Optimized Bi-Objective EEG Channel Selection and Cross-Subject Generalization With Brain–Computer Interfaces

Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 46; no. 6; pp. 777 - 786
Main Authors Handiru, Vikram Shenoy, Prasad, Vinod A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2291
2168-2305
DOI10.1109/THMS.2016.2573827

Cover

Loading…
Abstract Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS) is proposed in this paper. For a given MI classification task, the proposed method initializes a reference candidate solution and subsequently finds a set of the most relevant channels in an iterative manner by exploiting both the anatomical and functional relevance of EEG channels. The proposed approach is evaluated on the Wadsworth dataset for the right fist versus left fist MI tasks, while considering the cross-validation accuracy as the performance evaluation criteria. Furthermore, 12 other dimension reduction and channel selection algorithms are used for benchmarking. The proposed approach (IMOCS) achieved an average classification accuracy of about 80% when evaluated using 35 best-performing subjects. One-way analysis of variance revealed the statistical significance of the proposed approach with at least 7% improvement over other benchmarking algorithms. Furthermore, a cross-subject generalization of channel selection on untrained subjects shows that the subject-independent channels perform as good as using all channels achieving an average classification accuracy of 61%. These results are promising for the online brain-computer interface (BCI) paradigm that requires low computational complexity and also for reducing the preparation time while conducting multiple session BCI experiments for a larger pool of subjects.
AbstractList Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS) is proposed in this paper. For a given MI classification task, the proposed method initializes a reference candidate solution and subsequently finds a set of the most relevant channels in an iterative manner by exploiting both the anatomical and functional relevance of EEG channels. The proposed approach is evaluated on the Wadsworth dataset for the right fist versus left fist MI tasks, while considering the cross-validation accuracy as the performance evaluation criteria. Furthermore, 12 other dimension reduction and channel selection algorithms are used for benchmarking. The proposed approach (IMOCS) achieved an average classification accuracy of about 80% when evaluated using 35 best-performing subjects. One-way analysis of variance revealed the statistical significance of the proposed approach with at least 7% improvement over other benchmarking algorithms. Furthermore, a cross-subject generalization of channel selection on untrained subjects shows that the subject-independent channels perform as good as using all channels achieving an average classification accuracy of 61%. These results are promising for the online brain-computer interface (BCI) paradigm that requires low computational complexity and also for reducing the preparation time while conducting multiple session BCI experiments for a larger pool of subjects.
Author Prasad, Vinod A.
Handiru, Vikram Shenoy
Author_xml – sequence: 1
  givenname: Vikram Shenoy
  surname: Handiru
  fullname: Handiru, Vikram Shenoy
  email: vikram002@e.ntu.edu.sg
  organization: Interdiscipl. Grad. Sch., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 2
  givenname: Vinod A.
  surname: Prasad
  fullname: Prasad, Vinod A.
  email: ASVinod@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
BookMark eNp9kLFOwzAURS0EElD4AMRiiTnFz4nteISotEigDgUxRk76orpKneCkSHTiH_hDvoSkLQwMeLAt65xn3XtKDl3lkJALYEMApq-fJo-zIWcgh1yoMObqgJxwkHHAQyYOf-5cwzE5b5ol61bMhRDxCXHTurUru8E5vbXBNFti3to3pKPRmCYL4xyWdIZl_1o5atycJr5qmmC23qJ0jA69Ke3GbIEX2y7orTfWfX18JtWqXrfo6b3r9sLk2JyRo8KUDZ7vzwF5vhs9JZPgYTq-T24egpzrsA2kNlJnGVNCQCSM0nkWMSkVxiorFBjDtAQWCm6U1IyrORYQ5jlkonM0mHBArnZza1-9rrFp02W19q77MoU4YqBBCNlRakflfSaPRZrbdhuk7SKUKbC07zft-037ftN9v50Jf8za25Xx7_86lzvHIuIvryLNJZPhN2roiIg
CODEN ITHSA6
CitedBy_id crossref_primary_10_1088_1741_2552_ac0489
crossref_primary_10_3233_JIFS_201779
crossref_primary_10_1016_j_eswa_2018_08_031
crossref_primary_10_1109_THMS_2020_3039196
crossref_primary_10_1109_ACCESS_2024_3404634
crossref_primary_10_1016_j_neunet_2020_11_002
crossref_primary_10_3389_fnins_2022_865594
crossref_primary_10_1007_s10548_021_00883_9
crossref_primary_10_3390_s23218893
crossref_primary_10_3389_fnins_2018_00217
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1088_1741_2552_aae597
crossref_primary_10_1016_j_knosys_2022_110143
crossref_primary_10_3389_fnins_2023_1250991
crossref_primary_10_1016_j_cmpb_2019_06_009
crossref_primary_10_1209_0295_5075_134_50003
crossref_primary_10_1088_1741_2552_ac7d73
crossref_primary_10_3389_fnins_2022_1045851
crossref_primary_10_1007_s10462_019_09694_8
crossref_primary_10_1016_j_neunet_2021_06_022
crossref_primary_10_1016_j_bspc_2019_01_017
crossref_primary_10_1088_1741_2552_ad504a
crossref_primary_10_1016_j_eswa_2023_119921
crossref_primary_10_3389_fnins_2020_546656
crossref_primary_10_1007_s00521_025_10979_z
crossref_primary_10_1109_ACCESS_2022_3205734
crossref_primary_10_1016_j_neucom_2021_08_067
crossref_primary_10_1109_ACCESS_2024_3412710
crossref_primary_10_1007_s11571_020_09649_8
crossref_primary_10_1016_j_eswa_2021_115968
crossref_primary_10_3389_fnins_2022_1003984
crossref_primary_10_1109_LSENS_2024_3427355
crossref_primary_10_3390_electronics12051186
crossref_primary_10_1016_j_neucom_2019_01_017
crossref_primary_10_1145_3397850
crossref_primary_10_1016_j_eswa_2022_117757
crossref_primary_10_1007_s10916_019_1504_1
crossref_primary_10_1016_j_jneumeth_2018_12_004
crossref_primary_10_1016_j_bbe_2022_05_002
crossref_primary_10_1016_j_compbiomed_2019_103441
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1016_j_engappai_2023_105862
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_3390_bioengineering9120726
crossref_primary_10_1016_j_bspc_2023_105139
crossref_primary_10_1002_adbi_202400004
crossref_primary_10_1007_s11042_022_12327_y
crossref_primary_10_1109_JSEN_2023_3295407
crossref_primary_10_1002_ima_22700
crossref_primary_10_1109_ACCESS_2020_3002459
crossref_primary_10_3390_s19030522
crossref_primary_10_1007_s11042_022_12795_2
crossref_primary_10_1016_j_patcog_2023_109838
Cites_doi 10.1016/j.ijleo.2013.09.013
10.1007/s11571-011-9167-8
10.1109/TCOMM.2012.091012.110830
10.1287/opre.1070.0425
10.1155/2008/673040
10.1007/978-3-540-88908-3_2
10.1109/TAU.1967.1161901
10.1109/TNN.2005.863424
10.1109/TEVC.2010.2041667
10.1109/TBME.2008.919125
10.1109/TBME.2011.2131142
10.1007/3-540-36970-8_2
10.1007/978-3-642-32692-9_32
10.1023/A:1012487302797
10.1109/IEMBS.2009.5334126
10.1016/S1388-2457(99)00141-8
10.1109/TBME.2004.827827
10.1371/journal.pone.0067543
10.1126/science.290.5500.2319
10.1016/j.neucom.2006.11.007
10.1007/978-3-642-37374-9_23
10.1109/ICASSP.2010.5495183
10.1016/j.cmpb.2012.06.005
10.1145/1961189.1961199
10.1161/01.CIR.101.23.e215
10.1515/bmt.2010.003
10.1016/j.eswa.2014.02.043
10.1016/j.artmed.2012.02.001
10.7551/mitpress/7493.003.0032
10.1002/9781118626719
10.1016/j.eswa.2010.07.145
10.1109/TBME.2004.827072
10.1109/86.895946
10.1126/science.290.5500.2323
10.1109/ICICIC.2008.196
10.1109/TBME.2009.2026181
10.1109/TBME.2008.923152
10.1162/089976603321780317
10.1523/JNEUROSCI.4739-13.2014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/THMS.2016.2573827
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2305
EndPage 786
ExternalDocumentID 10_1109_THMS_2016_2573827
7492606
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-69a69bb0755145a79cb40667e87bf71aa09610352a769027def13cc1b5b0791a3
IEDL.DBID RIE
ISSN 2168-2291
IngestDate Sun Jun 29 15:52:16 EDT 2025
Tue Jul 01 03:00:56 EDT 2025
Thu Apr 24 22:54:16 EDT 2025
Tue Aug 26 16:43:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-69a69bb0755145a79cb40667e87bf71aa09610352a769027def13cc1b5b0791a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7460-5107
PQID 1840191556
PQPubID 85416
PageCount 10
ParticipantIDs ieee_primary_7492606
crossref_citationtrail_10_1109_THMS_2016_2573827
crossref_primary_10_1109_THMS_2016_2573827
proquest_journals_1840191556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Dec.
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on human-machine systems
PublicationTitleAbbrev THMS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
roweis (ref40) 2000; 290
ref15
ref11
ref10
goldberger (ref35) 2000; 101
ref16
ref19
shenoy (ref17) 2014
deb (ref18) 2001
müller (ref36) 2004; 49
ref46
ref45
sajda (ref24) 2007
ref48
ref47
ref42
he (ref44) 2005; 2
ref8
ref7
ref9
ref3
ref6
pfurtscheller (ref23) 1999; 110
ref5
yang (ref14) 2014
ref34
van der maaten (ref49) 2009; 10
ref37
ref31
wang (ref4) 2005; 5
ref30
ref33
tenenbaum (ref43) 2000; 290
ref32
he (ref39) 2004; 16
ref2
ref1
ref38
lawrence (ref41) 2004; 16
ref26
ang (ref29) 0
ref25
ref20
ref22
ref21
ref28
ref27
References_xml – volume: 5
  start-page: 5392
  year: 2005
  ident: ref4
  article-title: Common spatial pattern method for channel selection in motor imagery based brain-computer interface
  publication-title: Proc Int Conf Eng Med Biol Soc
– ident: ref38
  doi: 10.1016/j.ijleo.2013.09.013
– ident: ref46
  doi: 10.1007/s11571-011-9167-8
– ident: ref28
  doi: 10.1109/TCOMM.2012.091012.110830
– ident: ref12
  doi: 10.1287/opre.1070.0425
– volume: 2
  start-page: 1208
  year: 2005
  ident: ref44
  article-title: Neighborhood preserving embedding
  publication-title: Proc 10th IEEE Int Conf Comput Vision
– start-page: 2390
  year: 0
  ident: ref29
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc 2008 Int Joint Conf Neural Netw
– ident: ref31
  doi: 10.1155/2008/673040
– ident: ref22
  doi: 10.1007/978-3-540-88908-3_2
– volume: 49
  start-page: 11
  year: 2004
  ident: ref36
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomed Eng
– ident: ref26
  doi: 10.1109/TAU.1967.1161901
– ident: ref3
  doi: 10.1109/TNN.2005.863424
– ident: ref19
  doi: 10.1109/TEVC.2010.2041667
– ident: ref27
  doi: 10.1109/TBME.2008.919125
– ident: ref8
  doi: 10.1109/TBME.2011.2131142
– ident: ref21
  doi: 10.1007/3-540-36970-8_2
– ident: ref48
  doi: 10.1007/978-3-642-32692-9_32
– ident: ref47
  doi: 10.1023/A:1012487302797
– ident: ref16
  doi: 10.1109/IEMBS.2009.5334126
– volume: 16
  start-page: 153
  year: 2004
  ident: ref39
  article-title: Locality preserving projections
  publication-title: Neural Inf Process Syst
– volume: 110
  start-page: 1842
  year: 1999
  ident: ref23
  article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref6
  doi: 10.1109/TBME.2004.827827
– ident: ref2
  doi: 10.1371/journal.pone.0067543
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref43
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– start-page: 672
  year: 2014
  ident: ref14
  article-title: Selection of effective EEG channels in brain computer interfaces based on inconsistencies of classifiers
  publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref42
  doi: 10.1016/j.neucom.2006.11.007
– ident: ref11
  doi: 10.1007/978-3-642-37374-9_23
– ident: ref15
  doi: 10.1109/ICASSP.2010.5495183
– ident: ref13
  doi: 10.1016/j.cmpb.2012.06.005
– ident: ref33
  doi: 10.1145/1961189.1961199
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref35
  article-title: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref9
  doi: 10.1515/bmt.2010.003
– ident: ref37
  doi: 10.1016/j.eswa.2014.02.043
– volume: 10
  start-page: 1
  year: 2009
  ident: ref49
  article-title: Dimensionality reduction: A comparative review
  publication-title: J Mach Learn Res
– ident: ref7
  doi: 10.1016/j.artmed.2012.02.001
– start-page: 423
  year: 2007
  ident: ref24
  article-title: Single-trial analysis of EEG during rapid visual discrimination: Enabling cortically-coupled computer vision
  publication-title: Towards Brain-Computer Interfacing
  doi: 10.7551/mitpress/7493.003.0032
– ident: ref20
  doi: 10.1002/9781118626719
– ident: ref32
  doi: 10.1016/j.eswa.2010.07.145
– ident: ref34
  doi: 10.1109/TBME.2004.827072
– ident: ref5
  doi: 10.1109/86.895946
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref40
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– start-page: 1858
  year: 2014
  ident: ref17
  article-title: An iterative optimization technique for robust channel selection in motor imagery based brain computer interface
  publication-title: Proc IEEE Int Conf Syst Man Cybern
– ident: ref10
  doi: 10.1109/ICICIC.2008.196
– ident: ref30
  doi: 10.1109/TBME.2009.2026181
– year: 2001
  ident: ref18
  publication-title: Multi-Objective Optimization Using Evolutionary Algorithms
– ident: ref1
  doi: 10.1109/TBME.2008.923152
– ident: ref45
  doi: 10.1162/089976603321780317
– ident: ref25
  doi: 10.1523/JNEUROSCI.4739-13.2014
– volume: 16
  start-page: 329
  year: 2004
  ident: ref41
  article-title: Gaussian process latent variable models for visualisation of high dimensional data
  publication-title: Adv Neural Inf Process Syst
SSID ssj0000825558
Score 2.4456832
Snippet Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 777
SubjectTerms Brain-computer interfaces
Channel selection
Computational complexity
dimension reduction
Electroencephalography
electroencephalography (EEG)
Human-computer interface
Iterative methods
motor imagery (MI)
multi-objective optimization
Optimization
Pareto optimization
Signal processing
subject variability
Title Optimized Bi-Objective EEG Channel Selection and Cross-Subject Generalization With Brain–Computer Interfaces
URI https://ieeexplore.ieee.org/document/7492606
https://www.proquest.com/docview/1840191556
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiEJBHpgQLnUeTj1SVKiQSodS0S2ynYsoj4AgXZj4D_xDfgk-x60QIMSW4Rw5-uzznXP3fYQcCGE3TQ6KgcxjFgWZZErLJjOtCAACk-eAiWLvUnSH0cUoHs2Ro1kvjLVwxWfQwEf3Lz97NBO8KjtOkN0O-bXnbeJW9WrN7lMw1YmdHGfAhQU_kNz_xORNeXzV7Q2wjks07BINW6gh8-UYcroqP5yxO2HOVkhvOreqsOSuMSl1w7x-o2387-RXybIPNelJtTbWyBwU62TpCwHhBin61mM8jF8ho-0x6-vbyv3RTuecYt9BAfd04JRyLHxUFRk9xc9h1t2gKfWk1b6Xk16PyxvaRtGJj7f3qV4EdZeOOZZ-bZLhWefqtMu8AgMzNgwomZBKSK1tWGHjqlgl0ugIq2Khleg84UqhYAwyqqrEZtlBkkHOQ2O4ju0YyVW4RRaKxwK2CdUSjAh5aPe_jiRmTloYiDXIKJO8BTXSnAKSGk9PjioZ96lLU5oyRQxTxDD1GNbI4WzIU8XN8ZfxBmIyM_Rw1Eh9inrqd-9LilkvR-J8sfP7qF2yiO-uylrqZKF8nsCeDU5Kve9W5ScgnOGj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hOJQeoBRQt1DwoacKL-t8OOsjoIUtsHBgEdwi25moy0eoIHvhxH_gH_JL8DjeFWor1FsOY8XRs8czzsx7AN-ldJumRM1RlSlPokJxbVSH226CiJEtS6REcXAi--fJ4WV6OQNb014YZ-GLz7BNj_5ffnFnx3RVtp0Rux3xa8-l1IzbdGtNb1Qo2Um9IGckpIM_UiL8xhQdtT3sD86okku23SKNu6Qi8-Yg8soqf7ljf8bsL8JgMrumtOS6Pa5N2z7-Qdz4v9P_BAsh2GQ7zepYghmsPsPHNxSEy1CdOp9xO3rEgu2O-Km5ahwg6_UOGHUeVHjDzrxWjgOQ6apge_Q53DkcMmWBtjp0c7KLUf2L7ZLsxMvT80Qxgvlrx5KKv1bgfL833OvzoMHArQsEai6VlsoYF1i4yCrVmbImobpY7GamzITWJBlDnKo6c3l2lBVYithaYVI3Rgkdr8JsdVfhF2BGoZWxiJ0HMImi3MlIi6lBlRRKdLEFnQkguQ0E5aSTcZP7RKWjcsIwJwzzgGELfkyH_G7YOd4zXiZMpoYBjhasT1DPw_59yCnvFUSdL7_-e9QmfOgPB8f58c-TozWYp_c0RS7rMFvfj_GbC1Vqs-FX6CsMGeTr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Bi-Objective+EEG+Channel+Selection+and+Cross-Subject+Generalization+With+Brain%E2%80%93Computer+Interfaces&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Handiru%2C+Vikram+Shenoy&rft.au=Prasad%2C+Vinod+A.&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=46&rft.issue=6&rft.spage=777&rft.epage=786&rft_id=info:doi/10.1109%2FTHMS.2016.2573827&rft.externalDocID=7492606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon