View-Independent Gait Recognition Using Joint Replacement Coordinates (JRCs) and Convolutional Neural Network
Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concep...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 15; pp. 3430 - 3442 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1556-6013 1556-6021 |
DOI | 10.1109/TIFS.2020.2985535 |
Cover
Abstract | Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concepts. (1) We create a new way to preprocess skeleton data by rotating skeleton data using two virtual axes. This process reduces the fluctuation in movements and resolves the multi-viewpoint issue. All postures in a walk are observed from the same angle. (2) We introduce new Joint Replacement Coordinates (JRCs), which represent the movements of the left and right joints in a group of three connected joints. These JRC gait features are designed to put more emphasis on local movements than the movements of non-connected joints. (3) We construct a new Convolution Neural Network (CNN) for the classification process, which consists of a convolutional layer on each JRC and two fully-connected layers. A convolutional layer is designed to discover relations within a group of three connected joints. Fully-connected layers also find the relations of all groups of three connected joints throughout an entire body (in a posture). Our JRC-CNN technique achieves above 98.4% accuracy and significantly outperforms other existing techniques for all free-direction walk datasets. It also performs well under the gallery-size test and the CMC curve test. This means that our proposed JRC-CNN gait recognition technique can be used in a real-world situation. Experimental results also suggest that a person can be identified by a unique posture (an entire body is observed as a whole) with the focus on the movements of connected joints. |
---|---|
AbstractList | Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject’s awareness. In this work, we propose a new model-based gait recognition technique called JRC-CNN gait recognition. We introduce three new concepts. (1) We create a new way to preprocess skeleton data by rotating skeleton data using two virtual axes. This process reduces the fluctuation in movements and resolves the multi-viewpoint issue. All postures in a walk are observed from the same angle. (2) We introduce new Joint Replacement Coordinates (JRCs), which represent the movements of the left and right joints in a group of three connected joints. These JRC gait features are designed to put more emphasis on local movements than the movements of non-connected joints. (3) We construct a new Convolution Neural Network (CNN) for the classification process, which consists of a convolutional layer on each JRC and two fully-connected layers. A convolutional layer is designed to discover relations within a group of three connected joints. Fully-connected layers also find the relations of all groups of three connected joints throughout an entire body (in a posture). Our JRC-CNN technique achieves above 98.4% accuracy and significantly outperforms other existing techniques for all free-direction walk datasets. It also performs well under the gallery-size test and the CMC curve test. This means that our proposed JRC-CNN gait recognition technique can be used in a real-world situation. Experimental results also suggest that a person can be identified by a unique posture (an entire body is observed as a whole) with the focus on the movements of connected joints. |
Author | Khamsemanan, Nirattaya Limcharoen, Piya Nattee, Cholwich |
Author_xml | – sequence: 1 givenname: Piya surname: Limcharoen fullname: Limcharoen, Piya email: d5922300180@g.siit.tu.ac.th organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand – sequence: 2 givenname: Nirattaya surname: Khamsemanan fullname: Khamsemanan, Nirattaya email: nirattaya@siit.tu.ac.th organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand – sequence: 3 givenname: Cholwich surname: Nattee fullname: Nattee, Cholwich email: cholwich@siit.tu.ac.th organization: Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand |
BookMark | eNp9kE9PAjEQxRuDiYB-AONlEy96WGy37f45GiIIIZogeN2U7iwpLi22XYnf3l0hHDx4mTd5eb_J5PVQRxsNCF0TPCAEZw-LyehtEOEID6Is5ZzyM9QlnMdhjCPSOe2EXqCecxuMGSNx2kXbdwX7cKIL2EEztA_GQvlgDtKstfLK6GDplF4HU6N06-8qIWHbBofG2EJp4cEFd9P50N0HQheNrb9MVbeoqIIXqO2v-L2xH5fovBSVg6uj9tFy9LQYPoez1_Fk-DgLZZRRH8aJoBljtOCQZCRN0jJaAc8goyvMSFLGZRHDiouSpZyJtGBYxHIlIiyBc8kl7aPbw92dNZ81OJ9vTG2bf1weMZxghkmSNqnkkJLWOGehzKXyon3cW6GqnOC87TZvu83bbvNjtw1J_pA7q7bCfv_L3BwYBQCnfIZ5nBJKfwB9hYeT |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3266252 crossref_primary_10_12688_openreseurope_13715_1 crossref_primary_10_1088_1742_6596_2095_1_012056 crossref_primary_10_12688_openreseurope_13715_2 crossref_primary_10_1109_TIFS_2025_3531104 crossref_primary_10_1016_j_dsp_2024_104393 crossref_primary_10_1016_j_patcog_2021_108376 crossref_primary_10_1016_j_engappai_2023_107712 crossref_primary_10_1109_ACCESS_2021_3102936 crossref_primary_10_1109_TIFS_2023_3254449 crossref_primary_10_1016_j_jvcir_2021_103218 crossref_primary_10_1016_j_jvcir_2021_103416 crossref_primary_10_1016_j_engappai_2025_110213 crossref_primary_10_1109_ACCESS_2022_3184735 crossref_primary_10_1016_j_neucom_2022_07_002 crossref_primary_10_1109_ACCESS_2024_3451495 crossref_primary_10_3389_frai_2022_989860 crossref_primary_10_1016_j_imavis_2023_104784 crossref_primary_10_1109_ACCESS_2021_3058745 |
Cites_doi | 10.1109/TIFS.2017.2738611 10.1007/978-3-319-13386-7_2 10.1109/CCDC.2017.7978227 10.1007/s00371-015-1092-0 10.1109/TCSVT.2017.2760835 10.1109/MMSP.2013.6659329 10.1109/ICDSP.2013.6622766 10.1016/j.patrec.2009.11.006 10.1109/TPAMI.2016.2545669 10.1007/11744078_12 10.1016/j.jvcir.2016.05.020 10.1145/2157689.2157767 10.1609/aaai.v33i01.33018126 10.1109/TPAMI.2006.38 10.2197/ipsjtcva.7.74 10.1016/j.patrec.2015.06.020 10.1016/j.jvcir.2016.03.020 10.1109/ICTAI.2014.99 10.1049/iet-bmt.2018.5063 10.1109/SCIS-ISIS.2014.7044817 10.1109/ICB.2012.6199782 10.1109/TIFS.2019.2901823 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2020.2985535 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 3442 |
ExternalDocumentID | 10_1109_TIFS_2020_2985535 9056813 |
Genre | orig-research |
GrantInformation_xml | – fundername: Thammasat University Research Fund funderid: 10.13039/501100005790 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-67a39443d5e791878f2be59e93b0417f6fd6eb5af4854a8d40a6cba20ce55c5c3 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Mon Jun 30 03:44:41 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 02:34:15 EDT 2025 Wed Aug 27 02:37:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-67a39443d5e791878f2be59e93b0417f6fd6eb5af4854a8d40a6cba20ce55c5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2407040178 |
PQPubID | 85506 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9056813 crossref_citationtrail_10_1109_TIFS_2020_2985535 proquest_journals_2407040178 crossref_primary_10_1109_TIFS_2020_2985535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ahmed (ref23) 2016; 14 ahmed (ref26) 2015; 23 andersson (ref16) 2015 ref30 ref11 ref10 preis (ref15) 2012 ref17 ref19 ref18 charalambous (ref1) 2014 ref24 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 boyd (ref3) 2005 cheewakidakarn (ref14) 2013 ref9 gianaria (ref21) 2014 ref4 matovski (ref2) 2014 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1109/TIFS.2017.2738611 – start-page: 19 year: 2005 ident: ref3 publication-title: Biometric Gait Recognition – start-page: 16 year: 2014 ident: ref21 article-title: Human classification using gait features publication-title: Biometric Authentication doi: 10.1007/978-3-319-13386-7_2 – ident: ref24 doi: 10.1109/CCDC.2017.7978227 – ident: ref25 doi: 10.1007/s00371-015-1092-0 – ident: ref13 doi: 10.1109/TCSVT.2017.2760835 – ident: ref22 doi: 10.1109/MMSP.2013.6659329 – ident: ref30 doi: 10.1109/ICDSP.2013.6622766 – ident: ref11 doi: 10.1016/j.patrec.2009.11.006 – ident: ref9 doi: 10.1109/TPAMI.2016.2545669 – ident: ref10 doi: 10.1007/11744078_12 – ident: ref19 doi: 10.1016/j.jvcir.2016.05.020 – volume: 23 start-page: 147 year: 2015 ident: ref26 article-title: Kinect-based gait recognition using sequence of the most relevant joint relative angles publication-title: J WSCG – start-page: 425 year: 2015 ident: ref16 article-title: Person identification using anthropometric and gait data from kinect sensor publication-title: Proc AAAI – ident: ref18 doi: 10.1145/2157689.2157767 – volume: 14 start-page: 425 year: 2016 ident: ref23 article-title: Kinect-based human gait recognition using static and dynamic features publication-title: Int J Comput Sci Inf Secur – ident: ref12 doi: 10.1609/aaai.v33i01.33018126 – ident: ref6 doi: 10.1109/TPAMI.2006.38 – start-page: 309 year: 2014 ident: ref2 publication-title: Gait Recognition – start-page: 393 year: 2014 ident: ref1 publication-title: Walking Pattern of Normal Men – ident: ref8 doi: 10.2197/ipsjtcva.7.74 – ident: ref27 doi: 10.1016/j.patrec.2015.06.020 – ident: ref4 doi: 10.1016/j.jvcir.2016.03.020 – ident: ref20 doi: 10.1109/ICTAI.2014.99 – ident: ref5 doi: 10.1049/iet-bmt.2018.5063 – ident: ref17 doi: 10.1109/SCIS-ISIS.2014.7044817 – ident: ref7 doi: 10.1109/ICB.2012.6199782 – start-page: 1 year: 2013 ident: ref14 article-title: View independent human identification by gait analysis using skeletal data and dynamic time warping publication-title: Proc 14th Int Symp Adv Intell Syst (ISIS) – start-page: 1 year: 2012 ident: ref15 article-title: Gait recognition with Kinect publication-title: 1st International Workshop on Kinect in Pervasive Computing – ident: ref29 doi: 10.1109/TIFS.2019.2901823 |
SSID | ssj0044168 |
Score | 2.387524 |
Snippet | Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject's... Gait recognition has received increasing attention for security and authentication since it can be done unintrusively from afar and without a subject’s... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3430 |
SubjectTerms | Artificial neural networks biometrics Convolution convolutional neural network (CNN) Convolutional neural networks Feature extraction Gait recognition Human identification joint replacement coordinates (JRCs) Joints (anatomy) k-nearest neighbor (KNN) kinect Legged locomotion multilayer perceptron (MLP) Neural networks Shape Skeleton view independent |
Title | View-Independent Gait Recognition Using Joint Replacement Coordinates (JRCs) and Convolutional Neural Network |
URI | https://ieeexplore.ieee.org/document/9056813 https://www.proquest.com/docview/2407040178 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3JgeRSxLUU-9EARXhwnju0jWnWBleDAS9wi23GkFW1SlWwr8euxHWeLoEKcYlm2M9KMPTP2zHwAX4VQmosyw1oThrOMGqwolZhViXIKQ6g8oJacX-SnN9n0jt0tweEiF8ZaG4LP7Mg3w1t-2Zi5vyo7ksSXy0qXYdmJWZer1Z-6Tqt3aW-M5dg5GWl8wUyIPLo-m1w5T5CSEZWCsYDs9k8HBVCVVydxUC-TAZz3hHVRJfejeatH5vFFzcb3Ur4Oa9HORMedYGzAkq03YdBjOKC4pTdh9VlBwi34eTuzf_HZAhq3RSdq1qLLPsqoqVGIMUDTZlb7_hDS5f-Nxo1zY2e1N13R_vRy_PANqbp03fWfKN2OHF8KJHxC7PlHuJl8vx6f4gjIgI2zClqcc-XzaNOSWS4TwUVFtWXSylSTLOFVXpW51UxVmWCZchJAVG60osRYxgwz6Tas1E1tdwBJTitiWVXyNMkqZyYJG9YR2kjGKR0C6VlUmFit3INm_CiC10Jk4blaeK4WkatDOFhM-dWV6nhr8Jbn0mJgZNAQdns5KOJmfii80-vOuoSLT_-f9Rk--LW7m5ldWGl_z-0XZ6u0ei8I6ROA9-UE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RbxQhEJ7U-qB9sNra9LQqDz6okSvLwgKP5uJ5d_b6UK-mbxtg2eSi7hq7p4m_XmDZ06gxPi0hsEwyAzMDM_MBPJVSGyErho0hHDNGLdaUKszrTHuFIXURUUuW58Xski2u-NUOvNzmwjjnYvCZG4dmfMuvWrsJV2WnioRyWfkNuOn1PuN9ttZw7nq93ie-cV5g72bk6Q0zI-p0NZ--874gJWOqJOcR2-2nFoqwKn-cxVHBTPdhOZDWx5V8GG86M7bff6va-L-034U7ydJEr3rRuAc7rjmA_QHFAaVNfQB7v5QkPIRP79fuG55vwXE79EavO3QxxBm1DYpRBmjRrpvQH4O6wtpo0npHdt0E4xU9W1xMrp8j3VS-u_ma5NuTE4qBxE-MPr8Pl9PXq8kMJ0gGbL1d0OFC6JBJm1fcCZVJIWtqHFdO5YawTNRFXRXOcF0zyZn2MkB0YY2mxDrOLbf5Eew2beOOASlBa-J4XYk8Y7U3lKSL_5HGKi4oHQEZWFTaVK88wGZ8LKPfQlQZuFoGrpaJqyN4sZ3yuS_W8a_Bh4FL24GJQSM4GeSgTNv5ugxurz_tMiEf_H3WE7g1Wy3PyrP5-duHcDus09_TnMBu92XjHnnLpTOPo8D-AKTf6FE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=View-Independent+Gait+Recognition+Using+Joint+Replacement+Coordinates+%28JRCs%29+and+Convolutional+Neural+Network&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Limcharoen%2C+Piya&rft.au=Khamsemanan%2C+Nirattaya&rft.au=Nattee%2C+Cholwich&rft.date=2020&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=15&rft.spage=3430&rft.epage=3442&rft_id=info:doi/10.1109%2FTIFS.2020.2985535&rft.externalDocID=9056813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |