A 2-DOF Shoulder Exosuit Driven by Modular, Pneumatic, Fabric Actuators
The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 3; no. 1; pp. 166 - 178 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus' movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {>}} 360\mathbf {^\circ } </tex-math></inline-formula>) with low pressures (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {\sim }}10 </tex-math></inline-formula>kPA). The exosuit's actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at <inline-formula> <tex-math notation="LaTeX">90\mathbf {^\circ } </tex-math></inline-formula> shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion. |
---|---|
AbstractList | The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus' movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {>}} 360\mathbf {^\circ } </tex-math></inline-formula>) with low pressures (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {\sim }}10 </tex-math></inline-formula>kPA). The exosuit's actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at <inline-formula> <tex-math notation="LaTeX">90\mathbf {^\circ } </tex-math></inline-formula> shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion. The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus’ movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending ([Formula Omitted]) with low pressures ([Formula Omitted]kPA). The exosuit’s actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at [Formula Omitted] shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion. |
Author | Chen-Hua, Raye Yeow Miller-Jackson, Tiana Natividad, Rainier F. |
Author_xml | – sequence: 1 givenname: Rainier F. orcidid: 0000-0002-7143-1874 surname: Natividad fullname: Natividad, Rainier F. email: rfnatividad@nus.edu.sg organization: Department of Biomedical Engineering, National University of Singapore, Singapore – sequence: 2 givenname: Tiana surname: Miller-Jackson fullname: Miller-Jackson, Tiana email: tiana@u.nus.edu organization: Department of Biomedical Engineering, National University of Singapore, Singapore – sequence: 3 givenname: Raye Yeow orcidid: 0000-0002-6210-4548 surname: Chen-Hua fullname: Chen-Hua, Raye Yeow email: rayeow@nus.edu.sg organization: Department of Biomedical Engineering, National University of Singapore, Singapore |
BookMark | eNp9kE9LAzEQxYNUsNZ-APES8Nqtk2SzuzlW-0ehpaL1HLLZLKa0m5rdFfvtTWkR8eBphpn3m3m8S9SpXGUQuiYwJATE3Wrxcj-kQGHIII4J4WeoS3maRCwMO7_6C9Sv6zUAUMIhZUkXzUaYRuPlFL--u3ZTGI8nX65ubYPH3n6aCud7vHBFu1F-gJ8r025VY_UAT1XurcYj3bSqcb6-Quel2tSmf6o99DadrB4eo_ly9vQwmkeaCtZEScIgmMl0obIUqBIZZ1leFBlNc8K05gVjJTCSAxCe5lwJYGEjgqSkrOSsh26Pd3fefbSmbuTatb4KLyWNBeMizkAEVXpUae_q2ptSatsE465qvLIbSUAegpOH4OQhOHkKLpDkD7nzdqv8_l_m5shYY8yPXlBB4oSyb0xYd7o |
CitedBy_id | crossref_primary_10_1126_scirobotics_adi2377 crossref_primary_10_3390_act13030112 crossref_primary_10_1002_SMMD_20230045 crossref_primary_10_3390_app13137453 crossref_primary_10_1016_j_robot_2024_104835 crossref_primary_10_1109_TMECH_2022_3194975 crossref_primary_10_1109_TMRB_2023_3258499 crossref_primary_10_1109_TMRB_2024_3407374 crossref_primary_10_1002_aisy_202400266 crossref_primary_10_1109_TMRB_2025_3527695 crossref_primary_10_3390_act12070273 crossref_primary_10_1109_LRA_2023_3246841 |
Cites_doi | 10.1109/ICORR.2013.6650455 10.1002/adfm.201303288 10.1089/soro.2015.0009 10.1016/j.clinbiomech.2005.02.006 10.1109/BIOROB.2016.7523758 10.1007/978-3-030-01887-0_78 10.1682/JRRD.2003.03.0149 10.1109/ICAR.2005.1507459 10.1109/ICORR.2019.8779546 10.2106/JBJS.G.01483 10.1080/01691864.2015.1090334 10.1016/S1050-6411(00)00027-4 10.1109/ROBOSOFT.2018.8405388 10.1109/ICORR.2017.8009488 10.1016/j.jbiomech.2018.10.001 10.1109/ICRA.2017.7989785 10.1109/LRA.2019.2907433 10.1073/pnas.1116564108 10.1109/IROS.2012.6385786 10.1109/THMS.2017.2700634 10.1080/11762320902840179 10.1682/JRRD.2010.10.0210 10.1002/jor.20675 10.1053/apmr.2001.33101 10.1089/soro.2017.0064 10.1109/ICRA.2017.7989792 10.1109/TNSRE.2006.881565 10.1080/09593985.2017.1422206 10.1007/s41315-018-0064-8 10.1089/soro.2014.0021 10.1109/TMECH.2012.2204070 10.1089/soro.2015.0007 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
DOI | 10.1109/TMRB.2020.3044115 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 178 |
ExternalDocumentID | 10_1109_TMRB_2020_3044115 9291462 |
Genre | orig-research |
GrantInformation_xml | – fundername: Singapore Ministry of Education through MOE AcRF Tier 2 grantid: R-397-000-281-112 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
ID | FETCH-LOGICAL-c293t-66305768cda8702a98538bdd827b13cc5d33f031b00157b5a9037b19bddf23f53 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Sun Jun 29 15:20:01 EDT 2025 Tue Jul 01 02:51:46 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Wed Aug 27 02:43:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-66305768cda8702a98538bdd827b13cc5d33f031b00157b5a9037b19bddf23f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7143-1874 0000-0002-6210-4548 |
PQID | 2493594809 |
PQPubID | 4437212 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2493594809 crossref_citationtrail_10_1109_TMRB_2020_3044115 crossref_primary_10_1109_TMRB_2020_3044115 ieee_primary_9291462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref1 ref17 ref16 ref19 ref18 fryar (ref28) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 terry (ref2) 2000; 35 |
References_xml | – ident: ref23 doi: 10.1109/ICORR.2013.6650455 – ident: ref11 doi: 10.1002/adfm.201303288 – ident: ref12 doi: 10.1089/soro.2015.0009 – ident: ref1 doi: 10.1016/j.clinbiomech.2005.02.006 – ident: ref19 doi: 10.1109/BIOROB.2016.7523758 – ident: ref34 doi: 10.1007/978-3-030-01887-0_78 – ident: ref27 doi: 10.1682/JRRD.2003.03.0149 – ident: ref9 doi: 10.1109/ICAR.2005.1507459 – volume: 35 start-page: 248 year: 2000 ident: ref2 article-title: Functional anatomy of the shoulder publication-title: J Athl Train – ident: ref33 doi: 10.1109/ICORR.2019.8779546 – ident: ref7 doi: 10.2106/JBJS.G.01483 – ident: ref10 doi: 10.1080/01691864.2015.1090334 – ident: ref29 doi: 10.1016/S1050-6411(00)00027-4 – ident: ref24 doi: 10.1109/ROBOSOFT.2018.8405388 – ident: ref21 doi: 10.1109/ICORR.2017.8009488 – ident: ref31 doi: 10.1016/j.jbiomech.2018.10.001 – ident: ref18 doi: 10.1109/ICRA.2017.7989785 – ident: ref20 doi: 10.1109/LRA.2019.2907433 – ident: ref16 doi: 10.1073/pnas.1116564108 – ident: ref17 doi: 10.1109/IROS.2012.6385786 – ident: ref8 doi: 10.1109/THMS.2017.2700634 – ident: ref5 doi: 10.1080/11762320902840179 – year: 2016 ident: ref28 publication-title: Vital Health Statist Ser – ident: ref3 doi: 10.1682/JRRD.2010.10.0210 – ident: ref30 doi: 10.1002/jor.20675 – ident: ref4 doi: 10.1053/apmr.2001.33101 – ident: ref25 doi: 10.1089/soro.2017.0064 – ident: ref26 doi: 10.1109/ICRA.2017.7989792 – ident: ref6 doi: 10.1109/TNSRE.2006.881565 – ident: ref22 doi: 10.1080/09593985.2017.1422206 – ident: ref32 doi: 10.1007/s41315-018-0064-8 – ident: ref14 doi: 10.1089/soro.2014.0021 – ident: ref13 doi: 10.1109/TMECH.2012.2204070 – ident: ref15 doi: 10.1089/soro.2015.0007 |
SSID | ssj0002150736 |
Score | 2.242933 |
Snippet | The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 166 |
SubjectTerms | Actuator design Actuators Bending Degrees of freedom Fabrics Humerus Kinematics Muscles pneumatic actuators Rehabilitation robotics Robotics Robots Shoulder Soft robotics Torque Wearable technology |
Title | A 2-DOF Shoulder Exosuit Driven by Modular, Pneumatic, Fabric Actuators |
URI | https://ieeexplore.ieee.org/document/9291462 https://www.proquest.com/docview/2493594809 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLPXiSpt1mmzY5VtsqQlR8gLeQfQRFaaRNQD34253ZpKGoiLdAdmGZ2Xl8u7PzARwlbV9pX7adxPOJwoyjH1RJx-koLzY8UdJYtobwsnt-37l48B4WoFG9hTHG2OIz06RPe5evU5XTUVkLQzkaNjrcGgK34q1WdZ7iUmYjuuXFZZsHrbvw5gQBoIu4lGPQJ-LbudBjuVR-OGAbVUarEM7WUxSTPDfzTDbVx7dWjf9d8BqslOkl6xf7YR0WzHgDlueaDm7CWZ-5zuBqxG4fid7aTNjwLZ3mTxkbTMj1MfnOwlRTeWqDXY9Nbpu6NtgolugzWZ9enBBFzxbcj4Z3p-dOSafgKIzpmYO5BSd0oXSMRurGAUZqX2rtuz3ZFkp5WogEbdzmUT3pxQEX-CfAIYkrEk9sw-I4HZsdYChNDH0IhQzXnZ5GzKaM6xmByUwsPNmtA59JOlJlr3GivHiJLObgQUTKiUg5UamcOhxXU16LRht_Dd4kYVcDSznXYX-mzqg0xWmE-FJQTxoe7P4-aw-WXCpUsaXY-7CYTXJzgJlGJg-hFn4OD-1G-wKNa86W |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOAAHnosoTx84oaa4dt0mx_Io3YUAYovELYofEQjUopJIwK9nxk0rBAhxixRbsmY8883Y4_kA9rJ6aGyo60GmQqIw4-gHTdYIGkaljmdGO8_WEF80uzeNf7fqdgqqk7cwzjlffOZq9Onv8u3AFHRUdoBQjoaNDncGcV-J0WutyYmKoNhGNsuryzqPDnrx9SGmgAIzU46wT9S3H8DHs6l8ccEeVzqLEI9XNConeagVua6Zt0_NGn-75CVYKANM1h7tiGWYcv0VmP_QdnAVTttMBMeXHfb_jgiu3ZCdvAyei_ucHQ_J-TH9yuKBpQLVKrvqu8K3da2yTqrRa7I2vTkhkp4_cNM56R11g5JQITCI6nmA0QWn_MLYFM1UpBFidaitDUVL16UxykqZoZX7SKqlVRpxiX8iHJIJmSm5BtP9Qd-tA0NpIvhhMuS4bbQsZm3GCeUkhjOpVLpZAT6WdGLKbuNEevGY-KyDRwkpJyHlJKVyKrA_mfI0arXx0-BVEvZkYCnnCmyN1ZmUxvicYIYpqSsNjza-n7ULs91efJ6c_70424Q5QWUrvjB7C6bzYeG2Me7I9Y7fbu-h1tCv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+2-DOF+Shoulder+Exosuit+Driven+by+Modular%2C+Pneumatic%2C+Fabric+Actuators&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Natividad%2C+Rainier+F&rft.au=Miller-Jackson%2C+Tiana&rft.au=Chen-Hua%2C+Raye+Yeow&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3202&rft.volume=3&rft.issue=1&rft.spage=166&rft_id=info:doi/10.1109%2FTMRB.2020.3044115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |