An Efficiency-Boosting Client Selection Scheme for Federated Learning With Fairness Guarantee
The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to pe...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 32; no. 7; pp. 1552 - 1564 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model's quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a <inline-formula><tex-math notation="LaTeX">\mathbf {C^2MAB}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">C</mml:mi><mml:mn mathvariant="bold">2</mml:mn></mml:msup><mml:mi mathvariant="bold">MAB</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3040887.gif"/> </inline-formula>-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets. |
---|---|
AbstractList | The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model's quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a <inline-formula><tex-math notation="LaTeX">\mathbf {C^2MAB}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">C</mml:mi><mml:mn mathvariant="bold">2</mml:mn></mml:msup><mml:mi mathvariant="bold">MAB</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3040887.gif"/> </inline-formula>-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets. The issue of potential privacy leakage during centralized AI’s model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model’s quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a [Formula Omitted]-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets. |
Author | Lin, Weiwei Wu, Wentai Li, Keqin He, Ligang Zomaya, Albert Y. Huang, Tiansheng |
Author_xml | – sequence: 1 givenname: Tiansheng orcidid: 0000-0002-4557-1865 surname: Huang fullname: Huang, Tiansheng email: cs_tianshenghuang@mail.scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China – sequence: 2 givenname: Weiwei orcidid: 0000-0001-6876-1795 surname: Lin fullname: Lin, Weiwei email: linww@scut.edu.cn organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China – sequence: 3 givenname: Wentai orcidid: 0000-0001-5851-327X surname: Wu fullname: Wu, Wentai email: wentai.wu organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom – sequence: 4 givenname: Ligang orcidid: 0000-0002-5671-0576 surname: He fullname: He, Ligang email: Ligang.He@warwick.ac.uk organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom – sequence: 5 givenname: Keqin orcidid: 0000-0001-5224-4048 surname: Li fullname: Li, Keqin email: lik@newpaltz.edu organization: Department of Computer Science, State University of New York, New Paltz, NY, USA – sequence: 6 givenname: Albert Y. orcidid: 0000-0002-3090-1059 surname: Zomaya fullname: Zomaya, Albert Y. email: albert.zomaya@sydney.edu.au organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia |
BookMark | eNp9kE1LAzEQhoNUUKs_QLwEPG-dfGw3OdZqq1BQaMWTLNndiY20WU3Sg__eXVo8ePA0w_A-M8xzRga-9UjIJYMRY6BvVs93yxEHDiMBEpQqjsgpy3OVcabEoOtB5pnmTJ-Qsxg_AJjMQZ6St4mn99a62qGvv7Pbto3J-Xc63XSDRJe4wTq51tNlvcYtUtsGOsMGg0nY0AWa4Pv4q0trOjMueIyRzncmGJ8Qz8mxNZuIF4c6JC-z-9X0IVs8zR-nk0VWcy1SNraN5MbUSgMUrJKVAiM4Qy3QoADVsEoVChHGXCsLjQVVCSVN1UAOTFsxJNf7vZ-h_dphTOVHuwu-O1lyqbkaAwjVpYp9qg5tjAFtWbtk-u9SMG5TMih7l2XvsuxdlgeXHcn-kJ_BbU34_pe52jMOEX_zmhd8LLX4AVP9gTg |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_TDSC_2021_3128679 crossref_primary_10_3390_e27010066 crossref_primary_10_1016_j_inffus_2023_102198 crossref_primary_10_1109_JSAC_2022_3229436 crossref_primary_10_1109_JSYST_2022_3206404 crossref_primary_10_1109_TMC_2024_3438152 crossref_primary_10_1016_j_neucom_2023_126638 crossref_primary_10_1109_TNSM_2022_3172370 crossref_primary_10_1109_TSMC_2023_3240992 crossref_primary_10_1109_TVT_2024_3449092 crossref_primary_10_1109_TGCN_2022_3186879 crossref_primary_10_1007_s11704_023_3282_7 crossref_primary_10_1109_ACCESS_2022_3215758 crossref_primary_10_1109_TMC_2024_3507381 crossref_primary_10_1109_TWC_2023_3235894 crossref_primary_10_1007_s12083_024_01869_7 crossref_primary_10_1109_TVT_2022_3207916 crossref_primary_10_1109_TPDS_2023_3240833 crossref_primary_10_1145_3706059 crossref_primary_10_1109_JIOT_2022_3153996 crossref_primary_10_1109_TSC_2024_3489437 crossref_primary_10_1109_JIOT_2023_3264677 crossref_primary_10_1109_TPDS_2023_3250513 crossref_primary_10_1177_2057150X251314299 crossref_primary_10_1109_TWC_2023_3330010 crossref_primary_10_1051_sands_2024014 crossref_primary_10_1109_OJCOMS_2024_3458088 crossref_primary_10_1109_TMC_2023_3331906 crossref_primary_10_1016_j_comnet_2024_110512 crossref_primary_10_1109_JIOT_2023_3334298 crossref_primary_10_1109_TFUZZ_2023_3335361 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_32604_cmes_2023_027226 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_1109_TWC_2022_3211998 crossref_primary_10_1109_TPDS_2022_3201983 crossref_primary_10_1109_JIOT_2024_3354914 crossref_primary_10_1109_TVT_2024_3410178 crossref_primary_10_1109_TWC_2022_3232891 crossref_primary_10_1109_ACCESS_2025_3543441 crossref_primary_10_1109_LWC_2021_3069541 crossref_primary_10_1109_JSYST_2024_3459926 crossref_primary_10_1109_TAI_2024_3419757 crossref_primary_10_1145_3678571 crossref_primary_10_1109_OJVT_2023_3341304 crossref_primary_10_1109_JIOT_2022_3172113 crossref_primary_10_1016_j_cosrev_2024_100697 crossref_primary_10_1109_JIOT_2023_3262582 crossref_primary_10_1109_TVT_2023_3250273 crossref_primary_10_1109_JIOT_2023_3301019 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1145_3678181 crossref_primary_10_1109_OJCOMS_2023_3266389 crossref_primary_10_1109_TMC_2024_3383038 crossref_primary_10_1109_TPDS_2022_3186960 crossref_primary_10_1109_TPDS_2024_3501581 crossref_primary_10_1109_TMC_2023_3276158 crossref_primary_10_1109_JBHI_2022_3175071 crossref_primary_10_1109_TMC_2023_3262829 crossref_primary_10_1109_TPDS_2022_3217271 crossref_primary_10_1109_ACCESS_2024_3413069 crossref_primary_10_1109_TMC_2023_3265010 crossref_primary_10_1109_ACCESS_2023_3269880 crossref_primary_10_1109_TVT_2021_3136308 crossref_primary_10_1109_TMC_2023_3332637 crossref_primary_10_1109_TSC_2024_3350050 crossref_primary_10_1360_SSI_2021_0329 crossref_primary_10_1109_TMC_2022_3148208 crossref_primary_10_1109_OJCOMS_2024_3438264 crossref_primary_10_1109_JSAC_2021_3126052 crossref_primary_10_1109_JIOT_2022_3195073 crossref_primary_10_1109_TMC_2021_3136611 crossref_primary_10_1007_s10723_023_09658_x crossref_primary_10_1109_JIOT_2023_3264463 crossref_primary_10_1109_TFUZZ_2021_3118733 crossref_primary_10_1109_TMI_2023_3234450 crossref_primary_10_1016_j_inffus_2024_102838 crossref_primary_10_1109_COMST_2023_3282264 crossref_primary_10_1016_j_future_2024_107683 crossref_primary_10_1109_TMC_2022_3178167 crossref_primary_10_1109_TMC_2024_3466208 crossref_primary_10_1109_TC_2024_3355777 crossref_primary_10_1109_MCOM_003_2400093 crossref_primary_10_1109_JIOT_2023_3283855 crossref_primary_10_1109_TMC_2024_3427709 crossref_primary_10_1109_ACCESS_2023_3295412 crossref_primary_10_1109_TPDS_2021_3127712 crossref_primary_10_1109_TNNLS_2023_3263594 crossref_primary_10_1109_TMC_2024_3450549 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1109_TCE_2024_3397863 crossref_primary_10_1109_TMC_2023_3276900 crossref_primary_10_1007_s11831_023_10011_4 crossref_primary_10_1109_TVT_2022_3184026 crossref_primary_10_1109_ACCESS_2022_3216710 crossref_primary_10_1016_j_neucom_2024_128019 crossref_primary_10_1109_TPDS_2023_3240767 crossref_primary_10_1109_TMC_2024_3510135 crossref_primary_10_3390_jmse13010032 crossref_primary_10_1109_JSAC_2023_3345393 crossref_primary_10_1109_TPDS_2021_3134647 crossref_primary_10_1109_TSMC_2023_3341074 crossref_primary_10_1287_ijds_2024_0029 |
Cites_doi | 10.1137/1.9781611973440.53 10.1145/1772690.1772758 10.1109/JPROC.2019.2918951 10.2200/S00271ED1V01Y201006CNT007 10.1109/TNSE.2019.2954310 10.1109/ICC40277.2020.9149323 10.1109/VTS-APWCS.2019.8851649 10.1109/MNET.2019.1800286 10.1109/ICC.2019.8761315 10.1109/TCOMM.2019.2944169 10.1109/MCOM.001.1900649 10.1109/ICC40277.2020.9148862 10.1145/3093337.3037698 10.1609/aaai.v34i08.7021 10.1109/ACCESS.2020.2968399 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2020.3040887 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 1564 |
ExternalDocumentID | 10_1109_TPDS_2020_3040887 9272649 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2019ZD26 funderid: 10.13039/501100012226 – fundername: Guangdong Major Project of Basic and Applied Basic Research grantid: 2019B030302002 – fundername: Guangzhou Science and Technology Program key projects grantid: 202007040002; 201902010040; 201907010001 funderid: 10.13039/501100004000 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2020B010164003 – fundername: National Natural Science Foundation of China grantid: 62072187; 61872084; 61772205 funderid: 10.13039/501100001809 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-6fd42aac890071b4b80a321e93eae308d1b878ee06298f0df08b384abd05019f3 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Sun Jun 29 13:19:07 EDT 2025 Tue Jul 01 03:58:39 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Wed Aug 27 02:33:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-6fd42aac890071b4b80a321e93eae308d1b878ee06298f0df08b384abd05019f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5671-0576 0000-0002-3090-1059 0000-0002-4557-1865 0000-0001-6876-1795 0000-0001-5224-4048 0000-0001-5851-327X |
PQID | 2492860038 |
PQPubID | 85437 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2020_3040887 proquest_journals_2492860038 crossref_primary_10_1109_TPDS_2020_3040887 ieee_primary_9272649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 deng (ref4) 2019 ref15 ref14 zeng (ref2) 0 ref11 wu (ref18) 2019 ref1 ref16 ref19 li (ref25) 2016 ref24 bagdasaryan (ref21) 0 xie (ref17) 2019 ref26 ref20 ref22 hsu (ref27) 2019 ramaswamy (ref10) 2019 ref7 jeong (ref12) 2018 ref3 ref6 ref5 abbasi-yadkori (ref23) 2011 hard (ref9) 2018 mcmahan (ref8) 0 |
References_xml | – ident: ref24 doi: 10.1137/1.9781611973440.53 – ident: ref22 doi: 10.1145/1772690.1772758 – ident: ref6 doi: 10.1109/JPROC.2019.2918951 – ident: ref26 doi: 10.2200/S00271ED1V01Y201006CNT007 – year: 2018 ident: ref9 article-title: Federated learning for mobile keyboard prediction – year: 2019 ident: ref18 article-title: SAFA: A semi-asynchronous protocol for fast federated learning with low overhead – ident: ref3 doi: 10.1109/TNSE.2019.2954310 – start-page: 1 year: 0 ident: ref2 article-title: Energy-efficient radio resource allocation for federated Edge learning – start-page: 2938 year: 0 ident: ref21 article-title: How to backdoor federated learning – ident: ref14 doi: 10.1109/ICC40277.2020.9149323 – ident: ref19 doi: 10.1109/VTS-APWCS.2019.8851649 – ident: ref5 doi: 10.1109/MNET.2019.1800286 – year: 2019 ident: ref4 article-title: Edge intelligence: The confluence of Edge computing and artificial intelligence – year: 2019 ident: ref27 article-title: Measuring the effects of non-identical data distribution for federated visual classification – year: 2019 ident: ref10 article-title: Federated learning for emoji prediction in a mobile keyboard – ident: ref1 doi: 10.1109/ICC.2019.8761315 – start-page: 1245 year: 2016 ident: ref25 article-title: Contextual combinatorial cascading bandits publication-title: Proc 33rd Int Conf Int Conf Mach Learn – ident: ref16 doi: 10.1109/TCOMM.2019.2944169 – ident: ref20 doi: 10.1109/MCOM.001.1900649 – ident: ref13 doi: 10.1109/ICC40277.2020.9148862 – year: 2019 ident: ref17 article-title: Asynchronous federated optimization – year: 2018 ident: ref12 article-title: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data – start-page: 2312 year: 2011 ident: ref23 article-title: Improved algorithms for linear stochastic bandits publication-title: Proc Advances Neural Inf Process Syst – ident: ref7 doi: 10.1145/3093337.3037698 – ident: ref11 doi: 10.1609/aaai.v34i08.7021 – ident: ref15 doi: 10.1109/ACCESS.2020.2968399 – start-page: 1273 year: 0 ident: ref8 article-title: Communication-efficient learning of deep networks from decentralized data |
SSID | ssj0014504 |
Score | 2.6815925 |
Snippet | The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing... The issue of potential privacy leakage during centralized AI’s model training has drawn intensive concern from the public. A Parallel and Distributed Computing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1552 |
SubjectTerms | Algorithms Client selection Clients Collaboration Computer networks Computer science contextual combinatorial multi-arm bandit Data models Distributed processing fairness scheduling Federated learning lyapunov optimization Mathematical models Optimization Privacy Problem solving Servers Training |
Title | An Efficiency-Boosting Client Selection Scheme for Federated Learning With Fairness Guarantee |
URI | https://ieeexplore.ieee.org/document/9272649 https://www.proquest.com/docview/2492860038 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXkVdXvKhJ4QXbxIn9pHXClWiqgSoXKootieAoLsVZC_8ema83hUqFeotB1uy9I0932RmvgH4qltl0AUniYorWQQVpC3bVpboS80ezVfcjXz-vTy7Kr5d6-sF2J_3wiBiLD7DPn_GXH4Y-wn_KjuwWUX-2y7CIgVu016tecag0HFUIEUXWlq6himDOVD24PLHyQVFghkFqGSysXrulQ-KQ1XevMTRvQyX4Xx2sGlVyX1_0rm-f_5Ls_F_T74CnxLPFIdTw1iFBRytwfJshoNIV3oNPr4SJFyHX4cjcRpFJbgjUx6Nx09cFi2OH7htUlzEoTmEJO2_xd8oiPGKIctREGMNImm13oifd92tGDZ3j_yOCrZCxg8_w9Xw9PL4TKYBDNITC-hk2YYiaxpvLDMRVzijmjwboM2xwVyZMHCmMoiqzKxpVSDcXW6KxgWliTq2-QYsjcYj_AKC3gnXeh3aqikK2xhXeat1FUyuvKsq1QM1g6T2SZ2ch2Q81DFKUbZmFGtGsU4o9mBvvuXPVJrjvcXrjMp8YQKkB9sz3Ot0eZ9qFlE0JedMN_-9aws-ZFzaEqt2t2Gpe5zgDnGTzu1Go3wBCYbfrQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbhMxEB2VcgAOFFoQoS34wAnh1Nld79rHUhoFaCqkpqIXtFrbs7SiJKjdXPj6zjhOVFGEuO3Bliy9sefNzswbgDe6VQZdcJKouJJFUEHasm1lib7U7NF8xd3I4-NydFp8OtNna_Bu1QuDiLH4DPv8GXP5Yebn_Ktsz2YV-W97D-6T39fZoltrlTModBwWSPGFlpYuYsphDpTdm3z5cEKxYEYhKhltrJ-75YXiWJU7b3F0MMMNGC-Ptqgr-dGfd67vf_-h2vi_Z38CjxPTFPsL03gKazjdhI3lFAeRLvUmPLolSbgF3_an4jDKSnBPpnw_m11zYbQ4uOTGSXESx-YQlrT_HH-iIM4rhixIQZw1iKTW-l18vejOxbC5uOKXVLAdMoL4DE6Hh5ODkUwjGKQnHtDJsg1F1jTeWOYirnBGNXk2QJtjg7kyYeBMZRBVmVnTqkDIu9wUjQtKE3ls8-ewPp1N8QUIeilc63Voq6YobGNc5a3WVTC58q6qVA_UEpLaJ31yHpNxWcc4RdmaUawZxTqh2IO3qy2_FuIc_1q8xaisFiZAerCzxL1O1_e6ZhlFU3LW9OXfd72GB6PJ-Kg--nj8eRseZlzoEmt4d2C9u5rjLjGVzr2KBnoD4A7i9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficiency-Boosting+Client+Selection+Scheme+for+Federated+Learning+With+Fairness+Guarantee&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Huang%2C+Tiansheng&rft.au=Lin%2C+Weiwei&rft.au=Wu%2C+Wentai&rft.au=He%2C+Ligang&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=32&rft.issue=7&rft.spage=1552&rft.epage=1564&rft_id=info:doi/10.1109%2FTPDS.2020.3040887&rft.externalDocID=9272649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |