proquest_journals_2579439601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 Nilsson (ref27) ref18 ref24 ref23 ref26 ref25 ref20 ref22 Grötschel (ref39) 1985 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.2514/6.2006-6455 – ident: ref19 doi: 10.1109/ICUAS.2015.7152432 – ident: ref2 doi: 10.1007/978-3-319-32552-1_61 – ident: ref26 doi: 10.1109/TNN.2010.2070518 – ident: ref22 doi: 10.1016/S0020-0190(00)00146-0 – start-page: 269 volume-title: Proc. Can. Conf. Comput. Geometry ident: ref27 article-title: Optimum watchmen routes in spiral polygons – ident: ref12 doi: 10.1109/JPROC.2006.876930 – ident: ref30 doi: 10.1109/TASE.2013.2279544 – ident: ref6 doi: 10.1109/VTCSpring.2019.8746387 – ident: ref18 doi: 10.1177/0278364913504011 – ident: ref33 doi: 10.1109/ICRA.2019.8794150 – ident: ref38 doi: 10.1007/978-3-642-56082-8 – ident: ref25 doi: 10.1007/978-3-540-68552-4_9 – ident: ref23 doi: 10.1137/1.9781611973105.60 – ident: ref4 doi: 10.1109/VTCSpring.2018.8417640 – ident: ref3 doi: 10.7551/mitpress/9407.001.0001 – ident: ref10 doi: 10.1109/ACC.2007.4282475 – ident: ref28 doi: 10.1007/BFb0028276 – ident: ref31 doi: 10.23919/ACC.2019.8815211 – ident: ref36 doi: 10.1109/IROS.2018.8593508 – ident: ref37 doi: 10.1007/PL00009271 – ident: ref17 doi: 10.1109/IROS.2015.7353849 – ident: ref35 doi: 10.1109/IROS.2018.8593960 – ident: ref21 doi: 10.1145/10515.10518 – ident: ref24 doi: 10.1007/PL00009467 – ident: ref5 doi: 10.3390/s150714887 – ident: ref7 doi: 10.1109/TITS.2012.2236555 – ident: ref1 doi: 10.1109/ICUAS.2017.7991314 – start-page: 251 volume-title: The Traveling Salesman Problem year: 1985 ident: ref39 article-title: Polyhedral theory – ident: ref13 doi: 10.1109/TAES.2019.2917578 – ident: ref15 doi: 10.1109/TASE.2019.2931894 – ident: ref8 doi: 10.1109/TPWRD.2009.2035427 – ident: ref32 doi: 10.1109/TASE.2015.2461213 – ident: ref34 doi: 10.1613/jair.4688 – ident: ref16 doi: 10.1109/TRO.2014.2380593 – ident: ref20 doi: 10.1016/j.engappai.2018.11.008 – ident: ref11 doi: 10.1061/(ASCE)1076-0342(2008)14:1(52) – ident: ref14 doi: 10.1002/rob.21856 – ident: ref29 doi: 10.1109/CCTA.2018.8511587 |
SSID | ssj0024890 |
Score | 2.3819065 |
Snippet | Persistent monitoring on terrains using mobile robotic sensors requires coordinated planning. Terrain features add visibility obstacles and limited fuel... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1692 |
SubjectTerms | Aerial refueling Algorithms Border patrol Business competition Computational modeling Constraints Design optimization Exact solutions Fuels Heuristic Integer programming Linear programming Mixed integer Mixed-integer linear programming (MILP) Monitoring multi-robot systems Optimization techniques path planning persistent monitoring Placement Planning Robot sensing systems Robot sensors Robots Routing Terrain Unmanned aerial vehicles Visibility |
Title | Visibility-Based Persistent Monitoring of Piecewise Linear Features on a Terrain Using Multiple Aerial and Ground Robots |
URI | https://ieeexplore.ieee.org/document/9174665 https://www.proquest.com/docview/2579439601 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB21PcGBr4IILcgHTginm107Xh_TqlWFFIQgRb2t_ClFVLuo2Yi2v54ZrxMqQIjT7mEsWXr2eJ79ZgbgrayMmPg44bEuBRcmCl5br7irlZfOyuAVZSPPP07PL8SHS3m5A--3uTAhhCQ-C2P6TW_5vnNruio7QmohplO5C7tI3IZcrV919ep0n0IRAZdayvyCOSn00WL25RSZYIkElQgBlc28dwalpip_eOJ0vJw9hvlmYoOq5Nt43duxu_utZuP_zvwJPMpxJpsNC-Mp7IT2GTy8V31wH26-LrM29pYf42HmGcnhCfa2Z8NeJ0PWRfZpGVz4sVwFhtwV9wajyHGNTJ11LTNsEa6p0wRL-gM2zxpFNkurm5nWM7riws_nznb96jlcnJ0uTs55bsTAHUYDPUeHWXmtrXexKlUITrhCW2FcTV0ipCkr4230Pirja6lDYUK0rqi8nFjtlK1ewF7bteElMGWUjaIIGGmWIjqlLVnrsnBI8dEfjKDYQNO4XKWcmmVcNYmtFLohNBtCs8lojuDddsj3oUTHv4z3CZ2tYQZmBIcb_Ju8iVcNejON8RpS1ld_H3UAD0qSuCRt3yHs9dfr8BpjlN6-SYvzJ5d95Xc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VcoAeeBVEoIAPnBBO92HH62NArQI0FYIU9bbyU4pAu1WzEY9fz4x3EypAiNPuYSxZ-uyZ-ezPMwDPZWlE7mPOY1UILkwUvLJecVcpL52VwSt6jTw_nczOxNtzeb4DL7dvYUIISXwWxvSb7vJ969Z0VHaI1EJMJvIaXMe4L_P-tdavynpVOlGhnIBLLeVwh5ln-nAx_XiEXLBAikqUgApnXolCqa3KH744BZjj2zDfTK3XlXwerzs7dj9-q9r4v3O_A7eGTJNN-6VxF3ZCcw_2rtQf3Idvn5aDOvY7f4XhzDMSxBPwTcf63U6GrI3s_TK48HW5CgzZK-4ORrnjGrk6axtm2CJcUq8JlhQIbD6oFNk0rW9mGs_okAs_H1rbdqv7cHZ8tHg940MrBu4wH-g4uszSa229i2WhQnDCZdoK4yrqEyFNURpvo_dRGV9JHTITonVZ6WVutVO2fAC7TduEh8CUUTaKLGCuWYjolLZkrYvMIclHjzCCbANN7YY65dQu40ud-Eqma0KzJjTrAc0RvNgOueiLdPzLeJ_Q2RoOwIzgYIN_PWzjVY3-TGPGhqT10d9HPYMbs8X8pD55c_ruMdwsSPCSlH4HsNtdrsMTzFg6-zQt1J-08OjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visibility-Based+Persistent+Monitoring+of+Piecewise+Linear+Features+on+a+Terrain+Using+Multiple+Aerial+and+Ground+Robots&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Maini%2C+Parikshit&rft.au=Tokekar%2C+Pratap&rft.au=Sujit%2C+P.+B.&rft.date=2021-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=18&rft.issue=4&rft.spage=1692&rft.epage=1704&rft_id=info:doi/10.1109%2FTASE.2020.3014949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2020_3014949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |