DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters

Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computer-aided design of integrated circuits and systems Vol. 37; no. 11; pp. 2348 - 2359
Main Authors Zhao, Zhuoran, Barijough, Kamyar Mirzazad, Gerstlauer, Andreas
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0070
1937-4151
DOI10.1109/TCAD.2018.2858384

Cover

Loading…
Abstract Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by <inline-formula> <tex-math notation="LaTeX">1.7\times -2.2\times </tex-math></inline-formula> with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">3.5\times </tex-math></inline-formula> on 2-6 edge devices with less than 23 MB memory each.
AbstractList Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by <inline-formula> <tex-math notation="LaTeX">1.7\times -2.2\times </tex-math></inline-formula> with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of <inline-formula> <tex-math notation="LaTeX">1.7\times </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">3.5\times </tex-math></inline-formula> on 2-6 edge devices with less than 23 MB memory each.
Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally at the source. In IoT networks, edge devices are characterized by tight resource constraints and often dynamic nature of data sources, where existing approaches for deploying Deep/Convolutional Neural Networks (DNNs/CNNs) can only meet IoT constraints when severely reducing accuracy or using a static distribution that cannot adapt to dynamic IoT environments. In this paper, we propose DeepThings, a framework for adaptively distributed execution of CNN-based inference applications on tightly resource-constrained IoT edge clusters. DeepThings employs a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize memory footprint while exposing parallelism. It further realizes a distributed work stealing approach to enable dynamic workload distribution and balancing at inference runtime. Finally, we employ a novel work scheduling process to improve data reuse and reduce overall execution latency. Results show that our proposed FTP method can reduce memory footprint by more than 68% without sacrificing accuracy. Furthermore, compared to existing work sharing methods, our distributed work stealing and work scheduling improve throughput by [Formula Omitted] with multiple dynamic data sources. When combined, DeepThings provides scalable CNN inference speedups of [Formula Omitted]–[Formula Omitted] on 2–6 edge devices with less than 23 MB memory each.
Author Zhao, Zhuoran
Barijough, Kamyar Mirzazad
Gerstlauer, Andreas
Author_xml – sequence: 1
  givenname: Zhuoran
  orcidid: 0000-0003-1603-2712
  surname: Zhao
  fullname: Zhao, Zhuoran
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA
– sequence: 2
  givenname: Kamyar Mirzazad
  surname: Barijough
  fullname: Barijough, Kamyar Mirzazad
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA
– sequence: 3
  givenname: Andreas
  surname: Gerstlauer
  fullname: Gerstlauer, Andreas
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA
BookMark eNp9kE1LAzEQhoNUsK3-APES8Lw12exH4q1sqxYKgqznJR-zNaVma7Ir-O_NUvHgwdNc3mfemWeGJq5zgNA1JQtKibirq-VqkRLKFynPOePZGZpSwcokozmdoClJS54QUpILNAthTwjN8lRMkVoBHOs363bhHq9s6L1VQw8GL4089vYT8BjAW5DexRDeuBY8OA24c_gFQjd4DUnVuUhK6yK46Wq8NjvA1WEIPfhwic5beQhw9TPn6PVhXVdPyfb5cVMtt4lOBeuTkggDuoW2NUAyVigtBRSS0DIzhgCoghZKMaJMqrnkhGeaGpaXXCujqSrZHN2e9h599zFA6Jt9vM7FyialKRV5EVXEFD2ltO9C8NA2R2_fpf9qKGlGlc2oshlVNj8qI1P-YbTtZW87Nz59-Je8OZEWAH6beCZYJgT7BlpkhF0
CODEN ITCSDI
CitedBy_id crossref_primary_10_1016_j_vlsi_2024_102299
crossref_primary_10_1007_s10766_021_00712_3
crossref_primary_10_1109_JIOT_2023_3237572
crossref_primary_10_1109_COMST_2020_2970550
crossref_primary_10_1109_JIOT_2022_3145849
crossref_primary_10_1109_TPDS_2023_3321755
crossref_primary_10_1007_s11277_024_11443_2
crossref_primary_10_1109_JSYST_2020_2991814
crossref_primary_10_1109_TMC_2022_3172402
crossref_primary_10_3390_s21103515
crossref_primary_10_1109_TCAD_2022_3218509
crossref_primary_10_1145_3514501
crossref_primary_10_1109_ACCESS_2023_3241096
crossref_primary_10_1016_j_future_2024_07_037
crossref_primary_10_1109_JSAC_2022_3229422
crossref_primary_10_1145_3358205
crossref_primary_10_1016_j_jpdc_2024_104927
crossref_primary_10_1145_3589639
crossref_primary_10_1109_JIOT_2021_3079164
crossref_primary_10_1109_ACCESS_2021_3084689
crossref_primary_10_1016_j_comnet_2023_109759
crossref_primary_10_1109_TSC_2021_3109094
crossref_primary_10_1145_3358209
crossref_primary_10_1007_s11042_024_20523_1
crossref_primary_10_3390_ai4030039
crossref_primary_10_1002_ett_4485
crossref_primary_10_1109_TVT_2023_3284369
crossref_primary_10_1108_IJICC_04_2020_0038
crossref_primary_10_1109_TGRS_2024_3515464
crossref_primary_10_3390_s23041911
crossref_primary_10_1109_JIOT_2022_3185082
crossref_primary_10_1109_TVT_2021_3092179
crossref_primary_10_3390_a15070244
crossref_primary_10_1109_TMC_2024_3484158
crossref_primary_10_1007_s10586_021_03286_4
crossref_primary_10_1109_ACCESS_2022_3149336
crossref_primary_10_1109_TGCN_2023_3234404
crossref_primary_10_1007_s11633_022_1391_7
crossref_primary_10_1109_JIOT_2022_3205410
crossref_primary_10_1016_j_neucom_2023_02_006
crossref_primary_10_1109_TC_2020_3021199
crossref_primary_10_3390_electronics10141614
crossref_primary_10_1145_3448125
crossref_primary_10_1109_JIOT_2023_3313514
crossref_primary_10_3390_app132212490
crossref_primary_10_3390_s20092533
crossref_primary_10_1109_JIOT_2020_3004077
crossref_primary_10_1109_JIOT_2022_3152359
crossref_primary_10_1016_j_eswa_2022_117823
crossref_primary_10_1016_j_neucom_2023_02_011
crossref_primary_10_1109_ACCESS_2021_3070627
crossref_primary_10_1109_JIOT_2024_3510805
crossref_primary_10_1145_3510831
crossref_primary_10_1016_j_iot_2022_100644
crossref_primary_10_1109_TNSE_2022_3180632
crossref_primary_10_3390_app12020670
crossref_primary_10_1109_JPROC_2019_2921977
crossref_primary_10_1007_s10489_022_04039_5
crossref_primary_10_1145_3532092
crossref_primary_10_1109_ACCESS_2022_3183634
crossref_primary_10_1109_COMST_2020_3007787
crossref_primary_10_1109_TNSE_2022_3165472
crossref_primary_10_1016_j_iswa_2023_200231
crossref_primary_10_1109_TPDS_2024_3521582
crossref_primary_10_1109_JIOT_2021_3088875
crossref_primary_10_1016_j_suscom_2023_100870
crossref_primary_10_1109_TMC_2024_3466931
crossref_primary_10_1145_3630098
crossref_primary_10_7717_peerj_cs_2708
crossref_primary_10_32604_cmc_2022_024093
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1109_TMC_2024_3457793
crossref_primary_10_3390_a13050125
crossref_primary_10_1109_JIOT_2023_3307820
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1007_s41870_024_01767_4
crossref_primary_10_1109_TC_2022_3207137
crossref_primary_10_1109_JSAC_2023_3242730
crossref_primary_10_1002_cpe_6593
crossref_primary_10_1016_j_parco_2024_103114
crossref_primary_10_1109_TVT_2021_3119585
crossref_primary_10_1109_TPDS_2021_3135441
crossref_primary_10_3390_su16041599
crossref_primary_10_3390_s23031500
crossref_primary_10_1109_JIOT_2022_3231341
crossref_primary_10_3390_a16020110
crossref_primary_10_1109_JIOT_2023_3280746
crossref_primary_10_1109_JIOT_2023_3304318
crossref_primary_10_1145_3365224
crossref_primary_10_1016_j_comnet_2022_109380
crossref_primary_10_1016_j_dcan_2023_11_004
crossref_primary_10_3390_electronics10161898
crossref_primary_10_1186_s13677_023_00465_z
crossref_primary_10_3390_s25010009
crossref_primary_10_1109_JIOT_2023_3237361
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1016_j_sysarc_2021_102062
crossref_primary_10_1145_3530908
crossref_primary_10_1145_3478073
crossref_primary_10_1145_3694972
crossref_primary_10_3390_app122010619
crossref_primary_10_1109_JIOT_2023_3264609
crossref_primary_10_1142_S0218194023410085
crossref_primary_10_32604_cmc_2022_025994
crossref_primary_10_1186_s13677_023_00404_y
crossref_primary_10_3390_app14198656
crossref_primary_10_1016_j_comnet_2022_109150
crossref_primary_10_1109_TMC_2024_3438155
crossref_primary_10_1109_TII_2024_3396559
crossref_primary_10_1002_nem_2146
crossref_primary_10_1016_j_comcom_2021_01_021
crossref_primary_10_3390_math12020281
crossref_primary_10_1109_ACCESS_2023_3264828
crossref_primary_10_1016_j_knosys_2025_112965
crossref_primary_10_1109_TPDS_2021_3058532
crossref_primary_10_1016_j_jmsy_2021_03_001
crossref_primary_10_2200_S01054ED1V01Y202009LNA025
crossref_primary_10_1109_TCE_2023_3280484
crossref_primary_10_3390_fi11100209
crossref_primary_10_3390_mi14030651
crossref_primary_10_1109_TVT_2021_3107465
crossref_primary_10_1109_TCC_2022_3160129
crossref_primary_10_1002_spe_3383
crossref_primary_10_1109_TCAD_2022_3188960
crossref_primary_10_3390_app15031097
crossref_primary_10_1109_TCE_2024_3378509
crossref_primary_10_1016_j_future_2021_07_010
crossref_primary_10_1145_3520127
crossref_primary_10_1016_j_jpdc_2022_11_008
crossref_primary_10_1109_TNSE_2021_3054244
crossref_primary_10_1016_j_neucom_2021_08_144
crossref_primary_10_1109_ACCESS_2021_3131396
crossref_primary_10_1109_TCOMM_2022_3229033
crossref_primary_10_1109_TNET_2023_3279512
crossref_primary_10_1109_TCAD_2020_3046665
crossref_primary_10_1109_TNET_2021_3125359
crossref_primary_10_1007_s10586_022_03549_8
crossref_primary_10_1145_3551638
crossref_primary_10_1109_ACCESS_2023_3314381
crossref_primary_10_1145_3656041
crossref_primary_10_1109_TCAD_2023_3264786
crossref_primary_10_1016_j_future_2025_107715
crossref_primary_10_1016_j_engappai_2023_106995
crossref_primary_10_1145_3701997
crossref_primary_10_1109_TNSM_2022_3220521
crossref_primary_10_1145_3701995
crossref_primary_10_1016_j_future_2024_107535
crossref_primary_10_1109_TETC_2021_3050770
crossref_primary_10_1109_JIOT_2023_3279579
crossref_primary_10_1016_j_phycom_2022_101620
crossref_primary_10_1016_j_comnet_2023_109814
crossref_primary_10_1109_JPROC_2022_3226481
crossref_primary_10_1109_JIOT_2020_2981338
crossref_primary_10_1002_ett_4648
crossref_primary_10_1109_TMLCN_2024_3409205
crossref_primary_10_1109_JIOT_2023_3336695
crossref_primary_10_1109_TMC_2024_3419831
crossref_primary_10_1109_ACCESS_2024_3477293
crossref_primary_10_1186_s13638_020_01794_2
crossref_primary_10_1109_MNET_012_2000659
crossref_primary_10_1145_3486674
crossref_primary_10_1109_ACCESS_2022_3232566
crossref_primary_10_3390_electronics13030640
crossref_primary_10_1109_TNET_2020_3042320
crossref_primary_10_32604_cmes_2023_023684
crossref_primary_10_3390_s24134176
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_TETCI_2024_3485677
crossref_primary_10_1016_j_neucom_2022_05_084
crossref_primary_10_1109_JIOT_2023_3334018
crossref_primary_10_1109_JPROC_2019_2918951
crossref_primary_10_1002_aisy_202200358
crossref_primary_10_1109_TSC_2024_3350050
crossref_primary_10_1109_COMST_2022_3189962
crossref_primary_10_1109_TC_2024_3500368
crossref_primary_10_1109_TCAD_2021_3110743
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_3390_fi14020054
crossref_primary_10_1109_ACCESS_2021_3058021
crossref_primary_10_1109_JSYST_2022_3198711
crossref_primary_10_1109_TC_2021_3062227
crossref_primary_10_1109_TNET_2023_3293052
crossref_primary_10_1007_s00521_024_10718_w
crossref_primary_10_1109_TII_2023_3319671
crossref_primary_10_1109_TMC_2023_3265111
crossref_primary_10_1109_JIOT_2022_3222461
crossref_primary_10_1109_ACCESS_2024_3458420
crossref_primary_10_1016_j_engappai_2023_106035
crossref_primary_10_1109_JIOT_2022_3194726
crossref_primary_10_1007_s10462_022_10141_4
crossref_primary_10_1109_TMC_2024_3427420
crossref_primary_10_1109_COMST_2024_3393230
crossref_primary_10_1016_j_iot_2023_101035
crossref_primary_10_1109_JSAC_2021_3118419
crossref_primary_10_1007_s11227_022_04427_1
crossref_primary_10_1109_ACCESS_2020_3039714
crossref_primary_10_1016_j_iot_2024_101217
Cites_doi 10.1145/3131672.3131675
10.1145/2994551.2994564
10.1109/JIOT.2016.2579198
10.1145/2820975.2820980
10.1145/2968456.2974005
10.1145/3037697.3037698
10.23919/DATE.2017.7927211
10.1109/CVPR.2017.690
10.1109/ASPDAC.2015.7058993
10.1109/ICDCS.2017.226
10.1016/j.future.2013.01.010
10.1109/MICRO.2016.7783725
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCAD.2018.2858384
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-4151
EndPage 2359
ExternalDocumentID 10_1109_TCAD_2018_2858384
8493499
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1421642
  funderid: 10.13039/100000001
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-709decfeffde0436bca9e6a0174dd0eeb616bb30bd2c8a8084c1d3578cbdc1b73
IEDL.DBID RIE
ISSN 0278-0070
IngestDate Mon Jun 30 10:08:32 EDT 2025
Tue Jul 01 00:30:50 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed Aug 27 02:14:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-709decfeffde0436bca9e6a0174dd0eeb616bb30bd2c8a8084c1d3578cbdc1b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1603-2712
PQID 2121956151
PQPubID 85470
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCAD_2018_2858384
ieee_primary_8493499
proquest_journals_2121956151
crossref_citationtrail_10_1109_TCAD_2018_2858384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
fernando (ref18) 0
iandola (ref13) 2016
liu (ref24) 2016
zhang (ref15) 2017
ref11
ref10
redmon (ref20) 2016
dukhan (ref21) 2018
ref1
mao (ref16) 2017
ref17
krizhevsky (ref2) 2012
ref19
ref8
ref7
ref9
howard (ref14) 2017
zhao (ref22) 2018
ref3
ref6
(ref4) 2017
zhang (ref5) 2015
ren (ref23) 2015
References_xml – start-page: 1097
  year: 2012
  ident: ref2
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref12
  doi: 10.1145/3131672.3131675
– start-page: 21
  year: 2016
  ident: ref24
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– year: 2017
  ident: ref4
  publication-title: Gartner
– ident: ref11
  doi: 10.1145/2994551.2994564
– ident: ref7
  doi: 10.1109/JIOT.2016.2579198
– ident: ref3
  doi: 10.1145/2820975.2820980
– ident: ref8
  doi: 10.1145/2968456.2974005
– ident: ref9
  doi: 10.1145/3037697.3037698
– start-page: 1396
  year: 2017
  ident: ref16
  article-title: MoDNN: Local distributed mobile computing system for deep neural network
  publication-title: Proc Design Autom Test Eur Conf Exhibition (DATE)
  doi: 10.23919/DATE.2017.7927211
– ident: ref19
  doi: 10.1109/CVPR.2017.690
– ident: ref6
  doi: 10.1109/ASPDAC.2015.7058993
– year: 2018
  ident: ref21
  publication-title: NNPACK
– ident: ref10
  doi: 10.1109/ICDCS.2017.226
– year: 2016
  ident: ref20
  publication-title: Darknet Open source neural networks in c
– start-page: 91
  year: 2015
  ident: ref23
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2018
  ident: ref22
  publication-title: DeepThings
– year: 2016
  ident: ref13
  publication-title: SqueezeNet AlexNet-level accuracy with 50 $\times$ fewer parameters and
– ident: ref1
  doi: 10.1016/j.future.2013.01.010
– year: 2017
  ident: ref14
  publication-title: Mobilenets Efficient convolutional neural networks for mobile vision applications
– start-page: 21
  year: 2015
  ident: ref5
  article-title: The cloud is not enough: Saving IoT from the cloud
  publication-title: Proc of 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud)
– ident: ref17
  doi: 10.1109/MICRO.2016.7783725
– year: 0
  ident: ref18
  article-title: Computing with nearby mobile devices: A work sharing algorithm for mobile edge-clouds
  publication-title: IEEE Trans Cloud Comput
– year: 2017
  ident: ref15
  publication-title: ShuffleNet An Extremely Efficient Convolutional Neural Network for Mobile Devices
SSID ssj0014529
Score 2.6680143
Snippet Edge computing has emerged as a trend to improve scalability, overhead, and privacy by processing large-scale data, e.g., in deep learning applications locally...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2348
SubjectTerms Accuracy
Artificial neural networks
Clusters
Constraints
Data sources
Deep learning
Distributed databases
distributed inference
Dynamic scheduling
Edge computing
Electronic devices
Embedded systems
Footprints
Inference
Internet of Things
Logic gates
Neural networks
Parallel processing
Runtime
Scheduling
Task analysis
Title DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge Clusters
URI https://ieeexplore.ieee.org/document/8493499
https://www.proquest.com/docview/2121956151
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxoXCln14IzwCJniChNumj1kOGpYIXPz1dvYVXzHe9tA23XzTzrTT7xuAu9jvCo8b7ShjLVgoTxBZOXaklDYal77rSiI4z569yUI8LXvLCjyUXBhETB-fYYs-01y-SfSersragQhdG6FXoWoPbhlXq8wYUAIxvU8hxVhrx3kGs8PD9tz-FD3iClrdgLKE4osPSouq_NiJU_cyPoZZMbHsVclLa79TLf3-TbPxvzM_gaM8zmT9zDBOoYLrMzj8pD5YBzVE3GR1Ox_ZkAR0qfYVGtY3ckO7IKMGLFdgXbFpwQ1kyZoV1_4OVfxM60zYjtNkzkZmhWzwuicBhu05LMaj-WDi5CUXHG39_s7xeWhQxxjHBkmcXmkZoiftshXGcETldTylXK5MVwcy4IHQHUOCOVoZ3VG-ewG1dbLGS2CuL5SNXTB00QjDXdXFUNn4TvSsfXBfNoAXIEQ61yOn6b5G6bmEhxHhFhFuUY5bA-7LLptMjOOvxnXCoWyYQ9CAZoF0lC_XbWT9N_EmbfRz9XuvazigsTMSYhNqu7c93thoZKduUzP8AMrg3DI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwJBEJ6gFmrhC40o6hZWxsM9brmHHQENKFBBQnfZxxyFBIhC46935x7EV4zdFbu5vXyzO3M7830DcJ0EdeFzox1lrAUL5QsiKyeOlNJG4zLwPEkE5_7A74zE07gxLsHtmguDiGnxGdboMc3lm7le0VXZXSgiz0boG7Bl_X7Dzdha65wBpRDTGxXSjLWWnOcwXR7dDe1nURlXWKuHlCcUX7xQ2lblx1mcOpjHfegXS8vqSl5qq6Wq6fdvqo3_XfsB7OWRJmtmpnEIJZwdwe4n_cEyqDbiIuvcec_aJKFL3a_QsKaRCzoHGQ1guQbrhHULdiCbz1hx8e9Qz8-004Sd2J0P2YOZIGtNVyTB8HYMo8eHYavj5E0XHG09_9IJeGRQJ5gkBkmeXmkZoS_txhXGcETlu75SHlemrkMZ8lBo15BkjlZGuyrwTmBzNp_hKTAvEMpGLxh5aIThnqpjpGyEJxrWQnggK8ALEGKdK5LTcqdx-mfCo5hwiwm3OMetAjfrKYtMjuOvwWXCYT0wh6AC1QLpON-wb7H14MSctPHP2e-zrmC7M-z34l538HwOO_SejJJYhc3l6wovbGyyVJepSX4Ab-vfew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepThings%3A+Distributed+Adaptive+Deep+Learning+Inference+on+Resource-Constrained+IoT+Edge+Clusters&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Zhao%2C+Zhuoran&rft.au=Barijough%2C+Kamyar+Mirzazad&rft.au=Gerstlauer%2C+Andreas&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.volume=37&rft.issue=11&rft.spage=2348&rft.epage=2359&rft_id=info:doi/10.1109%2FTCAD.2018.2858384&rft.externalDocID=8493499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon