DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters
Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where...
Saved in:
Published in | IEEE transactions on computer-aided design of integrated circuits and systems Vol. 37; no. 11; pp. 2348 - 2359 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0070 1937-4151 |
DOI | 10.1109/TCAD.2018.2858384 |
Cover
Loading…
Abstract | Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by <inline-formula> <tex-math notation="LaTeX">1.7\times -2.2\times </tex-math></inline-formula> with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">3.5\times </tex-math></inline-formula> on 2-6 edge devices with less than 23 MB memory each. |
---|---|
AbstractList | Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by <inline-formula> <tex-math notation="LaTeX">1.7\times -2.2\times </tex-math></inline-formula> with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">3.5\times </tex-math></inline-formula> on 2-6 edge devices with less than 23 MB memory each. Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by [Formula Omitted] with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of [Formula Omitted]–[Formula Omitted] on 2–6 edge devices with less than 23 MB memory each. |
Author | Zhao, Zhuoran Barijough, Kamyar Mirzazad Gerstlauer, Andreas |
Author_xml | – sequence: 1 givenname: Zhuoran orcidid: 0000-0003-1603-2712 surname: Zhao fullname: Zhao, Zhuoran organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA – sequence: 2 givenname: Kamyar Mirzazad surname: Barijough fullname: Barijough, Kamyar Mirzazad organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA – sequence: 3 givenname: Andreas surname: Gerstlauer fullname: Gerstlauer, Andreas organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-APES8Lw12exH4q1sqxYKgqznJR-zNaVma7Ir-O_NUvHgwdNc3mfemWeGJq5zgNA1JQtKibirq-VqkRLKFynPOePZGZpSwcokozmdoClJS54QUpILNAthTwjN8lRMkVoBHOs363bhHq9s6L1VQw8GL4089vYT8BjAW5DexRDeuBY8OA24c_gFQjd4DUnVuUhK6yK46Wq8NjvA1WEIPfhwic5beQhw9TPn6PVhXVdPyfb5cVMtt4lOBeuTkggDuoW2NUAyVigtBRSS0DIzhgCoghZKMaJMqrnkhGeaGpaXXCujqSrZHN2e9h599zFA6Jt9vM7FyialKRV5EVXEFD2ltO9C8NA2R2_fpf9qKGlGlc2oshlVNj8qI1P-YbTtZW87Nz59-Je8OZEWAH6beCZYJgT7BlpkhF0 |
CODEN | ITCSDI |
CitedBy_id | crossref_primary_10_1016_j_vlsi_2024_102299 crossref_primary_10_1007_s10766_021_00712_3 crossref_primary_10_1109_JIOT_2023_3237572 crossref_primary_10_1109_COMST_2020_2970550 crossref_primary_10_1109_JIOT_2022_3145849 crossref_primary_10_1109_TPDS_2023_3321755 crossref_primary_10_1007_s11277_024_11443_2 crossref_primary_10_1109_JSYST_2020_2991814 crossref_primary_10_1109_TMC_2022_3172402 crossref_primary_10_3390_s21103515 crossref_primary_10_1109_TCAD_2022_3218509 crossref_primary_10_1145_3514501 crossref_primary_10_1109_ACCESS_2023_3241096 crossref_primary_10_1016_j_future_2024_07_037 crossref_primary_10_1109_JSAC_2022_3229422 crossref_primary_10_1145_3358205 crossref_primary_10_1016_j_jpdc_2024_104927 crossref_primary_10_1145_3589639 crossref_primary_10_1109_JIOT_2021_3079164 crossref_primary_10_1109_ACCESS_2021_3084689 crossref_primary_10_1016_j_comnet_2023_109759 crossref_primary_10_1109_TSC_2021_3109094 crossref_primary_10_1145_3358209 crossref_primary_10_1007_s11042_024_20523_1 crossref_primary_10_3390_ai4030039 crossref_primary_10_1002_ett_4485 crossref_primary_10_1109_TVT_2023_3284369 crossref_primary_10_1108_IJICC_04_2020_0038 crossref_primary_10_1109_TGRS_2024_3515464 crossref_primary_10_3390_s23041911 crossref_primary_10_1109_JIOT_2022_3185082 crossref_primary_10_1109_TVT_2021_3092179 crossref_primary_10_3390_a15070244 crossref_primary_10_1109_TMC_2024_3484158 crossref_primary_10_1007_s10586_021_03286_4 crossref_primary_10_1109_ACCESS_2022_3149336 crossref_primary_10_1109_TGCN_2023_3234404 crossref_primary_10_1007_s11633_022_1391_7 crossref_primary_10_1109_JIOT_2022_3205410 crossref_primary_10_1016_j_neucom_2023_02_006 crossref_primary_10_1109_TC_2020_3021199 crossref_primary_10_3390_electronics10141614 crossref_primary_10_1145_3448125 crossref_primary_10_1109_JIOT_2023_3313514 crossref_primary_10_3390_app132212490 crossref_primary_10_3390_s20092533 crossref_primary_10_1109_JIOT_2020_3004077 crossref_primary_10_1109_JIOT_2022_3152359 crossref_primary_10_1016_j_eswa_2022_117823 crossref_primary_10_1016_j_neucom_2023_02_011 crossref_primary_10_1109_ACCESS_2021_3070627 crossref_primary_10_1109_JIOT_2024_3510805 crossref_primary_10_1145_3510831 crossref_primary_10_1016_j_iot_2022_100644 crossref_primary_10_1109_TNSE_2022_3180632 crossref_primary_10_3390_app12020670 crossref_primary_10_1109_JPROC_2019_2921977 crossref_primary_10_1007_s10489_022_04039_5 crossref_primary_10_1145_3532092 crossref_primary_10_1109_ACCESS_2022_3183634 crossref_primary_10_1109_COMST_2020_3007787 crossref_primary_10_1109_TNSE_2022_3165472 crossref_primary_10_1016_j_iswa_2023_200231 crossref_primary_10_1109_TPDS_2024_3521582 crossref_primary_10_1109_JIOT_2021_3088875 crossref_primary_10_1016_j_suscom_2023_100870 crossref_primary_10_1109_TMC_2024_3466931 crossref_primary_10_1145_3630098 crossref_primary_10_7717_peerj_cs_2708 crossref_primary_10_32604_cmc_2022_024093 crossref_primary_10_1109_JPROC_2022_3153408 crossref_primary_10_1109_TMC_2024_3457793 crossref_primary_10_3390_a13050125 crossref_primary_10_1109_JIOT_2023_3307820 crossref_primary_10_1109_COMST_2023_3319952 crossref_primary_10_1007_s41870_024_01767_4 crossref_primary_10_1109_TC_2022_3207137 crossref_primary_10_1109_JSAC_2023_3242730 crossref_primary_10_1002_cpe_6593 crossref_primary_10_1016_j_parco_2024_103114 crossref_primary_10_1109_TVT_2021_3119585 crossref_primary_10_1109_TPDS_2021_3135441 crossref_primary_10_3390_su16041599 crossref_primary_10_3390_s23031500 crossref_primary_10_1109_JIOT_2022_3231341 crossref_primary_10_3390_a16020110 crossref_primary_10_1109_JIOT_2023_3280746 crossref_primary_10_1109_JIOT_2023_3304318 crossref_primary_10_1145_3365224 crossref_primary_10_1016_j_comnet_2022_109380 crossref_primary_10_1016_j_dcan_2023_11_004 crossref_primary_10_3390_electronics10161898 crossref_primary_10_1186_s13677_023_00465_z crossref_primary_10_3390_s25010009 crossref_primary_10_1109_JIOT_2023_3237361 crossref_primary_10_1109_COMST_2022_3200740 crossref_primary_10_1016_j_sysarc_2021_102062 crossref_primary_10_1145_3530908 crossref_primary_10_1145_3478073 crossref_primary_10_1145_3694972 crossref_primary_10_3390_app122010619 crossref_primary_10_1109_JIOT_2023_3264609 crossref_primary_10_1142_S0218194023410085 crossref_primary_10_32604_cmc_2022_025994 crossref_primary_10_1186_s13677_023_00404_y crossref_primary_10_3390_app14198656 crossref_primary_10_1016_j_comnet_2022_109150 crossref_primary_10_1109_TMC_2024_3438155 crossref_primary_10_1109_TII_2024_3396559 crossref_primary_10_1002_nem_2146 crossref_primary_10_1016_j_comcom_2021_01_021 crossref_primary_10_3390_math12020281 crossref_primary_10_1109_ACCESS_2023_3264828 crossref_primary_10_1016_j_knosys_2025_112965 crossref_primary_10_1109_TPDS_2021_3058532 crossref_primary_10_1016_j_jmsy_2021_03_001 crossref_primary_10_2200_S01054ED1V01Y202009LNA025 crossref_primary_10_1109_TCE_2023_3280484 crossref_primary_10_3390_fi11100209 crossref_primary_10_3390_mi14030651 crossref_primary_10_1109_TVT_2021_3107465 crossref_primary_10_1109_TCC_2022_3160129 crossref_primary_10_1002_spe_3383 crossref_primary_10_1109_TCAD_2022_3188960 crossref_primary_10_3390_app15031097 crossref_primary_10_1109_TCE_2024_3378509 crossref_primary_10_1016_j_future_2021_07_010 crossref_primary_10_1145_3520127 crossref_primary_10_1016_j_jpdc_2022_11_008 crossref_primary_10_1109_TNSE_2021_3054244 crossref_primary_10_1016_j_neucom_2021_08_144 crossref_primary_10_1109_ACCESS_2021_3131396 crossref_primary_10_1109_TCOMM_2022_3229033 crossref_primary_10_1109_TNET_2023_3279512 crossref_primary_10_1109_TCAD_2020_3046665 crossref_primary_10_1109_TNET_2021_3125359 crossref_primary_10_1007_s10586_022_03549_8 crossref_primary_10_1145_3551638 crossref_primary_10_1109_ACCESS_2023_3314381 crossref_primary_10_1145_3656041 crossref_primary_10_1109_TCAD_2023_3264786 crossref_primary_10_1016_j_future_2025_107715 crossref_primary_10_1016_j_engappai_2023_106995 crossref_primary_10_1145_3701997 crossref_primary_10_1109_TNSM_2022_3220521 crossref_primary_10_1145_3701995 crossref_primary_10_1016_j_future_2024_107535 crossref_primary_10_1109_TETC_2021_3050770 crossref_primary_10_1109_JIOT_2023_3279579 crossref_primary_10_1016_j_phycom_2022_101620 crossref_primary_10_1016_j_comnet_2023_109814 crossref_primary_10_1109_JPROC_2022_3226481 crossref_primary_10_1109_JIOT_2020_2981338 crossref_primary_10_1002_ett_4648 crossref_primary_10_1109_TMLCN_2024_3409205 crossref_primary_10_1109_JIOT_2023_3336695 crossref_primary_10_1109_TMC_2024_3419831 crossref_primary_10_1109_ACCESS_2024_3477293 crossref_primary_10_1186_s13638_020_01794_2 crossref_primary_10_1109_MNET_012_2000659 crossref_primary_10_1145_3486674 crossref_primary_10_1109_ACCESS_2022_3232566 crossref_primary_10_3390_electronics13030640 crossref_primary_10_1109_TNET_2020_3042320 crossref_primary_10_32604_cmes_2023_023684 crossref_primary_10_3390_s24134176 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1109_TETCI_2024_3485677 crossref_primary_10_1016_j_neucom_2022_05_084 crossref_primary_10_1109_JIOT_2023_3334018 crossref_primary_10_1109_JPROC_2019_2918951 crossref_primary_10_1002_aisy_202200358 crossref_primary_10_1109_TSC_2024_3350050 crossref_primary_10_1109_COMST_2022_3189962 crossref_primary_10_1109_TC_2024_3500368 crossref_primary_10_1109_TCAD_2021_3110743 crossref_primary_10_1109_COMST_2022_3218527 crossref_primary_10_3390_fi14020054 crossref_primary_10_1109_ACCESS_2021_3058021 crossref_primary_10_1109_JSYST_2022_3198711 crossref_primary_10_1109_TC_2021_3062227 crossref_primary_10_1109_TNET_2023_3293052 crossref_primary_10_1007_s00521_024_10718_w crossref_primary_10_1109_TII_2023_3319671 crossref_primary_10_1109_TMC_2023_3265111 crossref_primary_10_1109_JIOT_2022_3222461 crossref_primary_10_1109_ACCESS_2024_3458420 crossref_primary_10_1016_j_engappai_2023_106035 crossref_primary_10_1109_JIOT_2022_3194726 crossref_primary_10_1007_s10462_022_10141_4 crossref_primary_10_1109_TMC_2024_3427420 crossref_primary_10_1109_COMST_2024_3393230 crossref_primary_10_1016_j_iot_2023_101035 crossref_primary_10_1109_JSAC_2021_3118419 crossref_primary_10_1007_s11227_022_04427_1 crossref_primary_10_1109_ACCESS_2020_3039714 crossref_primary_10_1016_j_iot_2024_101217 |
Cites_doi | 10.1145/3131672.3131675 10.1145/2994551.2994564 10.1109/JIOT.2016.2579198 10.1145/2820975.2820980 10.1145/2968456.2974005 10.1145/3037697.3037698 10.23919/DATE.2017.7927211 10.1109/CVPR.2017.690 10.1109/ASPDAC.2015.7058993 10.1109/ICDCS.2017.226 10.1016/j.future.2013.01.010 10.1109/MICRO.2016.7783725 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCAD.2018.2858384 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1937-4151 |
EndPage | 2359 |
ExternalDocumentID | 10_1109_TCAD_2018_2858384 8493499 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: CNS-1421642 funderid: 10.13039/100000001 |
GroupedDBID | --Z -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-709decfeffde0436bca9e6a0174dd0eeb616bb30bd2c8a8084c1d3578cbdc1b73 |
IEDL.DBID | RIE |
ISSN | 0278-0070 |
IngestDate | Mon Jun 30 10:08:32 EDT 2025 Tue Jul 01 00:30:50 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed Aug 27 02:14:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-709decfeffde0436bca9e6a0174dd0eeb616bb30bd2c8a8084c1d3578cbdc1b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1603-2712 |
PQID | 2121956151 |
PQPubID | 85470 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCAD_2018_2858384 ieee_primary_8493499 proquest_journals_2121956151 crossref_citationtrail_10_1109_TCAD_2018_2858384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on computer-aided design of integrated circuits and systems |
PublicationTitleAbbrev | TCAD |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 fernando (ref18) 0 iandola (ref13) 2016 liu (ref24) 2016 zhang (ref15) 2017 ref11 ref10 redmon (ref20) 2016 dukhan (ref21) 2018 ref1 mao (ref16) 2017 ref17 krizhevsky (ref2) 2012 ref19 ref8 ref7 ref9 howard (ref14) 2017 zhao (ref22) 2018 ref3 ref6 (ref4) 2017 zhang (ref5) 2015 ren (ref23) 2015 |
References_xml | – start-page: 1097 year: 2012 ident: ref2 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref12 doi: 10.1145/3131672.3131675 – start-page: 21 year: 2016 ident: ref24 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis (ECCV) – year: 2017 ident: ref4 publication-title: Gartner – ident: ref11 doi: 10.1145/2994551.2994564 – ident: ref7 doi: 10.1109/JIOT.2016.2579198 – ident: ref3 doi: 10.1145/2820975.2820980 – ident: ref8 doi: 10.1145/2968456.2974005 – ident: ref9 doi: 10.1145/3037697.3037698 – start-page: 1396 year: 2017 ident: ref16 article-title: MoDNN: Local distributed mobile computing system for deep neural network publication-title: Proc Design Autom Test Eur Conf Exhibition (DATE) doi: 10.23919/DATE.2017.7927211 – ident: ref19 doi: 10.1109/CVPR.2017.690 – ident: ref6 doi: 10.1109/ASPDAC.2015.7058993 – year: 2018 ident: ref21 publication-title: NNPACK – ident: ref10 doi: 10.1109/ICDCS.2017.226 – year: 2016 ident: ref20 publication-title: Darknet Open source neural networks in c – start-page: 91 year: 2015 ident: ref23 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 2018 ident: ref22 publication-title: DeepThings – year: 2016 ident: ref13 publication-title: SqueezeNet AlexNet-level accuracy with 50 $\times$ fewer parameters and – ident: ref1 doi: 10.1016/j.future.2013.01.010 – year: 2017 ident: ref14 publication-title: Mobilenets Efficient convolutional neural networks for mobile vision applications – start-page: 21 year: 2015 ident: ref5 article-title: The cloud is not enough: Saving IoT from the cloud publication-title: Proc of 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud) – ident: ref17 doi: 10.1109/MICRO.2016.7783725 – year: 0 ident: ref18 article-title: Computing with nearby mobile devices: A work sharing algorithm for mobile edge-clouds publication-title: IEEE Trans Cloud Comput – year: 2017 ident: ref15 publication-title: ShuffleNet An Extremely Efficient Convolutional Neural Network for Mobile Devices |
SSID | ssj0014529 |
Score | 2.6680143 |
Snippet | Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2348 |
SubjectTerms | Accuracy Artificial neural networks Clusters Constraints Data sources Deep learning Distributed databases distributed inference Dynamic scheduling Edge computing Electronic devices Embedded systems Footprints Inference Internet of Things Logic gates Neural networks Parallel processing Runtime Scheduling Task analysis |
Title | DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters |
URI | https://ieeexplore.ieee.org/document/8493499 https://www.proquest.com/docview/2121956151 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxoXCln14IzwCJniChNumj1kOGpYIXPz1dvYVXzHe9tA23XzTzrTT7xuAu9jvCo8b7ShjLVgoTxBZOXaklDYal77rSiI4z569yUI8LXvLCjyUXBhETB-fYYs-01y-SfSersragQhdG6FXoWoPbhlXq8wYUAIxvU8hxVhrx3kGs8PD9tz-FD3iClrdgLKE4osPSouq_NiJU_cyPoZZMbHsVclLa79TLf3-TbPxvzM_gaM8zmT9zDBOoYLrMzj8pD5YBzVE3GR1Ox_ZkAR0qfYVGtY3ckO7IKMGLFdgXbFpwQ1kyZoV1_4OVfxM60zYjtNkzkZmhWzwuicBhu05LMaj-WDi5CUXHG39_s7xeWhQxxjHBkmcXmkZoiftshXGcETldTylXK5MVwcy4IHQHUOCOVoZ3VG-ewG1dbLGS2CuL5SNXTB00QjDXdXFUNn4TvSsfXBfNoAXIEQ61yOn6b5G6bmEhxHhFhFuUY5bA-7LLptMjOOvxnXCoWyYQ9CAZoF0lC_XbWT9N_EmbfRz9XuvazigsTMSYhNqu7c93thoZKduUzP8AMrg3DI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwJBEJ6gFmrhC40o6hZWxsM9brmHHQENKFBBQnfZxxyFBIhC46935x7EV4zdFbu5vXyzO3M7830DcJ0EdeFzox1lrAUL5QsiKyeOlNJG4zLwPEkE5_7A74zE07gxLsHtmguDiGnxGdboMc3lm7le0VXZXSgiz0boG7Bl_X7Dzdha65wBpRDTGxXSjLWWnOcwXR7dDe1nURlXWKuHlCcUX7xQ2lblx1mcOpjHfegXS8vqSl5qq6Wq6fdvqo3_XfsB7OWRJmtmpnEIJZwdwe4n_cEyqDbiIuvcec_aJKFL3a_QsKaRCzoHGQ1guQbrhHULdiCbz1hx8e9Qz8-004Sd2J0P2YOZIGtNVyTB8HYMo8eHYavj5E0XHG09_9IJeGRQJ5gkBkmeXmkZoS_txhXGcETlu75SHlemrkMZ8lBo15BkjlZGuyrwTmBzNp_hKTAvEMpGLxh5aIThnqpjpGyEJxrWQnggK8ALEGKdK5LTcqdx-mfCo5hwiwm3OMetAjfrKYtMjuOvwWXCYT0wh6AC1QLpON-wb7H14MSctPHP2e-zrmC7M-z34l538HwOO_SejJJYhc3l6wovbGyyVJepSX4Ab-vfew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepThings%3A+Distributed+Adaptive+Deep+Learning+Inference+on+Resource-Constrained+IoT+Edge+Clusters&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Zhao%2C+Zhuoran&rft.au=Barijough%2C+Kamyar+Mirzazad&rft.au=Gerstlauer%2C+Andreas&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=11&rft.spage=2348&rft.epage=2359&rft_id=info:doi/10.1109%2FTCAD.2018.2858384&rft.externalDocID=8493499 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon |