CSAFNet: Channel Similarity Attention Fusion Network for Multispectral Pansharpening
Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 19; pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2020.3040893 |
Cover
Abstract | Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features equally and also neglect the contribution of multilevel features, thereby impeding the representation ability of CNNs. To deal with these issues, we propose a novel channel similarity attention fusion network (CSAFNet) in this letter, where several channel attention residual dense blocks (CARDBs) are stacked to fully exploit discriminative features, and then the features produced by all CARDBs are combined via a multilevel feature fusion module. Such network enables the network to focus on more informative features and make full use of them. Both visual and quantitative assessments validate the superior performance of the proposed network over the current pansharpening methods with respect to spectral fidelity and spatial enhancement. |
---|---|
AbstractList | Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently, convolutional neural network (CNN)-based fusion models have been widely used in pansharpening domain, but most of them treat diversity features equally and also neglect the contribution of multilevel features, thereby impeding the representation ability of CNNs. To deal with these issues, we propose a novel channel similarity attention fusion network (CSAFNet) in this letter, where several channel attention residual dense blocks (CARDBs) are stacked to fully exploit discriminative features, and then the features produced by all CARDBs are combined via a multilevel feature fusion module. Such network enables the network to focus on more informative features and make full use of them. Both visual and quantitative assessments validate the superior performance of the proposed network over the current pansharpening methods with respect to spectral fidelity and spatial enhancement. |
Author | Luo, Shuyue Zhou, Shangbo Qi, Ying |
Author_xml | – sequence: 1 givenname: Shuyue surname: Luo fullname: Luo, Shuyue email: luosy@cqu.edu.cn organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China – sequence: 2 givenname: Shangbo orcidid: 0000-0001-5057-8431 surname: Zhou fullname: Zhou, Shangbo email: shbzhou@cqu.edu.cn organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China – sequence: 3 givenname: Ying surname: Qi fullname: Qi, Ying organization: key laboratory of Dependable Service Computing in Cyber Society, Ministry of Education, College of Computer Science, Chongqing University, Chongqing, China |
BookMark | eNp9kLtOwzAUhi0EEm3hARBLJOYUO44dm62KaEEqF9EisUVOOKYuqVNsR6hvT6JWDAxM5wzfdy7_EB3bxgJCFwSPCcHyej57WYwTnOAxxSkWkh6hAWFMxJhl5LjvUxYzKd5O0dD7NcZJKkQ2QMt8MZk-QriJ8pWyFupoYTamVs6EXTQJAWwwjY2mre9LB3437jPSjYse2joYv4UqOFVHz8r6lXJbsMZ-nKETrWoP54c6Qq_T22V-F8-fZvf5ZB5XiaQh5oxjobSqGEkzTktdlu8p6FRhAZCSlIPEggMvO0CWiQSqiJKCC8V1grWgI3S1n7t1zVcLPhTrpnW2W1kknDDCGaW8o7I9VbnGewe6qExQ_Vvd5aYuCC76CIs-wqKPsDhE2Jnkj7l1ZqPc7l_ncu8YAPjlZSIx5Rn9ATQQfu4 |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3205626 crossref_primary_10_1109_JSTARS_2022_3204824 |
Cites_doi | 10.1109/CVPR.2018.00745 10.1109/ICCV.2017.193 10.1109/JSTARS.2019.2898574 10.1109/TGRS.2014.2361734 10.1109/TGRS.2018.2865197 10.3390/rs11151817 10.1109/TGRS.2007.901007 10.1109/TGRS.2019.2904659 10.1109/CVPR.2018.00813 10.1109/TGRS.2010.2051674 10.1109/TGRS.2002.803623 10.1109/TGRS.2020.2986313 10.1109/TGRS.2007.904923 10.1109/JSTARS.2018.2805923 10.1109/CVPR.2018.00262 10.1109/LGRS.2004.836784 10.3390/rs8100797 10.1109/TNNLS.2020.2996498 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2020.3040893 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2020_3040893 9290367 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Nature Science Foundation of China grantid: 61762025 funderid: 10.13039/501100001809 – fundername: Special Project of Basic Research and Frontier Exploration of Chongqing Natural Science Foundation grantid: cstc2019jcyj-msxmx0657 funderid: 10.13039/501100005230 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-65608afac514763bfbbd4ef4a08ee4146e9086e6bc519b29e3a1a9868a6f20f83 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:31:37 EDT 2025 Tue Jul 01 03:45:45 EDT 2025 Thu Apr 24 23:09:18 EDT 2025 Wed Aug 27 04:55:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-65608afac514763bfbbd4ef4a08ee4146e9086e6bc519b29e3a1a9868a6f20f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5057-8431 |
PQID | 2615165336 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | ieee_primary_9290367 proquest_journals_2615165336 crossref_primary_10_1109_LGRS_2020_3040893 crossref_citationtrail_10_1109_LGRS_2020_3040893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Yuhas (ref21) ref12 ref23 ref15 Kingma (ref20) ref14 (ref19) 2020 Wald (ref22) ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Wald (ref18) 1997; 63 |
References_xml | – ident: ref12 doi: 10.1109/CVPR.2018.00745 – volume-title: Open Remote Sensing year: 2020 ident: ref19 – ident: ref8 doi: 10.1109/ICCV.2017.193 – ident: ref11 doi: 10.1109/JSTARS.2019.2898574 – start-page: 99 volume-title: Proc. 3rd Conf. Fusion Earth Data, Merging Point Meas. Raster Maps Remotely Sensed Images ident: ref22 article-title: Quality of high resolution synthesised images: Is there a simple criterion? – ident: ref1 doi: 10.1109/TGRS.2014.2361734 – volume: 63 start-page: 691 year: 1997 ident: ref18 article-title: Fusion of satellite images of different spatial resolution: Assessing the quality of resulting images publication-title: Photogramm. Eng. Remote Sens. – ident: ref15 doi: 10.1109/TGRS.2018.2865197 – ident: ref16 doi: 10.3390/rs11151817 – ident: ref3 doi: 10.1109/TGRS.2007.901007 – ident: ref9 doi: 10.1109/TGRS.2019.2904659 – ident: ref17 doi: 10.1109/CVPR.2018.00813 – ident: ref4 doi: 10.1109/TGRS.2010.2051674 – ident: ref5 doi: 10.1109/TGRS.2002.803623 – ident: ref13 doi: 10.1109/TGRS.2020.2986313 – ident: ref2 doi: 10.1109/TGRS.2007.904923 – ident: ref7 doi: 10.1109/JSTARS.2018.2805923 – ident: ref14 doi: 10.1109/CVPR.2018.00262 – start-page: 147 volume-title: Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop ident: ref21 article-title: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm – ident: ref23 doi: 10.1109/LGRS.2004.836784 – ident: ref6 doi: 10.3390/rs8100797 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref20 article-title: Adam: A method for stochastic optimization – ident: ref10 doi: 10.1109/TNNLS.2020.2996498 |
SSID | ssj0024887 |
Score | 2.3230526 |
Snippet | Multispectral (MS) pansharpening involves fusing a low-spatial-resolution MS image and its associated high-spatial-resolution panchromatic image. Recently,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Channel attention Convolution Convolutional neural network (CNN) Correlation Data fusion Feature extraction Multispectral (MS) pansharpening Neural networks Resolution Sensors Similarity Spatial resolution Tensors Training |
Title | CSAFNet: Channel Similarity Attention Fusion Network for Multispectral Pansharpening |
URI | https://ieeexplore.ieee.org/document/9290367 https://www.proquest.com/docview/2615165336 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYYEoILjw3EeCkHTohuXZt1CbcJsU0IJsRA2q1KUldDQEHQHeDX46TdEA8hbj04ahQ79mfHD4DDsCOM9SQ8Td6Hx1spXakkSLyEKzJ_kZFhYkMDl8NocMvPx-3xAhzPa2EQ0SWfYcN-urf85MlMbaisSaacFG6nAhUSs6JW67OvnnDD8Cwi8NpSjMsXzJYvmxf96xF5ggE5qCSyQoZfbJAbqvJDEzvz0luDy9nGiqyS-8Y01w3z_q1n4393vg6rJc5k3UIwNmABsyoslyPPJ29VWOq7mb5vNbg5HXV7Q8xPmC01yPCBje4e78jjJYDOunleJESy3tQG1tiwyBtnBHaZq951tZov9K8rsnoT-5xjQy2bcNs7uzkdeOWwBc-Qxc8924RHqFQZQlCkc3SqdcIx5coXiJz0KUryfjDSRCB1IDFULSVFJFSUBn4qwi1YzJ4y3AYWtoIkJVzWNqHgge4orrlU2O4YKQTysA7-7PhjU3YitwMxHmLnkfgythyLLcfikmN1OJoveS7acPxFXLMcmBOWh1-HvRmP4_KivsaBRXQRYd5o5_dVu7AS2IoHF3XZg8X8ZYr7hENyfeAE8ANNpNgH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-CTgguY-ND6wbDB06IlDRxUnu3ClEKtBWiReotsp0XtVppUUkP3V-_ZyctYkzTbjnYiuVnv_f7Pb8PgNOwIYxlEp4m9uHxekZXKg1SL-WKzF9sZJha10C3F7cf-e0wGm7A-ToXBhFd8BnW7Kd7y09nZmFdZRdkyknhNjbhA9l9HhXZWq-V9YRrh2cxgRdJMSzfMOu-vOhcP_SJCwZEUenQChm-sUKurco7XewMTGsXuqulFXElP2uLXNfMrz-qNv7v2j_BxxJpsmZxND7DBk73YLtsej5a7sHWtevqu9yHwWW_2eph_oPZZIMpTlh__DQmzksQnTXzvAiJZK2Fda2xXhE5zgjuMpe_67I15_Sve7J7I_ugY50tB_DYuhpctr2y3YJnyObnni3DI1SmDGEo0jo60zrlmHHlC0ROGhUl8R-MNQ2QOpAYqrqSIhYqzgI_E-EhVKazKX4BFtaDNCNkFplQ8EA3FNdcKowaRgqBPKyCv9r-xJS1yG1LjEniOIkvEyuxxEosKSVWhbP1lOeiEMe_Bu9bCawHlptfhaOVjJPyqr4kgcV0MaHe-OvfZ53AdnvQ7SSdm97dN9gJbP6D88EcQSWfL_CYUEmuv7vD-BvHV9tU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSAFNet%3A+Channel+Similarity+Attention+Fusion+Network+for+Multispectral+Pansharpening&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Luo%2C+Shuyue&rft.au=Zhou%2C+Shangbo&rft.au=Qi%2C+Ying&rft.date=2022&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=19&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2020.3040893&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LGRS_2020_3040893 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |