A 2-DOF Shoulder Exosuit Driven by Modular, Pneumatic, Fabric Actuators

The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 3; no. 1; pp. 166 - 178
Main Authors Natividad, Rainier F., Miller-Jackson, Tiana, Chen-Hua, Raye Yeow
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus' movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {>}} 360\mathbf {^\circ } </tex-math></inline-formula>) with low pressures (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {\sim }}10 </tex-math></inline-formula>kPA). The exosuit's actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at <inline-formula> <tex-math notation="LaTeX">90\mathbf {^\circ } </tex-math></inline-formula> shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion.
AbstractList The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus' movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {>}} 360\mathbf {^\circ } </tex-math></inline-formula>) with low pressures (<inline-formula> <tex-math notation="LaTeX">\mathbf {\mathrm {\sim }}10 </tex-math></inline-formula>kPA). The exosuit's actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at <inline-formula> <tex-math notation="LaTeX">90\mathbf {^\circ } </tex-math></inline-formula> shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion.
The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform kinematically complex manipulation actions. Wearable devices targeting the shoulder must be able to emulate its kinematics. Robotic exosuits are an attractive medium to provide shoulder assistance; but current soft robotic actuators feature limited mobility. This work presents a new 2-DOF soft robotic shoulder exosuit that utilizes modular soft actuators that are able to emulate the humerus’ movement. The actuator design enables 3-D bending with insignificant resistance. Powered through separated inflation modules, these actuators are configured as two antagonistic pairs that operate in a parallel configuration. The actuator can reach full bending ([Formula Omitted]) with low pressures ([Formula Omitted]kPA). The exosuit’s actuators output 11.15N-m of torque at the neutral position, and 4.44 N-m at [Formula Omitted] shoulder elevation. A test performed on healthy subjects showed that use of the exosuit reduces muscle activation by up to 65% when performing shoulder elevation, and up to 34% when rotating the plane of elevation. The reduction in muscle activation highlights the promising ability of robotic exosuits in supporting arm movements through the entire range of their motion.
Author Chen-Hua, Raye Yeow
Miller-Jackson, Tiana
Natividad, Rainier F.
Author_xml – sequence: 1
  givenname: Rainier F.
  orcidid: 0000-0002-7143-1874
  surname: Natividad
  fullname: Natividad, Rainier F.
  email: rfnatividad@nus.edu.sg
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Tiana
  surname: Miller-Jackson
  fullname: Miller-Jackson, Tiana
  email: tiana@u.nus.edu
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 3
  givenname: Raye Yeow
  orcidid: 0000-0002-6210-4548
  surname: Chen-Hua
  fullname: Chen-Hua, Raye Yeow
  email: rayeow@nus.edu.sg
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
BookMark eNp9kE9LAzEQxYNUsNZ-APES8Nqtk2SzuzlW-0ehpaL1HLLZLKa0m5rdFfvtTWkR8eBphpn3m3m8S9SpXGUQuiYwJATE3Wrxcj-kQGHIII4J4WeoS3maRCwMO7_6C9Sv6zUAUMIhZUkXzUaYRuPlFL--u3ZTGI8nX65ubYPH3n6aCud7vHBFu1F-gJ8r025VY_UAT1XurcYj3bSqcb6-Quel2tSmf6o99DadrB4eo_ly9vQwmkeaCtZEScIgmMl0obIUqBIZZ1leFBlNc8K05gVjJTCSAxCe5lwJYGEjgqSkrOSsh26Pd3fefbSmbuTatb4KLyWNBeMizkAEVXpUae_q2ptSatsE465qvLIbSUAegpOH4OQhOHkKLpDkD7nzdqv8_l_m5shYY8yPXlBB4oSyb0xYd7o
CitedBy_id crossref_primary_10_1126_scirobotics_adi2377
crossref_primary_10_3390_act13030112
crossref_primary_10_1002_SMMD_20230045
crossref_primary_10_3390_app13137453
crossref_primary_10_1016_j_robot_2024_104835
crossref_primary_10_1109_TMECH_2022_3194975
crossref_primary_10_1109_TMRB_2023_3258499
crossref_primary_10_1109_TMRB_2024_3407374
crossref_primary_10_1002_aisy_202400266
crossref_primary_10_1109_TMRB_2025_3527695
crossref_primary_10_3390_act12070273
crossref_primary_10_1109_LRA_2023_3246841
Cites_doi 10.1109/ICORR.2013.6650455
10.1002/adfm.201303288
10.1089/soro.2015.0009
10.1016/j.clinbiomech.2005.02.006
10.1109/BIOROB.2016.7523758
10.1007/978-3-030-01887-0_78
10.1682/JRRD.2003.03.0149
10.1109/ICAR.2005.1507459
10.1109/ICORR.2019.8779546
10.2106/JBJS.G.01483
10.1080/01691864.2015.1090334
10.1016/S1050-6411(00)00027-4
10.1109/ROBOSOFT.2018.8405388
10.1109/ICORR.2017.8009488
10.1016/j.jbiomech.2018.10.001
10.1109/ICRA.2017.7989785
10.1109/LRA.2019.2907433
10.1073/pnas.1116564108
10.1109/IROS.2012.6385786
10.1109/THMS.2017.2700634
10.1080/11762320902840179
10.1682/JRRD.2010.10.0210
10.1002/jor.20675
10.1053/apmr.2001.33101
10.1089/soro.2017.0064
10.1109/ICRA.2017.7989792
10.1109/TNSRE.2006.881565
10.1080/09593985.2017.1422206
10.1007/s41315-018-0064-8
10.1089/soro.2014.0021
10.1109/TMECH.2012.2204070
10.1089/soro.2015.0007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
DOI 10.1109/TMRB.2020.3044115
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 178
ExternalDocumentID 10_1109_TMRB_2020_3044115
9291462
Genre orig-research
GrantInformation_xml – fundername: Singapore Ministry of Education through MOE AcRF Tier 2
  grantid: R-397-000-281-112
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
ID FETCH-LOGICAL-c293t-66305768cda8702a98538bdd827b13cc5d33f031b00157b5a9037b19bddf23f53
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Sun Jun 29 15:20:01 EDT 2025
Tue Jul 01 02:51:46 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Aug 27 02:43:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-66305768cda8702a98538bdd827b13cc5d33f031b00157b5a9037b19bddf23f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7143-1874
0000-0002-6210-4548
PQID 2493594809
PQPubID 4437212
PageCount 13
ParticipantIDs proquest_journals_2493594809
crossref_citationtrail_10_1109_TMRB_2020_3044115
crossref_primary_10_1109_TMRB_2020_3044115
ieee_primary_9291462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
fryar (ref28) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
terry (ref2) 2000; 35
References_xml – ident: ref23
  doi: 10.1109/ICORR.2013.6650455
– ident: ref11
  doi: 10.1002/adfm.201303288
– ident: ref12
  doi: 10.1089/soro.2015.0009
– ident: ref1
  doi: 10.1016/j.clinbiomech.2005.02.006
– ident: ref19
  doi: 10.1109/BIOROB.2016.7523758
– ident: ref34
  doi: 10.1007/978-3-030-01887-0_78
– ident: ref27
  doi: 10.1682/JRRD.2003.03.0149
– ident: ref9
  doi: 10.1109/ICAR.2005.1507459
– volume: 35
  start-page: 248
  year: 2000
  ident: ref2
  article-title: Functional anatomy of the shoulder
  publication-title: J Athl Train
– ident: ref33
  doi: 10.1109/ICORR.2019.8779546
– ident: ref7
  doi: 10.2106/JBJS.G.01483
– ident: ref10
  doi: 10.1080/01691864.2015.1090334
– ident: ref29
  doi: 10.1016/S1050-6411(00)00027-4
– ident: ref24
  doi: 10.1109/ROBOSOFT.2018.8405388
– ident: ref21
  doi: 10.1109/ICORR.2017.8009488
– ident: ref31
  doi: 10.1016/j.jbiomech.2018.10.001
– ident: ref18
  doi: 10.1109/ICRA.2017.7989785
– ident: ref20
  doi: 10.1109/LRA.2019.2907433
– ident: ref16
  doi: 10.1073/pnas.1116564108
– ident: ref17
  doi: 10.1109/IROS.2012.6385786
– ident: ref8
  doi: 10.1109/THMS.2017.2700634
– ident: ref5
  doi: 10.1080/11762320902840179
– year: 2016
  ident: ref28
  publication-title: Vital Health Statist Ser
– ident: ref3
  doi: 10.1682/JRRD.2010.10.0210
– ident: ref30
  doi: 10.1002/jor.20675
– ident: ref4
  doi: 10.1053/apmr.2001.33101
– ident: ref25
  doi: 10.1089/soro.2017.0064
– ident: ref26
  doi: 10.1109/ICRA.2017.7989792
– ident: ref6
  doi: 10.1109/TNSRE.2006.881565
– ident: ref22
  doi: 10.1080/09593985.2017.1422206
– ident: ref32
  doi: 10.1007/s41315-018-0064-8
– ident: ref14
  doi: 10.1089/soro.2014.0021
– ident: ref13
  doi: 10.1109/TMECH.2012.2204070
– ident: ref15
  doi: 10.1089/soro.2015.0007
SSID ssj0002150736
Score 2.242933
Snippet The shoulder plays a crucial role in moving the upper limb. It is capable of articulating in three degrees-of-freedom, which enables the arm to perform...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Actuator design
Actuators
Bending
Degrees of freedom
Fabrics
Humerus
Kinematics
Muscles
pneumatic actuators
Rehabilitation robotics
Robotics
Robots
Shoulder
Soft robotics
Torque
Wearable technology
Title A 2-DOF Shoulder Exosuit Driven by Modular, Pneumatic, Fabric Actuators
URI https://ieeexplore.ieee.org/document/9291462
https://www.proquest.com/docview/2493594809
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB6sJz34FuuLPXiSpt1mmzY5VtsqQlR8gLeQfQRFaaRNQD34253ZpKGoiLdAdmGZ2Xl8u7PzARwlbV9pX7adxPOJwoyjH1RJx-koLzY8UdJYtobwsnt-37l48B4WoFG9hTHG2OIz06RPe5evU5XTUVkLQzkaNjrcGgK34q1WdZ7iUmYjuuXFZZsHrbvw5gQBoIu4lGPQJ-LbudBjuVR-OGAbVUarEM7WUxSTPDfzTDbVx7dWjf9d8BqslOkl6xf7YR0WzHgDlueaDm7CWZ-5zuBqxG4fid7aTNjwLZ3mTxkbTMj1MfnOwlRTeWqDXY9Nbpu6NtgolugzWZ9enBBFzxbcj4Z3p-dOSafgKIzpmYO5BSd0oXSMRurGAUZqX2rtuz3ZFkp5WogEbdzmUT3pxQEX-CfAIYkrEk9sw-I4HZsdYChNDH0IhQzXnZ5GzKaM6xmByUwsPNmtA59JOlJlr3GivHiJLObgQUTKiUg5UamcOhxXU16LRht_Dd4kYVcDSznXYX-mzqg0xWmE-FJQTxoe7P4-aw-WXCpUsaXY-7CYTXJzgJlGJg-hFn4OD-1G-wKNa86W
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOAAHnosoTx84oaa4dt0mx_Io3YUAYovELYofEQjUopJIwK9nxk0rBAhxixRbsmY8883Y4_kA9rJ6aGyo60GmQqIw4-gHTdYIGkaljmdGO8_WEF80uzeNf7fqdgqqk7cwzjlffOZq9Onv8u3AFHRUdoBQjoaNDncGcV-J0WutyYmKoNhGNsuryzqPDnrx9SGmgAIzU46wT9S3H8DHs6l8ccEeVzqLEI9XNConeagVua6Zt0_NGn-75CVYKANM1h7tiGWYcv0VmP_QdnAVTttMBMeXHfb_jgiu3ZCdvAyei_ucHQ_J-TH9yuKBpQLVKrvqu8K3da2yTqrRa7I2vTkhkp4_cNM56R11g5JQITCI6nmA0QWn_MLYFM1UpBFidaitDUVL16UxykqZoZX7SKqlVRpxiX8iHJIJmSm5BtP9Qd-tA0NpIvhhMuS4bbQsZm3GCeUkhjOpVLpZAT6WdGLKbuNEevGY-KyDRwkpJyHlJKVyKrA_mfI0arXx0-BVEvZkYCnnCmyN1ZmUxvicYIYpqSsNjza-n7ULs91efJ6c_70424Q5QWUrvjB7C6bzYeG2Me7I9Y7fbu-h1tCv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+2-DOF+Shoulder+Exosuit+Driven+by+Modular%2C+Pneumatic%2C+Fabric+Actuators&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Natividad%2C+Rainier+F&rft.au=Miller-Jackson%2C+Tiana&rft.au=Chen-Hua%2C+Raye+Yeow&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2576-3202&rft.volume=3&rft.issue=1&rft.spage=166&rft_id=info:doi/10.1109%2FTMRB.2020.3044115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon