Transition-Aware Housekeeping Task Monitoring Using Single Wrist-Worn Sensor

Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health profe...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 18; no. 21; pp. 8950 - 8962
Main Authors Liu, Kai-Chun, Hsieh, Chia-Yeh, Chan, Chia-Tai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health professionals, such as the information of kitchen task, dressing task, food and fluid intake, and medication intake. However, few works pay attention to the housekeeping task, as the housekeeping performance correlates to the cognitive and functional health status in elderly people. Since typical clinical approaches of measuring and assessing housekeeping task performance suffer issues in long-term observation and manual error, a transition-aware household task monitoring system is proposed to support clinical professionals to gather fine-grained housekeeping task information for clinical assessment in this paper. Novel algorithms and models are proposed and designed based on knowledge and hierarchical approaches, including preliminary target activity recognition, transition detection, transition point identification, activity model, and activity inference. In addition, the typical activity classification and transition detection approach are implemented to compare with the proposed system. In the experiment, five healthy elderly participants are invited to take part in performing a set of four housekeeping activities, and there are 948 collected instances. The monitoring system is validated by using leave-one-subject-out cross-validation approach. The experimental results show that the best overall accuracy, recall, and precision of the proposed system can achieve 81.63%, 78.40%, and 78.58% when the window size is 2.0 s.
AbstractList Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several wearable-based activity monitoring systems have been developed to improve the quality of healthcare and provide monitoring information for health professionals, such as the information of kitchen task, dressing task, food and fluid intake, and medication intake. However, few works pay attention to the housekeeping task, as the housekeeping performance correlates to the cognitive and functional health status in elderly people. Since typical clinical approaches of measuring and assessing housekeeping task performance suffer issues in long-term observation and manual error, a transition-aware household task monitoring system is proposed to support clinical professionals to gather fine-grained housekeeping task information for clinical assessment in this paper. Novel algorithms and models are proposed and designed based on knowledge and hierarchical approaches, including preliminary target activity recognition, transition detection, transition point identification, activity model, and activity inference. In addition, the typical activity classification and transition detection approach are implemented to compare with the proposed system. In the experiment, five healthy elderly participants are invited to take part in performing a set of four housekeeping activities, and there are 948 collected instances. The monitoring system is validated by using leave-one-subject-out cross-validation approach. The experimental results show that the best overall accuracy, recall, and precision of the proposed system can achieve 81.63%, 78.40%, and 78.58% when the window size is 2.0 s.
Author Kai-Chun Liu
Chia-Yeh Hsieh
Chia-Tai Chan
Author_xml – sequence: 1
  givenname: Kai-Chun
  orcidid: 0000-0001-7867-4716
  surname: Liu
  fullname: Liu, Kai-Chun
– sequence: 2
  givenname: Chia-Yeh
  surname: Hsieh
  fullname: Hsieh, Chia-Yeh
– sequence: 3
  givenname: Chia-Tai
  orcidid: 0000-0003-0995-601X
  surname: Chan
  fullname: Chan, Chia-Tai
BookMark eNo9kEtPAjEUhRuDiYD-AONmEteDt4_pY0kIigZ1AQR3TWE6poAttjMx_ntnAnFzXznnnuQboJ4P3iJ0i2GEMaiHl8X0bUQAyxGRXBIhL1AfF4XMsWCy180UckbFxxUapLQDwEoUoo_my2h8crULPh__mGizWWiS3Vt7dP4zW5q0z16Dd3WI3b5KXV205WCzdXSpztch-mxhfQrxGl1W5pDszbkP0epxupzM8vn70_NkPM-3RNE6FwWAqJQymABVIAQxm7IoWckqDu1JCiwIbDmRrDKGCb7hheAMREks5ZWkQ3R_-nuM4buxqda70ETfRmqCCcOK8jZoiPBJtY0hpWgrfYzuy8RfjUF30HQHTXfQ9Bla67k7eZy19l8vWUEVBvoHUwtoqQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s00521_023_08863_9
crossref_primary_10_3390_s21248227
crossref_primary_10_3390_app12104988
crossref_primary_10_1109_JSEN_2020_3004051
Cites_doi 10.1007/s11517-010-0701-3
10.1186/s12984-015-0026-4
10.1007/978-3-319-21671-3_9
10.1016/j.jbi.2016.07.005
10.1146/annurev.bioeng.3.1.245
10.1093/ageing/afg097
10.5405/jmbe.1605
10.1016/S0895-4356(02)00461-4
10.1109/PerComW.2013.6529451
10.1093/geront/9.3_Part_1.179
10.1680/bbn.14.00006
10.1007/s11606-005-0103-7
10.1016/j.neucom.2015.07.085
10.1016/j.artmed.2007.11.007
10.1007/s10916-011-9719-9
10.1109/JBHI.2013.2282471
10.1016/j.pmcj.2016.09.009
10.1109/TNSRE.2012.2202691
10.1111/j.1365-2648.1996.tb02660.x
10.3390/s16081341
10.1037/a0014186
10.1145/2499621
10.3390/s17010187
10.1109/T-C.1971.223410
10.1016/j.patcog.2015.03.004
10.1016/j.pmcj.2016.01.004
10.1016/j.future.2017.11.029
10.1109/SURV.2012.110112.00192
10.1109/PERCOMW.2017.7917594
10.3390/s140305687
10.3390/s131013099
10.1007/978-3-642-21219-2_58
10.3414/ME10-02-0026
10.1088/0967-3334/30/4/R01
10.1109/TSMCC.2012.2198883
10.1109/FUTURETECH.2010.5482729
10.1016/j.eswa.2012.09.004
10.1016/j.clinbiomech.2014.06.013
10.1080/16501970510035070
10.3390/s140406474
10.1109/TITB.2010.2051955
10.1109/TNSRE.2013.2259640
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2018.2868278
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Public Health
EISSN 1558-1748
EndPage 8962
ExternalDocumentID 10_1109_JSEN_2018_2868278
8453910
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 106-2221-E-010-014
  funderid: 10.13039/501100003711
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AJQPL
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-75007f99a120390772abd5d4d4f60203871720c6284faa476b6576407d2e36f83
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Oct 10 16:41:33 EDT 2024
Fri Aug 23 02:27:24 EDT 2024
Wed Jun 26 19:28:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-75007f99a120390772abd5d4d4f60203871720c6284faa476b6576407d2e36f83
ORCID 0000-0003-0995-601X
0000-0001-7867-4716
PQID 2124193629
PQPubID 75733
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSEN_2018_2868278
proquest_journals_2124193629
ieee_primary_8453910
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
dominici (ref16) 0
ref17
ref38
ref19
stephen (ref18) 2009; 30
(ref1) 2015
lee (ref26) 2011
brezmes (ref24) 2009
guiry (ref25) 2014; 14
ref46
ref45
platt (ref41) 1999; 10
ref23
ref48
ref47
ref20
ref42
pham (ref6) 2010
ref44
khan (ref22) 2013; 13
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref5
ref40
lee (ref4) 2010
References_xml – ident: ref5
  doi: 10.1007/s11517-010-0701-3
– ident: ref20
  doi: 10.1186/s12984-015-0026-4
– ident: ref12
  doi: 10.1007/978-3-319-21671-3_9
– ident: ref28
  doi: 10.1016/j.jbi.2016.07.005
– ident: ref46
  doi: 10.1146/annurev.bioeng.3.1.245
– ident: ref14
  doi: 10.1093/ageing/afg097
– ident: ref43
  doi: 10.5405/jmbe.1605
– ident: ref13
  doi: 10.1016/S0895-4356(02)00461-4
– ident: ref48
  doi: 10.1109/PerComW.2013.6529451
– ident: ref36
  doi: 10.1093/geront/9.3_Part_1.179
– ident: ref44
  doi: 10.1680/bbn.14.00006
– year: 2015
  ident: ref1
  publication-title: World Population Ageing 2015
– ident: ref15
  doi: 10.1007/s11606-005-0103-7
– year: 0
  ident: ref16
  article-title: Towards a feasibility-driven uncertainty-aware layered architecture for recognizing complex domestic activity
  contributor:
    fullname: dominici
– ident: ref27
  doi: 10.1016/j.neucom.2015.07.085
– ident: ref8
  doi: 10.1016/j.artmed.2007.11.007
– ident: ref9
  doi: 10.1007/s10916-011-9719-9
– ident: ref38
  doi: 10.1109/JBHI.2013.2282471
– ident: ref45
  doi: 10.1016/j.pmcj.2016.09.009
– year: 2009
  ident: ref24
  article-title: Activity recognition from accelerometer data on a mobile phone
  publication-title: Proc Int Work-Conf Artif Neural Netw
  contributor:
    fullname: brezmes
– ident: ref32
  doi: 10.1109/TNSRE.2012.2202691
– ident: ref11
  doi: 10.1111/j.1365-2648.1996.tb02660.x
– ident: ref23
  doi: 10.3390/s16081341
– ident: ref10
  doi: 10.1037/a0014186
– ident: ref17
  doi: 10.1145/2499621
– ident: ref35
  doi: 10.3390/s17010187
– ident: ref40
  doi: 10.1109/T-C.1971.223410
– volume: 10
  start-page: 61
  year: 1999
  ident: ref41
  article-title: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
  publication-title: Adv Large Margin Classifiers
  contributor:
    fullname: platt
– ident: ref34
  doi: 10.1016/j.patcog.2015.03.004
– ident: ref42
  doi: 10.1016/j.pmcj.2016.01.004
– ident: ref29
  doi: 10.1016/j.future.2017.11.029
– ident: ref2
  doi: 10.1109/SURV.2012.110112.00192
– start-page: 21
  year: 2010
  ident: ref6
  article-title: A dynamic time warping approach to real-time activity recognition for food preparation
  publication-title: Proc Int Joint Conf Ambient Intell
  contributor:
    fullname: pham
– ident: ref47
  doi: 10.1109/PERCOMW.2017.7917594
– volume: 14
  start-page: 5687
  year: 2014
  ident: ref25
  article-title: Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices
  publication-title: SENSORS
  doi: 10.3390/s140305687
  contributor:
    fullname: guiry
– volume: 13
  start-page: 13099
  year: 2013
  ident: ref22
  article-title: Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones
  publication-title: SENSORS
  doi: 10.3390/s131013099
  contributor:
    fullname: khan
– start-page: 460
  year: 2011
  ident: ref26
  article-title: Activity recognition using hierarchical hidden Markov models on a smartphone with 3D accelerometer
  publication-title: Hybrid Artificial Intelligent Systems
  doi: 10.1007/978-3-642-21219-2_58
  contributor:
    fullname: lee
– ident: ref7
  doi: 10.3414/ME10-02-0026
– volume: 30
  start-page: 1r
  year: 2009
  ident: ref18
  article-title: Activity identification using body-mounted sensors- A review of classification techniques
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/30/4/R01
  contributor:
    fullname: stephen
– ident: ref3
  doi: 10.1109/TSMCC.2012.2198883
– ident: ref30
  doi: 10.1109/FUTURETECH.2010.5482729
– ident: ref37
  doi: 10.1016/j.eswa.2012.09.004
– ident: ref39
  doi: 10.1016/j.clinbiomech.2014.06.013
– ident: ref31
  doi: 10.1080/16501970510035070
– ident: ref19
  doi: 10.3390/s140406474
– start-page: 1390
  year: 2010
  ident: ref4
  article-title: A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation
  publication-title: Proc IEEE Annu Int Conf Eng Med Biol
  contributor:
    fullname: lee
– ident: ref33
  doi: 10.1109/TITB.2010.2051955
– ident: ref21
  doi: 10.1109/TNSRE.2013.2259640
SSID ssj0019757
Score 2.3036892
Snippet Population aging is one of the general issues of public health over the world. Such demographic shifts pose challenges to healthcare system. Several...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 8950
SubjectTerms Activity recognition
awareness of transition
Data collection
Demographics
Health care
housekeeping task monitoring
Medical services
Monitoring
Monitoring systems
Older people
Public health
Target detection
Target recognition
Task analysis
Wrist
wrist-worn sensor
Title Transition-Aware Housekeeping Task Monitoring Using Single Wrist-Worn Sensor
URI https://ieeexplore.ieee.org/document/8453910
https://www.proquest.com/docview/2124193629
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BLurBD9CIounBk3GwtV27HonBECJcgMBtabcuJhhm-IjRv962G4SoBy_LDu3S9PX1vd9-7wPgnhCcpL4yEuA682hg-d1QMi-hlpULZKAc0T4Yst6E9mfhrAKPu1wYrbULPtMt--q4_DRPNvZXWTuiIRE2n-qAC1Hkau0YA8FdVU-jwL5HCZ-VDGbgi3Z_1B3aIK6ohSMWYdtRbc8GuaYqv25iZ16eT2GwXVgRVTJvbdaqlXz9qNn435WfwUnpZ6JOcTDOoaIXNTjeqz5Yg8OyAfrrZx1enM1y4Vte50MuNerlm5Wea23zqdBYruaoUH87F7lAAzQyjzeNpvae8Kb5coFGBhTnywuYPHfHTz2vbLTgJcbarz3jNfg8E0IG2CcGLXMsVRqmNKUZs0ylAVUc-wkzpiyTknKmmIEpBgqmWBOWReQSqot8oa8A6UBESoehw2GE-JHCkpPIDFMs4QlrwMN26-P3op5G7HCIL2Irp9jKKS7l1IC63crdwHIXG9DcCisuNW4VGxNMjTPKsLj-e9YNHNlvF3mETaiulxt9axyKtbpzJ-kb3YTE2A
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hMgADjwKiPD0wIdImtmM7I0JUBdoubUW3yE4cIRUlqA8h-PXYTlpVwMASZbAVy2ff3ZfvHgDXhOAk9ZWRANeZRwPL74aSeQm1rFwgA-WI9l6fdUb0aRyON-B2lQujtXbBZ7ppXx2XnxbJwv4qawkaksjmU20av1qwMltrxRlE3NX1NFfY9yjh44rDDPyo9TR46NswLtHEgglse6qtWSHXVuWXLnYGpr0HveXSyriSSXMxV83k60fVxv-ufR92K08T3ZVH4wA2dF6HnbX6g3XYqlqgv34eQtdZLRfA5d19yKlGnWIx0xOtbUYVGsrZBJUKwM5FLtQADczjTaMXqym8l2Kao4GBxcX0CEbth-F9x6taLXiJsfdzz_gNPs-iSAbYJwYvcyxVGqY0pRmzXKWBVRz7CTPGLJOScqaYASoGDKZYE5YJcgy1vMj1CSAdRELpMHRIjBBfKCw5EWaYYglPWANullsfv5cVNWKHRPwotnKKrZziSk4NOLRbuRpY7WIDzpfCiqs7N4uNEabGHWU4Ov171hVsdYa9btx97D-fwbb9TplVeA61-XShL4x7MVeX7lR9A1aYyCM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transition-Aware+Housekeeping+Task+Monitoring+Using+Single+Wrist-Worn+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Kai-Chun+Liu&rft.au=Chia-Yeh+Hsieh&rft.au=Chia-Tai+Chan&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=18&rft.issue=21&rft.spage=8950&rft.epage=8962&rft_id=info:doi/10.1109%2FJSEN.2018.2868278&rft.externalDocID=8453910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon