Transition-Aware Housekeeping Task Monitoring Using Single Wrist-Worn Sensor
Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health profe...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 21; pp. 8950 - 8962 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health professionals, such as the information of kitchen task, dressing task, food and fluid intake, and medication intake. However, few works pay attention to the housekeeping task, as the housekeeping performance correlates to the cognitive and functional health status in elderly people. Since typical clinical approaches of measuring and assessing housekeeping task performance suffer issues in long-term observation and manual error, a transition-aware household task monitoring system is proposed to support clinical professionals to gather fine-grained housekeeping task information for clinical assessment in this paper. Novel algorithms and models are proposed and designed based on knowledge and hierarchical approaches, including preliminary target activity recognition, transition detection, transition point identification, activity model, and activity inference. In addition, the typical activity classification and transition detection approach are implemented to compare with the proposed system. In the experiment, five healthy elderly participants are invited to take part in performing a set of four housekeeping activities, and there are 948 collected instances. The monitoring system is validated by using leave-one-subject-out cross-validation approach. The experimental results show that the best overall accuracy, recall, and precision of the proposed system can achieve 81.63%, 78.40%, and 78.58% when the window size is 2.0 s. |
---|---|
AbstractList | Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health professionals, such as the information of kitchen task, dressing task, food and fluid intake, and medication intake. However, few works pay attention to the housekeeping task, as the housekeeping performance correlates to the cognitive and functional health status in elderly people. Since typical clinical approaches of measuring and assessing housekeeping task performance suffer issues in long-term observation and manual error, a transition-aware household task monitoring system is proposed to support clinical professionals to gather fine-grained housekeeping task information for clinical assessment in this paper. Novel algorithms and models are proposed and designed based on knowledge and hierarchical approaches, including preliminary target activity recognition, transition detection, transition point identification, activity model, and activity inference. In addition, the typical activity classification and transition detection approach are implemented to compare with the proposed system. In the experiment, five healthy elderly participants are invited to take part in performing a set of four housekeeping activities, and there are 948 collected instances. The monitoring system is validated by using leave-one-subject-out cross-validation approach. The experimental results show that the best overall accuracy, recall, and precision of the proposed system can achieve 81.63%, 78.40%, and 78.58% when the window size is 2.0 s. |
Author | Kai-Chun Liu Chia-Yeh Hsieh Chia-Tai Chan |
Author_xml | – sequence: 1 givenname: Kai-Chun orcidid: 0000-0001-7867-4716 surname: Liu fullname: Liu, Kai-Chun – sequence: 2 givenname: Chia-Yeh surname: Hsieh fullname: Hsieh, Chia-Yeh – sequence: 3 givenname: Chia-Tai orcidid: 0000-0003-0995-601X surname: Chan fullname: Chan, Chia-Tai |
BookMark | eNo9kEtPAjEUhRuDiYD-AONmEteDt4_pY0kIigZ1AQR3TWE6poAttjMx_ntnAnFzXznnnuQboJ4P3iJ0i2GEMaiHl8X0bUQAyxGRXBIhL1AfF4XMsWCy180UckbFxxUapLQDwEoUoo_my2h8crULPh__mGizWWiS3Vt7dP4zW5q0z16Dd3WI3b5KXV205WCzdXSpztch-mxhfQrxGl1W5pDszbkP0epxupzM8vn70_NkPM-3RNE6FwWAqJQymABVIAQxm7IoWckqDu1JCiwIbDmRrDKGCb7hheAMREks5ZWkQ3R_-nuM4buxqda70ETfRmqCCcOK8jZoiPBJtY0hpWgrfYzuy8RfjUF30HQHTXfQ9Bla67k7eZy19l8vWUEVBvoHUwtoqQ |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s00521_023_08863_9 crossref_primary_10_3390_s21248227 crossref_primary_10_3390_app12104988 crossref_primary_10_1109_JSEN_2020_3004051 |
Cites_doi | 10.1007/s11517-010-0701-3 10.1186/s12984-015-0026-4 10.1007/978-3-319-21671-3_9 10.1016/j.jbi.2016.07.005 10.1146/annurev.bioeng.3.1.245 10.1093/ageing/afg097 10.5405/jmbe.1605 10.1016/S0895-4356(02)00461-4 10.1109/PerComW.2013.6529451 10.1093/geront/9.3_Part_1.179 10.1680/bbn.14.00006 10.1007/s11606-005-0103-7 10.1016/j.neucom.2015.07.085 10.1016/j.artmed.2007.11.007 10.1007/s10916-011-9719-9 10.1109/JBHI.2013.2282471 10.1016/j.pmcj.2016.09.009 10.1109/TNSRE.2012.2202691 10.1111/j.1365-2648.1996.tb02660.x 10.3390/s16081341 10.1037/a0014186 10.1145/2499621 10.3390/s17010187 10.1109/T-C.1971.223410 10.1016/j.patcog.2015.03.004 10.1016/j.pmcj.2016.01.004 10.1016/j.future.2017.11.029 10.1109/SURV.2012.110112.00192 10.1109/PERCOMW.2017.7917594 10.3390/s140305687 10.3390/s131013099 10.1007/978-3-642-21219-2_58 10.3414/ME10-02-0026 10.1088/0967-3334/30/4/R01 10.1109/TSMCC.2012.2198883 10.1109/FUTURETECH.2010.5482729 10.1016/j.eswa.2012.09.004 10.1016/j.clinbiomech.2014.06.013 10.1080/16501970510035070 10.3390/s140406474 10.1109/TITB.2010.2051955 10.1109/TNSRE.2013.2259640 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2018.2868278 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Public Health |
EISSN | 1558-1748 |
EndPage | 8962 |
ExternalDocumentID | 10_1109_JSEN_2018_2868278 8453910 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology grantid: MOST 106-2221-E-010-014 funderid: 10.13039/501100003711 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AJQPL AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-75007f99a120390772abd5d4d4f60203871720c6284faa476b6576407d2e36f83 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Oct 10 16:41:33 EDT 2024 Fri Aug 23 02:27:24 EDT 2024 Wed Jun 26 19:28:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-75007f99a120390772abd5d4d4f60203871720c6284faa476b6576407d2e36f83 |
ORCID | 0000-0003-0995-601X 0000-0001-7867-4716 |
PQID | 2124193629 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2018_2868278 proquest_journals_2124193629 ieee_primary_8453910 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 dominici (ref16) 0 ref17 ref38 ref19 stephen (ref18) 2009; 30 (ref1) 2015 lee (ref26) 2011 brezmes (ref24) 2009 guiry (ref25) 2014; 14 ref46 ref45 platt (ref41) 1999; 10 ref23 ref48 ref47 ref20 ref42 pham (ref6) 2010 ref44 khan (ref22) 2013; 13 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref5 ref40 lee (ref4) 2010 |
References_xml | – ident: ref5 doi: 10.1007/s11517-010-0701-3 – ident: ref20 doi: 10.1186/s12984-015-0026-4 – ident: ref12 doi: 10.1007/978-3-319-21671-3_9 – ident: ref28 doi: 10.1016/j.jbi.2016.07.005 – ident: ref46 doi: 10.1146/annurev.bioeng.3.1.245 – ident: ref14 doi: 10.1093/ageing/afg097 – ident: ref43 doi: 10.5405/jmbe.1605 – ident: ref13 doi: 10.1016/S0895-4356(02)00461-4 – ident: ref48 doi: 10.1109/PerComW.2013.6529451 – ident: ref36 doi: 10.1093/geront/9.3_Part_1.179 – ident: ref44 doi: 10.1680/bbn.14.00006 – year: 2015 ident: ref1 publication-title: World Population Ageing 2015 – ident: ref15 doi: 10.1007/s11606-005-0103-7 – year: 0 ident: ref16 article-title: Towards a feasibility-driven uncertainty-aware layered architecture for recognizing complex domestic activity contributor: fullname: dominici – ident: ref27 doi: 10.1016/j.neucom.2015.07.085 – ident: ref8 doi: 10.1016/j.artmed.2007.11.007 – ident: ref9 doi: 10.1007/s10916-011-9719-9 – ident: ref38 doi: 10.1109/JBHI.2013.2282471 – ident: ref45 doi: 10.1016/j.pmcj.2016.09.009 – year: 2009 ident: ref24 article-title: Activity recognition from accelerometer data on a mobile phone publication-title: Proc Int Work-Conf Artif Neural Netw contributor: fullname: brezmes – ident: ref32 doi: 10.1109/TNSRE.2012.2202691 – ident: ref11 doi: 10.1111/j.1365-2648.1996.tb02660.x – ident: ref23 doi: 10.3390/s16081341 – ident: ref10 doi: 10.1037/a0014186 – ident: ref17 doi: 10.1145/2499621 – ident: ref35 doi: 10.3390/s17010187 – ident: ref40 doi: 10.1109/T-C.1971.223410 – volume: 10 start-page: 61 year: 1999 ident: ref41 article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods publication-title: Adv Large Margin Classifiers contributor: fullname: platt – ident: ref34 doi: 10.1016/j.patcog.2015.03.004 – ident: ref42 doi: 10.1016/j.pmcj.2016.01.004 – ident: ref29 doi: 10.1016/j.future.2017.11.029 – ident: ref2 doi: 10.1109/SURV.2012.110112.00192 – start-page: 21 year: 2010 ident: ref6 article-title: A dynamic time warping approach to real-time activity recognition for food preparation publication-title: Proc Int Joint Conf Ambient Intell contributor: fullname: pham – ident: ref47 doi: 10.1109/PERCOMW.2017.7917594 – volume: 14 start-page: 5687 year: 2014 ident: ref25 article-title: Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices publication-title: SENSORS doi: 10.3390/s140305687 contributor: fullname: guiry – volume: 13 start-page: 13099 year: 2013 ident: ref22 article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones publication-title: SENSORS doi: 10.3390/s131013099 contributor: fullname: khan – start-page: 460 year: 2011 ident: ref26 article-title: Activity recognition using hierarchical hidden Markov models on a smartphone with 3D accelerometer publication-title: Hybrid Artificial Intelligent Systems doi: 10.1007/978-3-642-21219-2_58 contributor: fullname: lee – ident: ref7 doi: 10.3414/ME10-02-0026 – volume: 30 start-page: 1r year: 2009 ident: ref18 article-title: Activity identification using body-mounted sensors- A review of classification techniques publication-title: Physiol Meas doi: 10.1088/0967-3334/30/4/R01 contributor: fullname: stephen – ident: ref3 doi: 10.1109/TSMCC.2012.2198883 – ident: ref30 doi: 10.1109/FUTURETECH.2010.5482729 – ident: ref37 doi: 10.1016/j.eswa.2012.09.004 – ident: ref39 doi: 10.1016/j.clinbiomech.2014.06.013 – ident: ref31 doi: 10.1080/16501970510035070 – ident: ref19 doi: 10.3390/s140406474 – start-page: 1390 year: 2010 ident: ref4 article-title: A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation publication-title: Proc IEEE Annu Int Conf Eng Med Biol contributor: fullname: lee – ident: ref33 doi: 10.1109/TITB.2010.2051955 – ident: ref21 doi: 10.1109/TNSRE.2013.2259640 |
SSID | ssj0019757 |
Score | 2.3036892 |
Snippet | Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 8950 |
SubjectTerms | Activity recognition awareness of transition Data collection Demographics Health care housekeeping task monitoring Medical services Monitoring Monitoring systems Older people Public health Target detection Target recognition Task analysis Wrist wrist-worn sensor |
Title | Transition-Aware Housekeeping Task Monitoring Using Single Wrist-Worn Sensor |
URI | https://ieeexplore.ieee.org/document/8453910 https://www.proquest.com/docview/2124193629 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BLurBD9CIounBk3GwtV27HonBECJcgMBtabcuJhhm-IjRv962G4SoBy_LDu3S9PX1vd9-7wPgnhCcpL4yEuA682hg-d1QMi-hlpULZKAc0T4Yst6E9mfhrAKPu1wYrbULPtMt--q4_DRPNvZXWTuiIRE2n-qAC1Hkau0YA8FdVU-jwL5HCZ-VDGbgi3Z_1B3aIK6ohSMWYdtRbc8GuaYqv25iZ16eT2GwXVgRVTJvbdaqlXz9qNn435WfwUnpZ6JOcTDOoaIXNTjeqz5Yg8OyAfrrZx1enM1y4Vte50MuNerlm5Wea23zqdBYruaoUH87F7lAAzQyjzeNpvae8Kb5coFGBhTnywuYPHfHTz2vbLTgJcbarz3jNfg8E0IG2CcGLXMsVRqmNKUZs0ylAVUc-wkzpiyTknKmmIEpBgqmWBOWReQSqot8oa8A6UBESoehw2GE-JHCkpPIDFMs4QlrwMN26-P3op5G7HCIL2Irp9jKKS7l1IC63crdwHIXG9DcCisuNW4VGxNMjTPKsLj-e9YNHNlvF3mETaiulxt9axyKtbpzJ-kb3YTE2A |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hMgADjwKiPD0wIdImtmM7I0JUBdoubUW3yE4cIRUlqA8h-PXYTlpVwMASZbAVy2ff3ZfvHgDXhOAk9ZWRANeZRwPL74aSeQm1rFwgA-WI9l6fdUb0aRyON-B2lQujtXbBZ7ppXx2XnxbJwv4qawkaksjmU20av1qwMltrxRlE3NX1NFfY9yjh44rDDPyo9TR46NswLtHEgglse6qtWSHXVuWXLnYGpr0HveXSyriSSXMxV83k60fVxv-ufR92K08T3ZVH4wA2dF6HnbX6g3XYqlqgv34eQtdZLRfA5d19yKlGnWIx0xOtbUYVGsrZBJUKwM5FLtQADczjTaMXqym8l2Kao4GBxcX0CEbth-F9x6taLXiJsfdzz_gNPs-iSAbYJwYvcyxVGqY0pRmzXKWBVRz7CTPGLJOScqaYASoGDKZYE5YJcgy1vMj1CSAdRELpMHRIjBBfKCw5EWaYYglPWANullsfv5cVNWKHRPwotnKKrZziSk4NOLRbuRpY7WIDzpfCiqs7N4uNEabGHWU4Ov171hVsdYa9btx97D-fwbb9TplVeA61-XShL4x7MVeX7lR9A1aYyCM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Aware+Housekeeping+Task+Monitoring+Using+Single+Wrist-Worn+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Kai-Chun+Liu&rft.au=Chia-Yeh+Hsieh&rft.au=Chia-Tai+Chan&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=21&rft.spage=8950&rft.epage=8962&rft_id=info:doi/10.1109%2FJSEN.2018.2868278&rft.externalDocID=8453910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |