View-Independent Gait Recognition Using Joint Replacement Coordinates (JRCs) and Convolutional Neural Network

Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concep...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 15; pp. 3430 - 3442
Main Authors Limcharoen, Piya, Khamsemanan, Nirattaya, Nattee, Cholwich
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
DOI10.1109/TIFS.2020.2985535

Cover

Abstract Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concepts. (1) We create a new way to preprocess skeleton data by rotating skeleton data using two virtual axes. This process reduces the fluctuation in movements and resolves the multi-viewpoint issue. All postures in a walk are observed from the same angle. (2) We introduce new Joint Replacement Coordinates (JRCs), which represent the movements of the left and right joints in a group of three connected joints. These JRC gait features are designed to put more emphasis on local movements than the movements of non-connected joints. (3) We construct a new Convolution Neural Network (CNN) for the classification process, which consists of a convolutional layer on each JRC and two fully-connected layers. A convolutional layer is designed to discover relations within a group of three connected joints. Fully-connected layers also find the relations of all groups of three connected joints throughout an entire body (in a posture). Our JRC-CNN technique achieves above 98.4% accuracy and significantly outperforms other existing techniques for all free-direction walk datasets. It also performs well under the gallery-size test and the CMC curve test. This means that our proposed JRC-CNN gait recognition technique can be used in a real-world situation. Experimental results also suggest that a person can be identified by a unique posture (an entire body is observed as a whole) with the focus on the movements of connected joints.
AbstractList Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject’s awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concepts. (1) We create a new way to preprocess skeleton data by rotating skeleton data using two virtual axes. This process reduces the fluctuation in movements and resolves the multi-viewpoint issue. All postures in a walk are observed from the same angle. (2) We introduce new Joint Replacement Coordinates (JRCs), which represent the movements of the left and right joints in a group of three connected joints. These JRC gait features are designed to put more emphasis on local movements than the movements of non-connected joints. (3) We construct a new Convolution Neural Network (CNN) for the classification process, which consists of a convolutional layer on each JRC and two fully-connected layers. A convolutional layer is designed to discover relations within a group of three connected joints. Fully-connected layers also find the relations of all groups of three connected joints throughout an entire body (in a posture). Our JRC-CNN technique achieves above 98.4% accuracy and significantly outperforms other existing techniques for all free-direction walk datasets. It also performs well under the gallery-size test and the CMC curve test. This means that our proposed JRC-CNN gait recognition technique can be used in a real-world situation. Experimental results also suggest that a person can be identified by a unique posture (an entire body is observed as a whole) with the focus on the movements of connected joints.
Author Khamsemanan, Nirattaya
Limcharoen, Piya
Nattee, Cholwich
Author_xml – sequence: 1
  givenname: Piya
  surname: Limcharoen
  fullname: Limcharoen, Piya
  email: d5922300180@g.siit.tu.ac.th
  organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
– sequence: 2
  givenname: Nirattaya
  surname: Khamsemanan
  fullname: Khamsemanan, Nirattaya
  email: nirattaya@siit.tu.ac.th
  organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
– sequence: 3
  givenname: Cholwich
  surname: Nattee
  fullname: Nattee, Cholwich
  email: cholwich@siit.tu.ac.th
  organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
BookMark eNp9kE9PAjEQxRuDiYB-AONlEy96WGy37f45GiIIIZogeN2U7iwpLi22XYnf3l0hHDx4mTd5eb_J5PVQRxsNCF0TPCAEZw-LyehtEOEID6Is5ZzyM9QlnMdhjCPSOe2EXqCecxuMGSNx2kXbdwX7cKIL2EEztA_GQvlgDtKstfLK6GDplF4HU6N06-8qIWHbBofG2EJp4cEFd9P50N0HQheNrb9MVbeoqIIXqO2v-L2xH5fovBSVg6uj9tFy9LQYPoez1_Fk-DgLZZRRH8aJoBljtOCQZCRN0jJaAc8goyvMSFLGZRHDiouSpZyJtGBYxHIlIiyBc8kl7aPbw92dNZ81OJ9vTG2bf1weMZxghkmSNqnkkJLWOGehzKXyon3cW6GqnOC87TZvu83bbvNjtw1J_pA7q7bCfv_L3BwYBQCnfIZ5nBJKfwB9hYeT
CODEN ITIFA6
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3266252
crossref_primary_10_12688_openreseurope_13715_1
crossref_primary_10_1088_1742_6596_2095_1_012056
crossref_primary_10_12688_openreseurope_13715_2
crossref_primary_10_1109_TIFS_2025_3531104
crossref_primary_10_1016_j_dsp_2024_104393
crossref_primary_10_1016_j_patcog_2021_108376
crossref_primary_10_1016_j_engappai_2023_107712
crossref_primary_10_1109_ACCESS_2021_3102936
crossref_primary_10_1109_TIFS_2023_3254449
crossref_primary_10_1016_j_jvcir_2021_103218
crossref_primary_10_1016_j_jvcir_2021_103416
crossref_primary_10_1016_j_engappai_2025_110213
crossref_primary_10_1109_ACCESS_2022_3184735
crossref_primary_10_1016_j_neucom_2022_07_002
crossref_primary_10_1109_ACCESS_2024_3451495
crossref_primary_10_3389_frai_2022_989860
crossref_primary_10_1016_j_imavis_2023_104784
crossref_primary_10_1109_ACCESS_2021_3058745
Cites_doi 10.1109/TIFS.2017.2738611
10.1007/978-3-319-13386-7_2
10.1109/CCDC.2017.7978227
10.1007/s00371-015-1092-0
10.1109/TCSVT.2017.2760835
10.1109/MMSP.2013.6659329
10.1109/ICDSP.2013.6622766
10.1016/j.patrec.2009.11.006
10.1109/TPAMI.2016.2545669
10.1007/11744078_12
10.1016/j.jvcir.2016.05.020
10.1145/2157689.2157767
10.1609/aaai.v33i01.33018126
10.1109/TPAMI.2006.38
10.2197/ipsjtcva.7.74
10.1016/j.patrec.2015.06.020
10.1016/j.jvcir.2016.03.020
10.1109/ICTAI.2014.99
10.1049/iet-bmt.2018.5063
10.1109/SCIS-ISIS.2014.7044817
10.1109/ICB.2012.6199782
10.1109/TIFS.2019.2901823
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TIFS.2020.2985535
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 3442
ExternalDocumentID 10_1109_TIFS_2020_2985535
9056813
Genre orig-research
GrantInformation_xml – fundername: Thammasat University Research Fund
  funderid: 10.13039/501100005790
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-67a39443d5e791878f2be59e93b0417f6fd6eb5af4854a8d40a6cba20ce55c5c3
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Mon Jun 30 03:44:41 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 02:34:15 EDT 2025
Wed Aug 27 02:37:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-67a39443d5e791878f2be59e93b0417f6fd6eb5af4854a8d40a6cba20ce55c5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2407040178
PQPubID 85506
PageCount 13
ParticipantIDs ieee_primary_9056813
crossref_citationtrail_10_1109_TIFS_2020_2985535
proquest_journals_2407040178
crossref_primary_10_1109_TIFS_2020_2985535
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ahmed (ref23) 2016; 14
ahmed (ref26) 2015; 23
andersson (ref16) 2015
ref30
ref11
ref10
preis (ref15) 2012
ref17
ref19
ref18
charalambous (ref1) 2014
ref24
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
boyd (ref3) 2005
cheewakidakarn (ref14) 2013
ref9
gianaria (ref21) 2014
ref4
matovski (ref2) 2014
ref6
ref5
References_xml – ident: ref28
  doi: 10.1109/TIFS.2017.2738611
– start-page: 19
  year: 2005
  ident: ref3
  publication-title: Biometric Gait Recognition
– start-page: 16
  year: 2014
  ident: ref21
  article-title: Human classification using gait features
  publication-title: Biometric Authentication
  doi: 10.1007/978-3-319-13386-7_2
– ident: ref24
  doi: 10.1109/CCDC.2017.7978227
– ident: ref25
  doi: 10.1007/s00371-015-1092-0
– ident: ref13
  doi: 10.1109/TCSVT.2017.2760835
– ident: ref22
  doi: 10.1109/MMSP.2013.6659329
– ident: ref30
  doi: 10.1109/ICDSP.2013.6622766
– ident: ref11
  doi: 10.1016/j.patrec.2009.11.006
– ident: ref9
  doi: 10.1109/TPAMI.2016.2545669
– ident: ref10
  doi: 10.1007/11744078_12
– ident: ref19
  doi: 10.1016/j.jvcir.2016.05.020
– volume: 23
  start-page: 147
  year: 2015
  ident: ref26
  article-title: Kinect-based gait recognition using sequence of the most relevant joint relative angles
  publication-title: J WSCG
– start-page: 425
  year: 2015
  ident: ref16
  article-title: Person identification using anthropometric and gait data from kinect sensor
  publication-title: Proc AAAI
– ident: ref18
  doi: 10.1145/2157689.2157767
– volume: 14
  start-page: 425
  year: 2016
  ident: ref23
  article-title: Kinect-based human gait recognition using static and dynamic features
  publication-title: Int J Comput Sci Inf Secur
– ident: ref12
  doi: 10.1609/aaai.v33i01.33018126
– ident: ref6
  doi: 10.1109/TPAMI.2006.38
– start-page: 309
  year: 2014
  ident: ref2
  publication-title: Gait Recognition
– start-page: 393
  year: 2014
  ident: ref1
  publication-title: Walking Pattern of Normal Men
– ident: ref8
  doi: 10.2197/ipsjtcva.7.74
– ident: ref27
  doi: 10.1016/j.patrec.2015.06.020
– ident: ref4
  doi: 10.1016/j.jvcir.2016.03.020
– ident: ref20
  doi: 10.1109/ICTAI.2014.99
– ident: ref5
  doi: 10.1049/iet-bmt.2018.5063
– ident: ref17
  doi: 10.1109/SCIS-ISIS.2014.7044817
– ident: ref7
  doi: 10.1109/ICB.2012.6199782
– start-page: 1
  year: 2013
  ident: ref14
  article-title: View independent human identification by gait analysis using skeletal data and dynamic time warping
  publication-title: Proc 14th Int Symp Adv Intell Syst (ISIS)
– start-page: 1
  year: 2012
  ident: ref15
  article-title: Gait recognition with Kinect
  publication-title: 1st International Workshop on Kinect in Pervasive Computing
– ident: ref29
  doi: 10.1109/TIFS.2019.2901823
SSID ssj0044168
Score 2.387524
Snippet Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's...
Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject’s...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3430
SubjectTerms Artificial neural networks
biometrics
Convolution
convolutional neural network (CNN)
Convolutional neural networks
Feature extraction
Gait recognition
Human identification
joint replacement coordinates (JRCs)
Joints (anatomy)
k-nearest neighbor (KNN)
kinect
Legged locomotion
multilayer perceptron (MLP)
Neural networks
Shape
Skeleton
view independent
Title View-Independent Gait Recognition Using Joint Replacement Coordinates (JRCs) and Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/9056813
https://www.proquest.com/docview/2407040178
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3JgeRSxLUU-9EARXhwnju0jWnWBleDAS9wi23GkFW1SlWwr8euxHWeLoEKcYlm2M9KMPTP2zHwAX4VQmosyw1oThrOMGqwolZhViXIKQ6g8oJacX-SnN9n0jt0tweEiF8ZaG4LP7Mg3w1t-2Zi5vyo7ksSXy0qXYdmJWZer1Z-6Tqt3aW-M5dg5GWl8wUyIPLo-m1w5T5CSEZWCsYDs9k8HBVCVVydxUC-TAZz3hHVRJfejeatH5vFFzcb3Ur4Oa9HORMedYGzAkq03YdBjOKC4pTdh9VlBwi34eTuzf_HZAhq3RSdq1qLLPsqoqVGIMUDTZlb7_hDS5f-Nxo1zY2e1N13R_vRy_PANqbp03fWfKN2OHF8KJHxC7PlHuJl8vx6f4gjIgI2zClqcc-XzaNOSWS4TwUVFtWXSylSTLOFVXpW51UxVmWCZchJAVG60osRYxgwz6Tas1E1tdwBJTitiWVXyNMkqZyYJG9YR2kjGKR0C6VlUmFit3INm_CiC10Jk4blaeK4WkatDOFhM-dWV6nhr8Jbn0mJgZNAQdns5KOJmfii80-vOuoSLT_-f9Rk--LW7m5ldWGl_z-0XZ6u0ei8I6ROA9-UE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RbxQhEJ7U-qB9sNra9LQqDz6okSvLwgKP5uJ5d_b6UK-mbxtg2eSi7hq7p4m_XmDZ06gxPi0hsEwyAzMDM_MBPJVSGyErho0hHDNGLdaUKszrTHuFIXURUUuW58Xski2u-NUOvNzmwjjnYvCZG4dmfMuvWrsJV2WnioRyWfkNuOn1PuN9ttZw7nq93ie-cV5g72bk6Q0zI-p0NZ--874gJWOqJOcR2-2nFoqwKn-cxVHBTPdhOZDWx5V8GG86M7bff6va-L-034U7ydJEr3rRuAc7rjmA_QHFAaVNfQB7v5QkPIRP79fuG55vwXE79EavO3QxxBm1DYpRBmjRrpvQH4O6wtpo0npHdt0E4xU9W1xMrp8j3VS-u_ma5NuTE4qBxE-MPr8Pl9PXq8kMJ0gGbL1d0OFC6JBJm1fcCZVJIWtqHFdO5YawTNRFXRXOcF0zyZn2MkB0YY2mxDrOLbf5Eew2beOOASlBa-J4XYk8Y7U3lKSL_5HGKi4oHQEZWFTaVK88wGZ8LKPfQlQZuFoGrpaJqyN4sZ3yuS_W8a_Bh4FL24GJQSM4GeSgTNv5ugxurz_tMiEf_H3WE7g1Wy3PyrP5-duHcDus09_TnMBu92XjHnnLpTOPo8D-AKTf6FE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-Independent+Gait+Recognition+Using+Joint+Replacement+Coordinates+%28JRCs%29+and+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Limcharoen%2C+Piya&rft.au=Khamsemanan%2C+Nirattaya&rft.au=Nattee%2C+Cholwich&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=3430&rft.epage=3442&rft_id=info:doi/10.1109%2FTIFS.2020.2985535&rft.externalDocID=9056813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon