An Efficiency-Boosting Client Selection Scheme for Federated Learning With Fairness Guarantee

The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to pe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 32; no. 7; pp. 1552 - 1564
Main Authors Huang, Tiansheng, Lin, Weiwei, Wu, Wentai, He, Ligang, Li, Keqin, Zomaya, Albert Y.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model's quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a <inline-formula><tex-math notation="LaTeX">\mathbf {C^2MAB}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">C</mml:mi><mml:mn mathvariant="bold">2</mml:mn></mml:msup><mml:mi mathvariant="bold">MAB</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3040887.gif"/> </inline-formula>-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets.
AbstractList The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model's quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a <inline-formula><tex-math notation="LaTeX">\mathbf {C^2MAB}</tex-math> <mml:math><mml:mrow><mml:msup><mml:mi mathvariant="bold">C</mml:mi><mml:mn mathvariant="bold">2</mml:mn></mml:msup><mml:mi mathvariant="bold">MAB</mml:mi></mml:mrow></mml:math><inline-graphic xlink:href="lin-ieq1-3040887.gif"/> </inline-formula>-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets.
The issue of potential privacy leakage during centralized AI’s model training has drawn intensive concern from the public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client selection policy is critical to an FL process in terms of training efficiency, the final model’s quality as well as fairness. In this article, we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a [Formula Omitted]-based method is proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on public datasets.
Author Lin, Weiwei
Wu, Wentai
Li, Keqin
He, Ligang
Zomaya, Albert Y.
Huang, Tiansheng
Author_xml – sequence: 1
  givenname: Tiansheng
  orcidid: 0000-0002-4557-1865
  surname: Huang
  fullname: Huang, Tiansheng
  email: cs_tianshenghuang@mail.scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
– sequence: 2
  givenname: Weiwei
  orcidid: 0000-0001-6876-1795
  surname: Lin
  fullname: Lin, Weiwei
  email: linww@scut.edu.cn
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
– sequence: 3
  givenname: Wentai
  orcidid: 0000-0001-5851-327X
  surname: Wu
  fullname: Wu, Wentai
  email: wentai.wu
  organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom
– sequence: 4
  givenname: Ligang
  orcidid: 0000-0002-5671-0576
  surname: He
  fullname: He, Ligang
  email: Ligang.He@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom
– sequence: 5
  givenname: Keqin
  orcidid: 0000-0001-5224-4048
  surname: Li
  fullname: Li, Keqin
  email: lik@newpaltz.edu
  organization: Department of Computer Science, State University of New York, New Paltz, NY, USA
– sequence: 6
  givenname: Albert Y.
  orcidid: 0000-0002-3090-1059
  surname: Zomaya
  fullname: Zomaya, Albert Y.
  email: albert.zomaya@sydney.edu.au
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
BookMark eNp9kE1LAzEQhoNUUKs_QLwEPG-dfGw3OdZqq1BQaMWTLNndiY20WU3Sg__eXVo8ePA0w_A-M8xzRga-9UjIJYMRY6BvVs93yxEHDiMBEpQqjsgpy3OVcabEoOtB5pnmTJ-Qsxg_AJjMQZ6St4mn99a62qGvv7Pbto3J-Xc63XSDRJe4wTq51tNlvcYtUtsGOsMGg0nY0AWa4Pv4q0trOjMueIyRzncmGJ8Qz8mxNZuIF4c6JC-z-9X0IVs8zR-nk0VWcy1SNraN5MbUSgMUrJKVAiM4Qy3QoADVsEoVChHGXCsLjQVVCSVN1UAOTFsxJNf7vZ-h_dphTOVHuwu-O1lyqbkaAwjVpYp9qg5tjAFtWbtk-u9SMG5TMih7l2XvsuxdlgeXHcn-kJ_BbU34_pe52jMOEX_zmhd8LLX4AVP9gTg
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TDSC_2021_3128679
crossref_primary_10_3390_e27010066
crossref_primary_10_1016_j_inffus_2023_102198
crossref_primary_10_1109_JSAC_2022_3229436
crossref_primary_10_1109_JSYST_2022_3206404
crossref_primary_10_1109_TMC_2024_3438152
crossref_primary_10_1016_j_neucom_2023_126638
crossref_primary_10_1109_TNSM_2022_3172370
crossref_primary_10_1109_TSMC_2023_3240992
crossref_primary_10_1109_TVT_2024_3449092
crossref_primary_10_1109_TGCN_2022_3186879
crossref_primary_10_1007_s11704_023_3282_7
crossref_primary_10_1109_ACCESS_2022_3215758
crossref_primary_10_1109_TMC_2024_3507381
crossref_primary_10_1109_TWC_2023_3235894
crossref_primary_10_1007_s12083_024_01869_7
crossref_primary_10_1109_TVT_2022_3207916
crossref_primary_10_1109_TPDS_2023_3240833
crossref_primary_10_1145_3706059
crossref_primary_10_1109_JIOT_2022_3153996
crossref_primary_10_1109_TSC_2024_3489437
crossref_primary_10_1109_JIOT_2023_3264677
crossref_primary_10_1109_TPDS_2023_3250513
crossref_primary_10_1177_2057150X251314299
crossref_primary_10_1109_TWC_2023_3330010
crossref_primary_10_1051_sands_2024014
crossref_primary_10_1109_OJCOMS_2024_3458088
crossref_primary_10_1109_TMC_2023_3331906
crossref_primary_10_1016_j_comnet_2024_110512
crossref_primary_10_1109_JIOT_2023_3334298
crossref_primary_10_1109_TFUZZ_2023_3335361
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_32604_cmes_2023_027226
crossref_primary_10_1109_TETCI_2023_3251404
crossref_primary_10_1109_TWC_2022_3211998
crossref_primary_10_1109_TPDS_2022_3201983
crossref_primary_10_1109_JIOT_2024_3354914
crossref_primary_10_1109_TVT_2024_3410178
crossref_primary_10_1109_TWC_2022_3232891
crossref_primary_10_1109_ACCESS_2025_3543441
crossref_primary_10_1109_LWC_2021_3069541
crossref_primary_10_1109_JSYST_2024_3459926
crossref_primary_10_1109_TAI_2024_3419757
crossref_primary_10_1145_3678571
crossref_primary_10_1109_OJVT_2023_3341304
crossref_primary_10_1109_JIOT_2022_3172113
crossref_primary_10_1016_j_cosrev_2024_100697
crossref_primary_10_1109_JIOT_2023_3262582
crossref_primary_10_1109_TVT_2023_3250273
crossref_primary_10_1109_JIOT_2023_3301019
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1145_3678181
crossref_primary_10_1109_OJCOMS_2023_3266389
crossref_primary_10_1109_TMC_2024_3383038
crossref_primary_10_1109_TPDS_2022_3186960
crossref_primary_10_1109_TPDS_2024_3501581
crossref_primary_10_1109_TMC_2023_3276158
crossref_primary_10_1109_JBHI_2022_3175071
crossref_primary_10_1109_TMC_2023_3262829
crossref_primary_10_1109_TPDS_2022_3217271
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1109_TMC_2023_3265010
crossref_primary_10_1109_ACCESS_2023_3269880
crossref_primary_10_1109_TVT_2021_3136308
crossref_primary_10_1109_TMC_2023_3332637
crossref_primary_10_1109_TSC_2024_3350050
crossref_primary_10_1360_SSI_2021_0329
crossref_primary_10_1109_TMC_2022_3148208
crossref_primary_10_1109_OJCOMS_2024_3438264
crossref_primary_10_1109_JSAC_2021_3126052
crossref_primary_10_1109_JIOT_2022_3195073
crossref_primary_10_1109_TMC_2021_3136611
crossref_primary_10_1007_s10723_023_09658_x
crossref_primary_10_1109_JIOT_2023_3264463
crossref_primary_10_1109_TFUZZ_2021_3118733
crossref_primary_10_1109_TMI_2023_3234450
crossref_primary_10_1016_j_inffus_2024_102838
crossref_primary_10_1109_COMST_2023_3282264
crossref_primary_10_1016_j_future_2024_107683
crossref_primary_10_1109_TMC_2022_3178167
crossref_primary_10_1109_TMC_2024_3466208
crossref_primary_10_1109_TC_2024_3355777
crossref_primary_10_1109_MCOM_003_2400093
crossref_primary_10_1109_JIOT_2023_3283855
crossref_primary_10_1109_TMC_2024_3427709
crossref_primary_10_1109_ACCESS_2023_3295412
crossref_primary_10_1109_TPDS_2021_3127712
crossref_primary_10_1109_TNNLS_2023_3263594
crossref_primary_10_1109_TMC_2024_3450549
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1109_TCE_2024_3397863
crossref_primary_10_1109_TMC_2023_3276900
crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_1109_TVT_2022_3184026
crossref_primary_10_1109_ACCESS_2022_3216710
crossref_primary_10_1016_j_neucom_2024_128019
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_1109_TMC_2024_3510135
crossref_primary_10_3390_jmse13010032
crossref_primary_10_1109_JSAC_2023_3345393
crossref_primary_10_1109_TPDS_2021_3134647
crossref_primary_10_1109_TSMC_2023_3341074
crossref_primary_10_1287_ijds_2024_0029
Cites_doi 10.1137/1.9781611973440.53
10.1145/1772690.1772758
10.1109/JPROC.2019.2918951
10.2200/S00271ED1V01Y201006CNT007
10.1109/TNSE.2019.2954310
10.1109/ICC40277.2020.9149323
10.1109/VTS-APWCS.2019.8851649
10.1109/MNET.2019.1800286
10.1109/ICC.2019.8761315
10.1109/TCOMM.2019.2944169
10.1109/MCOM.001.1900649
10.1109/ICC40277.2020.9148862
10.1145/3093337.3037698
10.1609/aaai.v34i08.7021
10.1109/ACCESS.2020.2968399
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2020.3040887
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 1564
ExternalDocumentID 10_1109_TPDS_2020_3040887
9272649
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019ZD26
  funderid: 10.13039/501100012226
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302002
– fundername: Guangzhou Science and Technology Program key projects
  grantid: 202007040002; 201902010040; 201907010001
  funderid: 10.13039/501100004000
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2020B010164003
– fundername: National Natural Science Foundation of China
  grantid: 62072187; 61872084; 61772205
  funderid: 10.13039/501100001809
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6fd42aac890071b4b80a321e93eae308d1b878ee06298f0df08b384abd05019f3
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Sun Jun 29 13:19:07 EDT 2025
Tue Jul 01 03:58:39 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Wed Aug 27 02:33:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6fd42aac890071b4b80a321e93eae308d1b878ee06298f0df08b384abd05019f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5671-0576
0000-0002-3090-1059
0000-0002-4557-1865
0000-0001-6876-1795
0000-0001-5224-4048
0000-0001-5851-327X
PQID 2492860038
PQPubID 85437
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2020_3040887
proquest_journals_2492860038
crossref_primary_10_1109_TPDS_2020_3040887
ieee_primary_9272649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
deng (ref4) 2019
ref15
ref14
zeng (ref2) 0
ref11
wu (ref18) 2019
ref1
ref16
ref19
li (ref25) 2016
ref24
bagdasaryan (ref21) 0
xie (ref17) 2019
ref26
ref20
ref22
hsu (ref27) 2019
ramaswamy (ref10) 2019
ref7
jeong (ref12) 2018
ref3
ref6
ref5
abbasi-yadkori (ref23) 2011
hard (ref9) 2018
mcmahan (ref8) 0
References_xml – ident: ref24
  doi: 10.1137/1.9781611973440.53
– ident: ref22
  doi: 10.1145/1772690.1772758
– ident: ref6
  doi: 10.1109/JPROC.2019.2918951
– ident: ref26
  doi: 10.2200/S00271ED1V01Y201006CNT007
– year: 2018
  ident: ref9
  article-title: Federated learning for mobile keyboard prediction
– year: 2019
  ident: ref18
  article-title: SAFA: A semi-asynchronous protocol for fast federated learning with low overhead
– ident: ref3
  doi: 10.1109/TNSE.2019.2954310
– start-page: 1
  year: 0
  ident: ref2
  article-title: Energy-efficient radio resource allocation for federated Edge learning
– start-page: 2938
  year: 0
  ident: ref21
  article-title: How to backdoor federated learning
– ident: ref14
  doi: 10.1109/ICC40277.2020.9149323
– ident: ref19
  doi: 10.1109/VTS-APWCS.2019.8851649
– ident: ref5
  doi: 10.1109/MNET.2019.1800286
– year: 2019
  ident: ref4
  article-title: Edge intelligence: The confluence of Edge computing and artificial intelligence
– year: 2019
  ident: ref27
  article-title: Measuring the effects of non-identical data distribution for federated visual classification
– year: 2019
  ident: ref10
  article-title: Federated learning for emoji prediction in a mobile keyboard
– ident: ref1
  doi: 10.1109/ICC.2019.8761315
– start-page: 1245
  year: 2016
  ident: ref25
  article-title: Contextual combinatorial cascading bandits
  publication-title: Proc 33rd Int Conf Int Conf Mach Learn
– ident: ref16
  doi: 10.1109/TCOMM.2019.2944169
– ident: ref20
  doi: 10.1109/MCOM.001.1900649
– ident: ref13
  doi: 10.1109/ICC40277.2020.9148862
– year: 2019
  ident: ref17
  article-title: Asynchronous federated optimization
– year: 2018
  ident: ref12
  article-title: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-iid private data
– start-page: 2312
  year: 2011
  ident: ref23
  article-title: Improved algorithms for linear stochastic bandits
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref7
  doi: 10.1145/3093337.3037698
– ident: ref11
  doi: 10.1609/aaai.v34i08.7021
– ident: ref15
  doi: 10.1109/ACCESS.2020.2968399
– start-page: 1273
  year: 0
  ident: ref8
  article-title: Communication-efficient learning of deep networks from decentralized data
SSID ssj0014504
Score 2.6815925
Snippet The issue of potential privacy leakage during centralized AI's model training has drawn intensive concern from the public. A Parallel and Distributed Computing...
The issue of potential privacy leakage during centralized AI’s model training has drawn intensive concern from the public. A Parallel and Distributed Computing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1552
SubjectTerms Algorithms
Client selection
Clients
Collaboration
Computer networks
Computer science
contextual combinatorial multi-arm bandit
Data models
Distributed processing
fairness scheduling
Federated learning
lyapunov optimization
Mathematical models
Optimization
Privacy
Problem solving
Servers
Training
Title An Efficiency-Boosting Client Selection Scheme for Federated Learning With Fairness Guarantee
URI https://ieeexplore.ieee.org/document/9272649
https://www.proquest.com/docview/2492860038
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp_ZQXkVdXvKhJ4QXbxIn9pHXClWiqgSoXKootieAoLsVZC_8ema83hUqFeotB1uy9I0932RmvgH4qltl0AUniYorWQQVpC3bVpboS80ezVfcjXz-vTy7Kr5d6-sF2J_3wiBiLD7DPn_GXH4Y-wn_KjuwWUX-2y7CIgVu016tecag0HFUIEUXWlq6himDOVD24PLHyQVFghkFqGSysXrulQ-KQ1XevMTRvQyX4Xx2sGlVyX1_0rm-f_5Ls_F_T74CnxLPFIdTw1iFBRytwfJshoNIV3oNPr4SJFyHX4cjcRpFJbgjUx6Nx09cFi2OH7htUlzEoTmEJO2_xd8oiPGKIctREGMNImm13oifd92tGDZ3j_yOCrZCxg8_w9Xw9PL4TKYBDNITC-hk2YYiaxpvLDMRVzijmjwboM2xwVyZMHCmMoiqzKxpVSDcXW6KxgWliTq2-QYsjcYj_AKC3gnXeh3aqikK2xhXeat1FUyuvKsq1QM1g6T2SZ2ch2Q81DFKUbZmFGtGsU4o9mBvvuXPVJrjvcXrjMp8YQKkB9sz3Ot0eZ9qFlE0JedMN_-9aws-ZFzaEqt2t2Gpe5zgDnGTzu1Go3wBCYbfrQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbhMxEB2VcgAOFFoQoS34wAnh1Nld79rHUhoFaCqkpqIXtFrbs7SiJKjdXPj6zjhOVFGEuO3Bliy9sefNzswbgDe6VQZdcJKouJJFUEHasm1lib7U7NF8xd3I4-NydFp8OtNna_Bu1QuDiLH4DPv8GXP5Yebn_Ktsz2YV-W97D-6T39fZoltrlTModBwWSPGFlpYuYsphDpTdm3z5cEKxYEYhKhltrJ-75YXiWJU7b3F0MMMNGC-Ptqgr-dGfd67vf_-h2vi_Z38CjxPTFPsL03gKazjdhI3lFAeRLvUmPLolSbgF3_an4jDKSnBPpnw_m11zYbQ4uOTGSXESx-YQlrT_HH-iIM4rhixIQZw1iKTW-l18vejOxbC5uOKXVLAdMoL4DE6Hh5ODkUwjGKQnHtDJsg1F1jTeWOYirnBGNXk2QJtjg7kyYeBMZRBVmVnTqkDIu9wUjQtKE3ls8-ewPp1N8QUIeilc63Voq6YobGNc5a3WVTC58q6qVA_UEpLaJ31yHpNxWcc4RdmaUawZxTqh2IO3qy2_FuIc_1q8xaisFiZAerCzxL1O1_e6ZhlFU3LW9OXfd72GB6PJ-Kg--nj8eRseZlzoEmt4d2C9u5rjLjGVzr2KBnoD4A7i9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficiency-Boosting+Client+Selection+Scheme+for+Federated+Learning+With+Fairness+Guarantee&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Huang%2C+Tiansheng&rft.au=Lin%2C+Weiwei&rft.au=Wu%2C+Wentai&rft.au=He%2C+Ligang&rft.date=2021-07-01&rft.pub=IEEE&rft.issn=1045-9219&rft.volume=32&rft.issue=7&rft.spage=1552&rft.epage=1564&rft_id=info:doi/10.1109%2FTPDS.2020.3040887&rft.externalDocID=9272649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon