A Real-Time Patient-Specific Sleeping Posture Recognition System Using Pressure Sensitive Conductive Sheet and Transfer Learning
Sleeping is an indispensable activity of human beings. Sleeping postures have a significant effect on sleeping quality and health. A real-time low-cost sleeping posture recognition system with high privacy and good user experience is desired. In this article, we propose a sleeping posture recognitio...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 5; pp. 6869 - 6879 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleeping is an indispensable activity of human beings. Sleeping postures have a significant effect on sleeping quality and health. A real-time low-cost sleeping posture recognition system with high privacy and good user experience is desired. In this article, we propose a sleeping posture recognition system based on a low-cost pressure sensor array which consists of conductive fabric and conductive wires. The sensor array is deployed as a bedsheet with 32 rows and 32 columns resulting in 1024 nodes. An Arduino Nano performs data collection using a 10-bit Analog to Digital Converter (ADC). The sampling rate of the overall sensor array is 0.4 frame/sec. Six health-related sleeping postures of five participants can be recognized by a shallow Convolutional Neural Network (CNN) deployed on a Personal Computer (PC). The system accuracy achieved 84.80% using the standard training-test method and 91.24% using the transfer learning-based subject-specific method. The real-time processing speed achieved 434 us/frame. |
---|---|
AbstractList | Sleeping is an indispensable activity of human beings. Sleeping postures have a significant effect on sleeping quality and health. A real-time low-cost sleeping posture recognition system with high privacy and good user experience is desired. In this article, we propose a sleeping posture recognition system based on a low-cost pressure sensor array which consists of conductive fabric and conductive wires. The sensor array is deployed as a bedsheet with 32 rows and 32 columns resulting in 1024 nodes. An Arduino Nano performs data collection using a 10-bit Analog to Digital Converter (ADC). The sampling rate of the overall sensor array is 0.4 frame/sec. Six health-related sleeping postures of five participants can be recognized by a shallow Convolutional Neural Network (CNN) deployed on a Personal Computer (PC). The system accuracy achieved 84.80% using the standard training-test method and 91.24% using the transfer learning-based subject-specific method. The real-time processing speed achieved 434 us/frame. |
Author | Hu, Qisong Tang, Wei Tang, Xiaochen |
Author_xml | – sequence: 1 givenname: Qisong orcidid: 0000-0001-9519-188X surname: Hu fullname: Hu, Qisong organization: Maxlinear Inc., Carlsbad, CA, USA – sequence: 2 givenname: Xiaochen orcidid: 0000-0003-2590-5810 surname: Tang fullname: Tang, Xiaochen organization: Texas A&M University, College Station, TX, USA – sequence: 3 givenname: Wei orcidid: 0000-0003-1925-0782 surname: Tang fullname: Tang, Wei email: wtang@nmsu.edu organization: Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA |
BookMark | eNp9kE9LwzAYh4NMcJt-APES8NyZNE3THseY_xg67AbeStq-mRlbOpNU2M2PbrsNDx485Qd5nvfl_Q1Qz9QGELqmZEQpSe-es-nLKCQhGTESsYjGZ6hPOU8CKqKk12VGgoiJ9ws0cG5NCE0FF330PcZvIDfBQm8Bz6XXYHyQ7aDUSpc42wDstFnhee18Y6Fly3pltNe1wdneedjipTsAFpzriAyMa_-_AE9qUzXlIWYfAB5LU-GFlcYpsHgG0prWvETnSm4cXJ3eIVreTxeTx2D2-vA0Gc-CMkyZD2IZK5EKUVCqmCqYSkShKi4jyVIhI1GFQnGlQMRQxWWbiwJ4yrngSUUkj9kQ3R7n7mz92YDz-bpurGlX5mGUiLYaHtKWEkeqtLVzFlReai-7c72VepNTknd1513deVd3fqq7Nekfc2f1Vtr9v87N0dEA8MunYZKIhLIfgAWPbA |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106009 crossref_primary_10_1109_TBCAS_2023_3296529 crossref_primary_10_1109_THMS_2024_3422267 crossref_primary_10_1109_JSEN_2024_3486458 crossref_primary_10_3390_computers12050104 crossref_primary_10_1109_JSEN_2024_3463959 crossref_primary_10_1109_JBHI_2023_3271463 crossref_primary_10_1109_TNSRE_2024_3452431 crossref_primary_10_1109_JSEN_2022_3198140 crossref_primary_10_1109_JSEN_2022_3218054 crossref_primary_10_3390_iot2010007 crossref_primary_10_1016_j_pmcj_2023_101752 crossref_primary_10_3390_s24155016 crossref_primary_10_3390_healthcare11233066 crossref_primary_10_1109_JSAS_2024_3475355 crossref_primary_10_3390_s21124051 crossref_primary_10_3390_s24227104 crossref_primary_10_1109_JSEN_2024_3518082 crossref_primary_10_32604_cmes_2023_027676 crossref_primary_10_1016_j_heliyon_2024_e31839 crossref_primary_10_3390_informatics11040076 crossref_primary_10_1016_j_ifacol_2024_07_368 crossref_primary_10_1038_s41598_024_61267_0 crossref_primary_10_3390_s23218997 crossref_primary_10_3390_s23042131 crossref_primary_10_1155_2022_3102545 crossref_primary_10_1177_09544062231223878 crossref_primary_10_3390_s24216986 crossref_primary_10_3390_computation11120239 crossref_primary_10_3390_s24154833 crossref_primary_10_3390_s21082885 crossref_primary_10_1109_ACCESS_2023_3246266 crossref_primary_10_1109_JSAS_2024_3501213 crossref_primary_10_1109_JSEN_2023_3282746 crossref_primary_10_3390_nano13192692 crossref_primary_10_3390_e26100817 crossref_primary_10_1109_JSEN_2021_3128389 |
Cites_doi | 10.1164/rccm.201504-0767ST 10.1109/JSEN.2004.837498 10.1109/JSEN.2020.2980207 10.1177/1527154406293968 10.1109/ITAB.2003.1222534 10.1109/IEMCON.2016.7746284 10.1109/TSMCC.2009.2032660 10.1111/j.1365-2044.1994.tb03433.x 10.1109/TIM.2017.2779358 10.1016/j.ajo.2013.12.016 10.1109/BMEI.2013.6746919 10.2197/ipsjjip.26.718 10.1109/JBHI.2019.2899070 10.1109/TBCAS.2018.2823275 10.1109/MEMB.2003.1213624 10.1109/EMBC.2015.7318814 10.1016/j.pmcj.2013.10.008 10.1109/ICIEV.2015.7334059 10.1145/2141622.2141633 10.1016/j.jpainsymman.2010.11.016 10.1109/TBME.2009.2026733 10.1109/IEMBS.2009.5334694 10.1109/TITB.2005.854512 10.1109/ACCESS.2019.2942608 10.1109/EMBC.2016.7591565 10.1109/TBME.2019.2926104 10.1016/S0196-0709(85)80015-6 10.1109/JBHI.2013.2296891 10.1109/ICASI.2017.7988585 10.1109/BioCAS.2014.6981663 10.1109/JSEN.2019.2908822 10.1038/s41586-019-1234-z 10.1109/ICSENS.2016.7808735 10.1109/TBCAS.2016.2543686 10.1109/TCSII.2016.2601062 10.1109/TKDE.2009.191 10.1109/IEMBS.2011.6091813 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3043416 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 6879 |
ExternalDocumentID | 10_1109_JSEN_2020_3043416 9288781 |
Genre | orig-research |
GrantInformation_xml | – fundername: United States National Science Foundation grantid: ECCS-1652944; ECCS-2015573 funderid: 10.13039/100000001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-6a6f7977b11f3fb3f87bfd5a4a397a47d27f5ffe76ed6c7f5bbe5955758d0a563 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:18:08 EDT 2025 Tue Jul 01 03:36:59 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Wed Aug 27 05:47:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-6a6f7977b11f3fb3f87bfd5a4a397a47d27f5ffe76ed6c7f5bbe5955758d0a563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9519-188X 0000-0003-2590-5810 0000-0003-1925-0782 |
PQID | 2487437521 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2020_3043416 proquest_journals_2487437521 crossref_primary_10_1109_JSEN_2020_3043416 ieee_primary_9288781 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 harada (ref8) 2002; 4 ref37 ref36 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref19 xu (ref35) 2015 ref18 sarrafzadeh (ref34) 2016 bell (ref27) 2019 liu (ref24) 2019 ref46 ref23 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref21 ref43 huang (ref30) 2017 (ref15) 2013 ref28 ref29 (ref45) 2020 sarrafzadeh (ref33) 2016 ref7 ref9 ref4 ref3 ref6 ref5 ref40 hsia (ref44) 2008 |
References_xml | – ident: ref14 doi: 10.1164/rccm.201504-0767ST – ident: ref1 doi: 10.1109/JSEN.2004.837498 – ident: ref13 doi: 10.1109/JSEN.2020.2980207 – year: 2019 ident: ref24 article-title: Seeing under the cover: A physics guided learning approach for in-bed pose estimation publication-title: arXiv 1907 02161 – ident: ref20 doi: 10.1177/1527154406293968 – start-page: 318 year: 2017 ident: ref30 article-title: An improved sleep posture recognition based on force sensing resistors publication-title: Proc Asian Conf Intell Inf Database Syst – ident: ref10 doi: 10.1109/ITAB.2003.1222534 – year: 2019 ident: ref27 publication-title: From Smart Pyjamas to a Bedside Monitor-Six Innovative Devices for at-Home Sleep Monitoring – ident: ref26 doi: 10.1109/IEMCON.2016.7746284 – ident: ref3 doi: 10.1109/TSMCC.2009.2032660 – year: 2013 ident: ref15 publication-title: 7 Time Consuming Things Average Joe Spends a Lifetime – ident: ref17 doi: 10.1111/j.1365-2044.1994.tb03433.x – ident: ref25 doi: 10.1109/TIM.2017.2779358 – ident: ref18 doi: 10.1016/j.ajo.2013.12.016 – volume: 4 start-page: 3795 year: 2002 ident: ref8 article-title: Estimation of bed-ridden human's gross and slight movement based on pressure sensors distribution bed publication-title: Proc IEEE Int Conf Robot Automat – ident: ref37 doi: 10.1109/BMEI.2013.6746919 – ident: ref29 doi: 10.2197/ipsjjip.26.718 – ident: ref28 doi: 10.1109/JBHI.2019.2899070 – ident: ref11 doi: 10.1109/TBCAS.2018.2823275 – year: 2016 ident: ref34 article-title: Fabric-based pressure sensor arrays and methods for data analysis – ident: ref4 doi: 10.1109/MEMB.2003.1213624 – ident: ref5 doi: 10.1109/EMBC.2015.7318814 – ident: ref38 doi: 10.1016/j.pmcj.2013.10.008 – ident: ref36 doi: 10.1109/ICIEV.2015.7334059 – year: 2016 ident: ref33 article-title: On-bed monitoring system for range of motion exercises with a pressure sensitive bed sheet – ident: ref41 doi: 10.1145/2141622.2141633 – ident: ref19 doi: 10.1016/j.jpainsymman.2010.11.016 – start-page: 1 year: 2015 ident: ref35 article-title: On-bed sleep posture recognition based on body-earth mover's distance publication-title: Proc IEEE Biomed Circuits Syst Conf (BioCAS) – ident: ref9 doi: 10.1109/TBME.2009.2026733 – ident: ref43 doi: 10.1109/IEMBS.2009.5334694 – ident: ref2 doi: 10.1109/TITB.2005.854512 – ident: ref21 doi: 10.1109/ACCESS.2019.2942608 – start-page: 165 year: 2008 ident: ref44 article-title: Bayesian classification for bed posture detection based on kurtosis and skewness estimation publication-title: Proc 10th Int Conf e-Health Netw Appl Services – ident: ref31 doi: 10.1109/EMBC.2016.7591565 – ident: ref12 doi: 10.1109/TBME.2019.2926104 – ident: ref16 doi: 10.1016/S0196-0709(85)80015-6 – year: 2020 ident: ref45 – ident: ref39 doi: 10.1109/JBHI.2013.2296891 – ident: ref23 doi: 10.1109/ICASI.2017.7988585 – ident: ref40 doi: 10.1109/BioCAS.2014.6981663 – ident: ref7 doi: 10.1109/JSEN.2019.2908822 – ident: ref46 doi: 10.1038/s41586-019-1234-z – ident: ref22 doi: 10.1109/ICSENS.2016.7808735 – ident: ref32 doi: 10.1109/TBCAS.2016.2543686 – ident: ref6 doi: 10.1109/TCSII.2016.2601062 – ident: ref47 doi: 10.1109/TKDE.2009.191 – ident: ref42 doi: 10.1109/IEMBS.2011.6091813 |
SSID | ssj0019757 |
Score | 2.4959116 |
Snippet | Sleeping is an indispensable activity of human beings. Sleeping postures have a significant effect on sleeping quality and health. A real-time low-cost... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6869 |
SubjectTerms | Analog to digital converters Artificial neural network Artificial neural networks Conductivity Data collection Learning Low cost Monitoring Personal computers Posture Pressure sensors Real time realtime classification Recognition Resistance sensor array Sensor arrays Sensors Sleep apnea sleeping postures smart bed Voltage measurement |
Title | A Real-Time Patient-Specific Sleeping Posture Recognition System Using Pressure Sensitive Conductive Sheet and Transfer Learning |
URI | https://ieeexplore.ieee.org/document/9288781 https://www.proquest.com/docview/2487437521 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RLtBDCwuIbSnyoSfULEmc2JsjQqxWK4EQAWlvkR2PCwJl0TZ7aE_96R073qhfQtx8cCRLz_a8F8-8AfhMMZc7L58o01yQQElMpMacVIrKucAEU2W92-eVmN5ls3k-34AvfS0MIvrkMxy5oX_LN4t65X6VnRYpHQlXZ_2GhFtXq9W_GBTSu3rSAY6jjMt5eMFM4uJ0Vl5ckRJMSaDGGd3a4o8Y5Juq_HMT-_AyeQ-X64V1WSWPo1WrR_WPvzwbX7vyHXgXeCY76zbGLmxgM4C3v7kPDmArNEC__74HP8_YDVHGyFWEsOvOazXyventQ83KJ0RXV8Vca9_VEtnNOu1o0bDO85z53APWVRvSjNIlxrurlJ0vGucp64blPWLLVGOYD5EWlyz4u37dh7vJxe35NArNGaKaGEJLYAoriTzqJLHcam7HUluTq0wRw1GZNKm0ubUoBRpR01hrzIuc2OHYxCoX_AA2m0WDh8A0UYqEGyNNRkIdrUJtNeFltMhMncghxGu4qjo4l7sGGk-VVzBxUTmEK4dwFRAewkn_yXNn2_HS5D2HWD8xgDWEo_WeqMLB_lalJPBoexHp-fD_rz7CdurSXnya2hFstssVfiLe0upjv2F_AYq06sc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hOAAHaPlQFyj40FPVLEmc2JsjQqAthVXFgrS3yI7HUIGyaMke4MRPZ-x4V_RDqDcfbMnSG3ve2DNvAL6Qz-VOyyfKNBcUoCQmUj1OUYrKucAEU2W92udA9K-zs1E-WoBv81oYRPTJZ9h1Q_-Xb8bV1D2VHRYpHQlXZ71Efj9P2mqt-Z9BIb2uJx3hOMq4HIU_zCQuDs-GJwOKBVMKUeOM7m3xmxfybVX-uou9gzldh4vZ1tq8krvutNHd6vkP1cb_3fsHWAtMkx21pvERFrDegNU3-oMbsBxaoN8-bcLLEbsk0hi5mhD2s1VbjXx3evurYsN7RFdZxVxz3-kE2eUs8Whcs1b1nPnsA9bWG9KMoUuNd5cpOx7XTlXWDYe3iA1TtWHeSVqcsKDwerMF16cnV8f9KLRniCriCA3BKawk-qiTxHKrue1JbU2uMkUcR2XSpNLm1qIUaERFY60xL3Lihz0Tq1zwbVisxzV-AqaJVCTcGGkyCtXRKtRWE15Gi8xUiexAPIOrrIJ2uWuhcV_6GCYuSodw6RAuA8Id-Dpf8tAKd7w3edMhNp8YwOrA3swmynC0H8uUQjwyL6I9O_9edQDL_auL8_L8--DHLqykLgnGJ63twWIzmeJnYjGN3vfG-wrsf-4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Patient-Specific+Sleeping+Posture+Recognition+System+Using+Pressure+Sensitive+Conductive+Sheet+and+Transfer+Learning&rft.jtitle=IEEE+sensors+journal&rft.au=Hu%2C+Qisong&rft.au=Tang%2C+Xiaochen&rft.au=Tang%2C+Wei&rft.date=2021-03-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=21&rft.issue=5&rft.spage=6869&rft.epage=6879&rft_id=info:doi/10.1109%2FJSEN.2020.3043416&rft.externalDocID=9288781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |