Optimized Bi-Objective EEG Channel Selection and Cross-Subject Generalization With Brain–Computer Interfaces
Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS...
Saved in:
Published in | IEEE transactions on human-machine systems Vol. 46; no. 6; pp. 777 - 786 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2291 2168-2305 |
DOI | 10.1109/THMS.2016.2573827 |
Cover
Loading…
Abstract | Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS) is proposed in this paper. For a given MI classification task, the proposed method initializes a reference candidate solution and subsequently finds a set of the most relevant channels in an iterative manner by exploiting both the anatomical and functional relevance of EEG channels. The proposed approach is evaluated on the Wadsworth dataset for the right fist versus left fist MI tasks, while considering the cross-validation accuracy as the performance evaluation criteria. Furthermore, 12 other dimension reduction and channel selection algorithms are used for benchmarking. The proposed approach (IMOCS) achieved an average classification accuracy of about 80% when evaluated using 35 best-performing subjects. One-way analysis of variance revealed the statistical significance of the proposed approach with at least 7% improvement over other benchmarking algorithms. Furthermore, a cross-subject generalization of channel selection on untrained subjects shows that the subject-independent channels perform as good as using all channels achieving an average classification accuracy of 61%. These results are promising for the online brain-computer interface (BCI) paradigm that requires low computational complexity and also for reducing the preparation time while conducting multiple session BCI experiments for a larger pool of subjects. |
---|---|
AbstractList | Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity. To reduce this computational burden due to the large number of channels, an iterative multiobjective optimization for channel selection (IMOCS) is proposed in this paper. For a given MI classification task, the proposed method initializes a reference candidate solution and subsequently finds a set of the most relevant channels in an iterative manner by exploiting both the anatomical and functional relevance of EEG channels. The proposed approach is evaluated on the Wadsworth dataset for the right fist versus left fist MI tasks, while considering the cross-validation accuracy as the performance evaluation criteria. Furthermore, 12 other dimension reduction and channel selection algorithms are used for benchmarking. The proposed approach (IMOCS) achieved an average classification accuracy of about 80% when evaluated using 35 best-performing subjects. One-way analysis of variance revealed the statistical significance of the proposed approach with at least 7% improvement over other benchmarking algorithms. Furthermore, a cross-subject generalization of channel selection on untrained subjects shows that the subject-independent channels perform as good as using all channels achieving an average classification accuracy of 61%. These results are promising for the online brain-computer interface (BCI) paradigm that requires low computational complexity and also for reducing the preparation time while conducting multiple session BCI experiments for a larger pool of subjects. |
Author | Prasad, Vinod A. Handiru, Vikram Shenoy |
Author_xml | – sequence: 1 givenname: Vikram Shenoy surname: Handiru fullname: Handiru, Vikram Shenoy email: vikram002@e.ntu.edu.sg organization: Interdiscipl. Grad. Sch., Nanyang Technol. Univ., Singapore, Singapore – sequence: 2 givenname: Vinod A. surname: Prasad fullname: Prasad, Vinod A. email: ASVinod@ntu.edu.sg organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore |
BookMark | eNp9kLFOwzAURS0EElD4AMRiiTnFz4nteISotEigDgUxRk76orpKneCkSHTiH_hDvoSkLQwMeLAt65xn3XtKDl3lkJALYEMApq-fJo-zIWcgh1yoMObqgJxwkHHAQyYOf-5cwzE5b5ol61bMhRDxCXHTurUru8E5vbXBNFti3to3pKPRmCYL4xyWdIZl_1o5atycJr5qmmC23qJ0jA69Ke3GbIEX2y7orTfWfX18JtWqXrfo6b3r9sLk2JyRo8KUDZ7vzwF5vhs9JZPgYTq-T24egpzrsA2kNlJnGVNCQCSM0nkWMSkVxiorFBjDtAQWCm6U1IyrORYQ5jlkonM0mHBArnZza1-9rrFp02W19q77MoU4YqBBCNlRakflfSaPRZrbdhuk7SKUKbC07zft-037ftN9v50Jf8za25Xx7_86lzvHIuIvryLNJZPhN2roiIg |
CODEN | ITHSA6 |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac0489 crossref_primary_10_3233_JIFS_201779 crossref_primary_10_1016_j_eswa_2018_08_031 crossref_primary_10_1109_THMS_2020_3039196 crossref_primary_10_1109_ACCESS_2024_3404634 crossref_primary_10_1016_j_neunet_2020_11_002 crossref_primary_10_3389_fnins_2022_865594 crossref_primary_10_1007_s10548_021_00883_9 crossref_primary_10_3390_s23218893 crossref_primary_10_3389_fnins_2018_00217 crossref_primary_10_1109_TIFS_2018_2825940 crossref_primary_10_1088_1741_2552_aae597 crossref_primary_10_1016_j_knosys_2022_110143 crossref_primary_10_3389_fnins_2023_1250991 crossref_primary_10_1016_j_cmpb_2019_06_009 crossref_primary_10_1209_0295_5075_134_50003 crossref_primary_10_1088_1741_2552_ac7d73 crossref_primary_10_3389_fnins_2022_1045851 crossref_primary_10_1007_s10462_019_09694_8 crossref_primary_10_1016_j_neunet_2021_06_022 crossref_primary_10_1016_j_bspc_2019_01_017 crossref_primary_10_1088_1741_2552_ad504a crossref_primary_10_1016_j_eswa_2023_119921 crossref_primary_10_3389_fnins_2020_546656 crossref_primary_10_1007_s00521_025_10979_z crossref_primary_10_1109_ACCESS_2022_3205734 crossref_primary_10_1016_j_neucom_2021_08_067 crossref_primary_10_1109_ACCESS_2024_3412710 crossref_primary_10_1007_s11571_020_09649_8 crossref_primary_10_1016_j_eswa_2021_115968 crossref_primary_10_3389_fnins_2022_1003984 crossref_primary_10_1109_LSENS_2024_3427355 crossref_primary_10_3390_electronics12051186 crossref_primary_10_1016_j_neucom_2019_01_017 crossref_primary_10_1145_3397850 crossref_primary_10_1016_j_eswa_2022_117757 crossref_primary_10_1007_s10916_019_1504_1 crossref_primary_10_1016_j_jneumeth_2018_12_004 crossref_primary_10_1016_j_bbe_2022_05_002 crossref_primary_10_1016_j_compbiomed_2019_103441 crossref_primary_10_1016_j_jneumeth_2020_108833 crossref_primary_10_1016_j_engappai_2023_105862 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_3390_bioengineering9120726 crossref_primary_10_1016_j_bspc_2023_105139 crossref_primary_10_1002_adbi_202400004 crossref_primary_10_1007_s11042_022_12327_y crossref_primary_10_1109_JSEN_2023_3295407 crossref_primary_10_1002_ima_22700 crossref_primary_10_1109_ACCESS_2020_3002459 crossref_primary_10_3390_s19030522 crossref_primary_10_1007_s11042_022_12795_2 crossref_primary_10_1016_j_patcog_2023_109838 |
Cites_doi | 10.1016/j.ijleo.2013.09.013 10.1007/s11571-011-9167-8 10.1109/TCOMM.2012.091012.110830 10.1287/opre.1070.0425 10.1155/2008/673040 10.1007/978-3-540-88908-3_2 10.1109/TAU.1967.1161901 10.1109/TNN.2005.863424 10.1109/TEVC.2010.2041667 10.1109/TBME.2008.919125 10.1109/TBME.2011.2131142 10.1007/3-540-36970-8_2 10.1007/978-3-642-32692-9_32 10.1023/A:1012487302797 10.1109/IEMBS.2009.5334126 10.1016/S1388-2457(99)00141-8 10.1109/TBME.2004.827827 10.1371/journal.pone.0067543 10.1126/science.290.5500.2319 10.1016/j.neucom.2006.11.007 10.1007/978-3-642-37374-9_23 10.1109/ICASSP.2010.5495183 10.1016/j.cmpb.2012.06.005 10.1145/1961189.1961199 10.1161/01.CIR.101.23.e215 10.1515/bmt.2010.003 10.1016/j.eswa.2014.02.043 10.1016/j.artmed.2012.02.001 10.7551/mitpress/7493.003.0032 10.1002/9781118626719 10.1016/j.eswa.2010.07.145 10.1109/TBME.2004.827072 10.1109/86.895946 10.1126/science.290.5500.2323 10.1109/ICICIC.2008.196 10.1109/TBME.2009.2026181 10.1109/TBME.2008.923152 10.1162/089976603321780317 10.1523/JNEUROSCI.4739-13.2014 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/THMS.2016.2573827 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2305 |
EndPage | 786 |
ExternalDocumentID | 10_1109_THMS_2016_2573827 7492606 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-69a69bb0755145a79cb40667e87bf71aa09610352a769027def13cc1b5b0791a3 |
IEDL.DBID | RIE |
ISSN | 2168-2291 |
IngestDate | Sun Jun 29 15:52:16 EDT 2025 Tue Jul 01 03:00:56 EDT 2025 Thu Apr 24 22:54:16 EDT 2025 Tue Aug 26 16:43:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-69a69bb0755145a79cb40667e87bf71aa09610352a769027def13cc1b5b0791a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7460-5107 |
PQID | 1840191556 |
PQPubID | 85416 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7492606 crossref_citationtrail_10_1109_THMS_2016_2573827 crossref_primary_10_1109_THMS_2016_2573827 proquest_journals_1840191556 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Dec. 2016-12-00 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on human-machine systems |
PublicationTitleAbbrev | THMS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 roweis (ref40) 2000; 290 ref15 ref11 ref10 goldberger (ref35) 2000; 101 ref16 ref19 shenoy (ref17) 2014 deb (ref18) 2001 müller (ref36) 2004; 49 ref46 ref45 sajda (ref24) 2007 ref48 ref47 ref42 he (ref44) 2005; 2 ref8 ref7 ref9 ref3 ref6 pfurtscheller (ref23) 1999; 110 ref5 yang (ref14) 2014 ref34 van der maaten (ref49) 2009; 10 ref37 ref31 wang (ref4) 2005; 5 ref30 ref33 tenenbaum (ref43) 2000; 290 ref32 he (ref39) 2004; 16 ref2 ref1 ref38 lawrence (ref41) 2004; 16 ref26 ang (ref29) 0 ref25 ref20 ref22 ref21 ref28 ref27 |
References_xml | – volume: 5 start-page: 5392 year: 2005 ident: ref4 article-title: Common spatial pattern method for channel selection in motor imagery based brain-computer interface publication-title: Proc Int Conf Eng Med Biol Soc – ident: ref38 doi: 10.1016/j.ijleo.2013.09.013 – ident: ref46 doi: 10.1007/s11571-011-9167-8 – ident: ref28 doi: 10.1109/TCOMM.2012.091012.110830 – ident: ref12 doi: 10.1287/opre.1070.0425 – volume: 2 start-page: 1208 year: 2005 ident: ref44 article-title: Neighborhood preserving embedding publication-title: Proc 10th IEEE Int Conf Comput Vision – start-page: 2390 year: 0 ident: ref29 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: Proc 2008 Int Joint Conf Neural Netw – ident: ref31 doi: 10.1155/2008/673040 – ident: ref22 doi: 10.1007/978-3-540-88908-3_2 – volume: 49 start-page: 11 year: 2004 ident: ref36 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomed Eng – ident: ref26 doi: 10.1109/TAU.1967.1161901 – ident: ref3 doi: 10.1109/TNN.2005.863424 – ident: ref19 doi: 10.1109/TEVC.2010.2041667 – ident: ref27 doi: 10.1109/TBME.2008.919125 – ident: ref8 doi: 10.1109/TBME.2011.2131142 – ident: ref21 doi: 10.1007/3-540-36970-8_2 – ident: ref48 doi: 10.1007/978-3-642-32692-9_32 – ident: ref47 doi: 10.1023/A:1012487302797 – ident: ref16 doi: 10.1109/IEMBS.2009.5334126 – volume: 16 start-page: 153 year: 2004 ident: ref39 article-title: Locality preserving projections publication-title: Neural Inf Process Syst – volume: 110 start-page: 1842 year: 1999 ident: ref23 article-title: Event-related EEG/MEG synchronization and desynchronization: Basic principles publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – ident: ref6 doi: 10.1109/TBME.2004.827827 – ident: ref2 doi: 10.1371/journal.pone.0067543 – volume: 290 start-page: 2319 year: 2000 ident: ref43 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – start-page: 672 year: 2014 ident: ref14 article-title: Selection of effective EEG channels in brain computer interfaces based on inconsistencies of classifiers publication-title: Proc 36th Annu Int Conf IEEE Eng Med Biol Soc – ident: ref42 doi: 10.1016/j.neucom.2006.11.007 – ident: ref11 doi: 10.1007/978-3-642-37374-9_23 – ident: ref15 doi: 10.1109/ICASSP.2010.5495183 – ident: ref13 doi: 10.1016/j.cmpb.2012.06.005 – ident: ref33 doi: 10.1145/1961189.1961199 – volume: 101 start-page: 215e year: 2000 ident: ref35 article-title: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref9 doi: 10.1515/bmt.2010.003 – ident: ref37 doi: 10.1016/j.eswa.2014.02.043 – volume: 10 start-page: 1 year: 2009 ident: ref49 article-title: Dimensionality reduction: A comparative review publication-title: J Mach Learn Res – ident: ref7 doi: 10.1016/j.artmed.2012.02.001 – start-page: 423 year: 2007 ident: ref24 article-title: Single-trial analysis of EEG during rapid visual discrimination: Enabling cortically-coupled computer vision publication-title: Towards Brain-Computer Interfacing doi: 10.7551/mitpress/7493.003.0032 – ident: ref20 doi: 10.1002/9781118626719 – ident: ref32 doi: 10.1016/j.eswa.2010.07.145 – ident: ref34 doi: 10.1109/TBME.2004.827072 – ident: ref5 doi: 10.1109/86.895946 – volume: 290 start-page: 2323 year: 2000 ident: ref40 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – start-page: 1858 year: 2014 ident: ref17 article-title: An iterative optimization technique for robust channel selection in motor imagery based brain computer interface publication-title: Proc IEEE Int Conf Syst Man Cybern – ident: ref10 doi: 10.1109/ICICIC.2008.196 – ident: ref30 doi: 10.1109/TBME.2009.2026181 – year: 2001 ident: ref18 publication-title: Multi-Objective Optimization Using Evolutionary Algorithms – ident: ref1 doi: 10.1109/TBME.2008.923152 – ident: ref45 doi: 10.1162/089976603321780317 – ident: ref25 doi: 10.1523/JNEUROSCI.4739-13.2014 – volume: 16 start-page: 329 year: 2004 ident: ref41 article-title: Gaussian process latent variable models for visualisation of high dimensional data publication-title: Adv Neural Inf Process Syst |
SSID | ssj0000825558 |
Score | 2.4456832 |
Snippet | Electroencephalography (EEG) signal processing to decode motor imagery (MI) involves high-dimensional features, which increases the computational complexity.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 777 |
SubjectTerms | Brain-computer interfaces Channel selection Computational complexity dimension reduction Electroencephalography electroencephalography (EEG) Human-computer interface Iterative methods motor imagery (MI) multi-objective optimization Optimization Pareto optimization Signal processing subject variability |
Title | Optimized Bi-Objective EEG Channel Selection and Cross-Subject Generalization With Brain–Computer Interfaces |
URI | https://ieeexplore.ieee.org/document/7492606 https://www.proquest.com/docview/1840191556 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiEJBHpgQLnUeTj1SVKiQSodS0S2ynYsoj4AgXZj4D_xDfgk-x60QIMSW4Rw5-uzznXP3fYQcCGE3TQ6KgcxjFgWZZErLJjOtCAACk-eAiWLvUnSH0cUoHs2Ro1kvjLVwxWfQwEf3Lz97NBO8KjtOkN0O-bXnbeJW9WrN7lMw1YmdHGfAhQU_kNz_xORNeXzV7Q2wjks07BINW6gh8-UYcroqP5yxO2HOVkhvOreqsOSuMSl1w7x-o2387-RXybIPNelJtTbWyBwU62TpCwHhBin61mM8jF8ho-0x6-vbyv3RTuecYt9BAfd04JRyLHxUFRk9xc9h1t2gKfWk1b6Xk16PyxvaRtGJj7f3qV4EdZeOOZZ-bZLhWefqtMu8AgMzNgwomZBKSK1tWGHjqlgl0ugIq2Khleg84UqhYAwyqqrEZtlBkkHOQ2O4ju0YyVW4RRaKxwK2CdUSjAh5aPe_jiRmTloYiDXIKJO8BTXSnAKSGk9PjioZ96lLU5oyRQxTxDD1GNbI4WzIU8XN8ZfxBmIyM_Rw1Eh9inrqd-9LilkvR-J8sfP7qF2yiO-uylrqZKF8nsCeDU5Kve9W5ScgnOGj |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hOJQeoBRQt1DwoacKL-t8OOsjoIUtsHBgEdwi25moy0eoIHvhxH_gH_JL8DjeFWor1FsOY8XRs8czzsx7AN-ldJumRM1RlSlPokJxbVSH226CiJEtS6REcXAi--fJ4WV6OQNb014YZ-GLz7BNj_5ffnFnx3RVtp0Rux3xa8-l1IzbdGtNb1Qo2Um9IGckpIM_UiL8xhQdtT3sD86okku23SKNu6Qi8-Yg8soqf7ljf8bsL8JgMrumtOS6Pa5N2z7-Qdz4v9P_BAsh2GQ7zepYghmsPsPHNxSEy1CdOp9xO3rEgu2O-Km5ahwg6_UOGHUeVHjDzrxWjgOQ6apge_Q53DkcMmWBtjp0c7KLUf2L7ZLsxMvT80Qxgvlrx5KKv1bgfL833OvzoMHArQsEai6VlsoYF1i4yCrVmbImobpY7GamzITWJBlDnKo6c3l2lBVYithaYVI3Rgkdr8JsdVfhF2BGoZWxiJ0HMImi3MlIi6lBlRRKdLEFnQkguQ0E5aSTcZP7RKWjcsIwJwzzgGELfkyH_G7YOd4zXiZMpoYBjhasT1DPw_59yCnvFUSdL7_-e9QmfOgPB8f58c-TozWYp_c0RS7rMFvfj_GbC1Vqs-FX6CsMGeTr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Bi-Objective+EEG+Channel+Selection+and+Cross-Subject+Generalization+With+Brain%E2%80%93Computer+Interfaces&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Handiru%2C+Vikram+Shenoy&rft.au=Prasad%2C+Vinod+A.&rft.date=2016-12-01&rft.pub=IEEE&rft.issn=2168-2291&rft.volume=46&rft.issue=6&rft.spage=777&rft.epage=786&rft_id=info:doi/10.1109%2FTHMS.2016.2573827&rft.externalDocID=7492606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |