CSAFNet: Channel Similarity Attention Fusion Network for Multispectral Pansharpening

Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5
Main Authors Luo, Shuyue, Zhou, Shangbo, Qi, Ying
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2020.3040893

Cover

Abstract Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features equally and also neglect the contribution of multilevel features, thereby impeding the representation ability of CNNs. To deal with these issues, we propose a novel channel similarity attention fusion network (CSAFNet) in this letter, where several channel attention residual dense blocks (CARDBs) are stacked to fully exploit discriminative features, and then the features produced by all CARDBs are combined via a multilevel feature fusion module. Such network enables the network to focus on more informative features and make full use of them. Both visual and quantitative assessments validate the superior performance of the proposed network over the current pansharpening methods with respect to spectral fidelity and spatial enhancement.
AbstractList Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features equally and also neglect the contribution of multilevel features, thereby impeding the representation ability of CNNs. To deal with these issues, we propose a novel channel similarity attention fusion network (CSAFNet) in this letter, where several channel attention residual dense blocks (CARDBs) are stacked to fully exploit discriminative features, and then the features produced by all CARDBs are combined via a multilevel feature fusion module. Such network enables the network to focus on more informative features and make full use of them. Both visual and quantitative assessments validate the superior performance of the proposed network over the current pansharpening methods with respect to spectral fidelity and spatial enhancement.
Author Luo, Shuyue
Zhou, Shangbo
Qi, Ying
Author_xml – sequence: 1
  givenname: Shuyue
  surname: Luo
  fullname: Luo, Shuyue
  email: luosy@cqu.edu.cn
  organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Shangbo
  orcidid: 0000-0001-5057-8431
  surname: Zhou
  fullname: Zhou, Shangbo
  email: shbzhou@cqu.edu.cn
  organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Ying
  surname: Qi
  fullname: Qi, Ying
  organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China
BookMark eNp9kLtOwzAUhi0EEm3hARBLJOYUO44dm62KaEEqF9EisUVOOKYuqVNsR6hvT6JWDAxM5wzfdy7_EB3bxgJCFwSPCcHyej57WYwTnOAxxSkWkh6hAWFMxJhl5LjvUxYzKd5O0dD7NcZJKkQ2QMt8MZk-QriJ8pWyFupoYTamVs6EXTQJAWwwjY2mre9LB3437jPSjYse2joYv4UqOFVHz8r6lXJbsMZ-nKETrWoP54c6Qq_T22V-F8-fZvf5ZB5XiaQh5oxjobSqGEkzTktdlu8p6FRhAZCSlIPEggMvO0CWiQSqiJKCC8V1grWgI3S1n7t1zVcLPhTrpnW2W1kknDDCGaW8o7I9VbnGewe6qExQ_Vvd5aYuCC76CIs-wqKPsDhE2Jnkj7l1ZqPc7l_ncu8YAPjlZSIx5Rn9ATQQfu4
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TGRS_2022_3205626
crossref_primary_10_1109_JSTARS_2022_3204824
Cites_doi 10.1109/CVPR.2018.00745
10.1109/ICCV.2017.193
10.1109/JSTARS.2019.2898574
10.1109/TGRS.2014.2361734
10.1109/TGRS.2018.2865197
10.3390/rs11151817
10.1109/TGRS.2007.901007
10.1109/TGRS.2019.2904659
10.1109/CVPR.2018.00813
10.1109/TGRS.2010.2051674
10.1109/TGRS.2002.803623
10.1109/TGRS.2020.2986313
10.1109/TGRS.2007.904923
10.1109/JSTARS.2018.2805923
10.1109/CVPR.2018.00262
10.1109/LGRS.2004.836784
10.3390/rs8100797
10.1109/TNNLS.2020.2996498
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2020.3040893
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2020_3040893
9290367
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 61762025
  funderid: 10.13039/501100001809
– fundername: Special Project of Basic Research and Frontier Exploration of Chongqing Natural Science Foundation
  grantid: cstc2019jcyj-msxmx0657
  funderid: 10.13039/501100005230
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-65608afac514763bfbbd4ef4a08ee4146e9086e6bc519b29e3a1a9868a6f20f83
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:31:37 EDT 2025
Tue Jul 01 03:45:45 EDT 2025
Thu Apr 24 23:09:18 EDT 2025
Wed Aug 27 04:55:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-65608afac514763bfbbd4ef4a08ee4146e9086e6bc519b29e3a1a9868a6f20f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5057-8431
PQID 2615165336
PQPubID 75725
PageCount 5
ParticipantIDs ieee_primary_9290367
proquest_journals_2615165336
crossref_primary_10_1109_LGRS_2020_3040893
crossref_citationtrail_10_1109_LGRS_2020_3040893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Yuhas (ref21)
ref12
ref23
ref15
Kingma (ref20)
ref14
(ref19) 2020
Wald (ref22)
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Wald (ref18) 1997; 63
References_xml – ident: ref12
  doi: 10.1109/CVPR.2018.00745
– volume-title: Open Remote Sensing
  year: 2020
  ident: ref19
– ident: ref8
  doi: 10.1109/ICCV.2017.193
– ident: ref11
  doi: 10.1109/JSTARS.2019.2898574
– start-page: 99
  volume-title: Proc. 3rd Conf. Fusion Earth Data, Merging Point Meas. Raster Maps Remotely Sensed Images
  ident: ref22
  article-title: Quality of high resolution synthesised images: Is there a simple criterion?
– ident: ref1
  doi: 10.1109/TGRS.2014.2361734
– volume: 63
  start-page: 691
  year: 1997
  ident: ref18
  article-title: Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref15
  doi: 10.1109/TGRS.2018.2865197
– ident: ref16
  doi: 10.3390/rs11151817
– ident: ref3
  doi: 10.1109/TGRS.2007.901007
– ident: ref9
  doi: 10.1109/TGRS.2019.2904659
– ident: ref17
  doi: 10.1109/CVPR.2018.00813
– ident: ref4
  doi: 10.1109/TGRS.2010.2051674
– ident: ref5
  doi: 10.1109/TGRS.2002.803623
– ident: ref13
  doi: 10.1109/TGRS.2020.2986313
– ident: ref2
  doi: 10.1109/TGRS.2007.904923
– ident: ref7
  doi: 10.1109/JSTARS.2018.2805923
– ident: ref14
  doi: 10.1109/CVPR.2018.00262
– start-page: 147
  volume-title: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop
  ident: ref21
  article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm
– ident: ref23
  doi: 10.1109/LGRS.2004.836784
– ident: ref6
  doi: 10.3390/rs8100797
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref20
  article-title: Adam: A method for stochastic optimization
– ident: ref10
  doi: 10.1109/TNNLS.2020.2996498
SSID ssj0024887
Score 2.3230526
Snippet Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Channel attention
Convolution
Convolutional neural network (CNN)
Correlation
Data fusion
Feature extraction
Multispectral (MS) pansharpening
Neural networks
Resolution
Sensors
Similarity
Spatial resolution
Tensors
Training
Title CSAFNet: Channel Similarity Attention Fusion Network for Multispectral Pansharpening
URI https://ieeexplore.ieee.org/document/9290367
https://www.proquest.com/docview/2615165336
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYEoILjw3EeCkHTohuXZt1CbcJsU0IJsRA2q1KUldDQEHQHeDX46TdEA8hbj04ahQ79mfHD4DDsCOM9SQ8Td6Hx1spXakkSLyEKzJ_kZFhYkMDl8NocMvPx-3xAhzPa2EQ0SWfYcN-urf85MlMbaisSaacFG6nAhUSs6JW67OvnnDD8Cwi8NpSjMsXzJYvmxf96xF5ggE5qCSyQoZfbJAbqvJDEzvz0luDy9nGiqyS-8Y01w3z_q1n4393vg6rJc5k3UIwNmABsyoslyPPJ29VWOq7mb5vNbg5HXV7Q8xPmC01yPCBje4e78jjJYDOunleJESy3tQG1tiwyBtnBHaZq951tZov9K8rsnoT-5xjQy2bcNs7uzkdeOWwBc-Qxc8924RHqFQZQlCkc3SqdcIx5coXiJz0KUryfjDSRCB1IDFULSVFJFSUBn4qwi1YzJ4y3AYWtoIkJVzWNqHgge4orrlU2O4YKQTysA7-7PhjU3YitwMxHmLnkfgythyLLcfikmN1OJoveS7acPxFXLMcmBOWh1-HvRmP4_KivsaBRXQRYd5o5_dVu7AS2IoHF3XZg8X8ZYr7hENyfeAE8ANNpNgH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-CTgguY-ND6wbDB06IlDRxUnu3ClEKtBWiReotsp0XtVppUUkP3V-_ZyctYkzTbjnYiuVnv_f7Pb8PgNOwIYxlEp4m9uHxekZXKg1SL-WKzF9sZJha10C3F7cf-e0wGm7A-ToXBhFd8BnW7Kd7y09nZmFdZRdkyknhNjbhA9l9HhXZWq-V9YRrh2cxgRdJMSzfMOu-vOhcP_SJCwZEUenQChm-sUKurco7XewMTGsXuqulFXElP2uLXNfMrz-qNv7v2j_BxxJpsmZxND7DBk73YLtsej5a7sHWtevqu9yHwWW_2eph_oPZZIMpTlh__DQmzksQnTXzvAiJZK2Fda2xXhE5zgjuMpe_67I15_Sve7J7I_ugY50tB_DYuhpctr2y3YJnyObnni3DI1SmDGEo0jo60zrlmHHlC0ROGhUl8R-MNQ2QOpAYqrqSIhYqzgI_E-EhVKazKX4BFtaDNCNkFplQ8EA3FNdcKowaRgqBPKyCv9r-xJS1yG1LjEniOIkvEyuxxEosKSVWhbP1lOeiEMe_Bu9bCawHlptfhaOVjJPyqr4kgcV0MaHe-OvfZ53AdnvQ7SSdm97dN9gJbP6D88EcQSWfL_CYUEmuv7vD-BvHV9tU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSAFNet%3A+Channel+Similarity+Attention+Fusion+Network+for+Multispectral+Pansharpening&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Luo%2C+Shuyue&rft.au=Zhou%2C+Shangbo&rft.au=Qi%2C+Ying&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3040893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3040893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon