A Classification Approach Based on Directed Acyclic Graph to Predict Locomotion Activities With One Inertial Sensor on the Thigh

Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body pa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics Vol. 3; no. 2; pp. 436 - 445
Main Authors Papapicco, V., Chen, B., Munih, M., Davalli, A., Sacchetti, R., Gruppioni, E., Crea, S., Vitiello, N.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body parts usually entail discomfort and poor usability for the user. This paper presents an intention detection method that relies on the features extracted from an inertial measurement unit worn on the thigh and an online phase estimator. The algorithm classifies the locomotion mode of the upcoming stride among the three modes of ground-level walking, stair ascent, and stair descent. A two-stage classification process first distinguishes between transient and steady-state strides and then classifies the locomotion mode of the impending stride based on directed acyclic graphs of binary classifiers. The classification is performed at 75% or 85% of the previous stride phase, respectively for steady-state and transient strides. Data were gathered from 10 healthy subjects and processed offline. Feature design and selection were based on the data of all subjects, while the classification performance was assessed by leave-one-subject-out cross-validation. Results presented a median recognition accuracy of 98.7% for steady-state strides and 95.6% for transitions, suggesting that the method was inherently robust to variations in gait cadence, since all of the features were phase-based and not dependent on fixed time intervals. These results inform the design of control strategies for active transfemoral prostheses able to predict the user's locomotion intention during the next stride, using minimum sensors.
AbstractList Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body parts usually entail discomfort and poor usability for the user. This paper presents an intention detection method that relies on the features extracted from an inertial measurement unit worn on the thigh and an online phase estimator. The algorithm classifies the locomotion mode of the upcoming stride among the three modes of ground-level walking, stair ascent, and stair descent. A two-stage classification process first distinguishes between transient and steady-state strides and then classifies the locomotion mode of the impending stride based on directed acyclic graphs of binary classifiers. The classification is performed at 75% or 85% of the previous stride phase, respectively for steady-state and transient strides. Data were gathered from 10 healthy subjects and processed offline. Feature design and selection were based on the data of all subjects, while the classification performance was assessed by leave-one-subject-out cross-validation. Results presented a median recognition accuracy of 98.7% for steady-state strides and 95.6% for transitions, suggesting that the method was inherently robust to variations in gait cadence, since all of the features were phase-based and not dependent on fixed time intervals. These results inform the design of control strategies for active transfemoral prostheses able to predict the user's locomotion intention during the next stride, using minimum sensors.
Author Crea, S.
Vitiello, N.
Gruppioni, E.
Papapicco, V.
Sacchetti, R.
Davalli, A.
Chen, B.
Munih, M.
Author_xml – sequence: 1
  givenname: V.
  orcidid: 0000-0002-3525-177X
  surname: Papapicco
  fullname: Papapicco, V.
  email: vito.papapicco@santannapisa.it
  organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
– sequence: 2
  givenname: B.
  orcidid: 0000-0002-2840-7617
  surname: Chen
  fullname: Chen, B.
  email: baojun_chen@tju.edu.cn
  organization: School of Mechanical Engineering, Tianjin University, Tianjin, China
– sequence: 3
  givenname: M.
  surname: Munih
  fullname: Munih, M.
  email: marko.munih@robo.fe.uni-lj.si
  organization: Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
– sequence: 4
  givenname: A.
  orcidid: 0000-0002-5007-8661
  surname: Davalli
  fullname: Davalli, A.
  email: a.davalli@inail.it
  organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy
– sequence: 5
  givenname: R.
  surname: Sacchetti
  fullname: Sacchetti, R.
  email: r.sacchetti@inail.it
  organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy
– sequence: 6
  givenname: E.
  orcidid: 0000-0003-0732-8378
  surname: Gruppioni
  fullname: Gruppioni, E.
  email: e.gruppioni@inail.it
  organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy
– sequence: 7
  givenname: S.
  orcidid: 0000-0001-9833-4401
  surname: Crea
  fullname: Crea, S.
  email: simona.crea@santannapisa.it
  organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
– sequence: 8
  givenname: N.
  orcidid: 0000-0001-8636-7716
  surname: Vitiello
  fullname: Vitiello, N.
  email: nicola.vitiello@santannapisa.it
  organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
BookMark eNp9kE1LAzEQhoNUsNb-APES8Nyaj93N7rGtWguVihY8Ltl01k3ZbmqSCr35083aIuLB0wzD-8wwzznqNKYBhC4pGVJKspvl4_N4yAijQ05ETLLkBHVZLJIBD8POr_4M9Z1bExKiMRE86aLPEZ7U0jldaiW9Ng0ebbfWSFXhsXSwwmFyqy0oH_qR2qtaKzy1clthb_CThZVWHs-NMhtzwJXXH9prcPhV-wovGsCzBqzXssYv0Dhj252-Arys9Ft1gU5LWTvoH2sPLe_vlpOHwXwxnU1G84FiGfeDJKKCUR4JtmJFUlJZCC4iKFJBSyIjllLJCwJpQWUaQkWskigTq1IoxlVa8h66PqwNz73vwPl8bXa2CRdzFnMSNKZZFFLikFLWOGehzJX231q8lbrOKclb4XkrPG-F50fhgaR_yK3VG2n3_zJXB0YDwE8-iyhJWMq_AFMujTw
CitedBy_id crossref_primary_10_1109_TNSRE_2021_3086843
crossref_primary_10_1109_TNSRE_2022_3202658
crossref_primary_10_3390_app112311487
crossref_primary_10_1007_s13534_024_00351_w
crossref_primary_10_1007_s10489_025_06416_2
crossref_primary_10_1109_TNSRE_2023_3327751
Cites_doi 10.1109/TNSRE.2015.2412461
10.3390/s140202776
10.1186/1743-0003-10-62
10.3390/s120911910
10.1109/ICORR.2019.8779412
10.1007/s10514-016-9566-0
10.1109/MRA.2014.2360305
10.1186/1743-0003-12-1
10.1016/j.neunet.2018.02.017
10.1007/978-3-319-89327-3_15
10.3390/s20051448
10.1109/TBME.2010.2070840
10.1109/TBME.2004.840727
10.1080/00140130110085547
10.1109/JSEN.2017.2707921
10.1115/1.4005784
10.23919/ACC.2017.7963159
10.1109/TNSRE.2013.2285101
10.1109/TNSRE.2012.2225640
10.1109/TMECH.2012.2200498
10.1016/j.jbiomech.2005.07.025
10.1109/JSEN.2019.2895289
10.1109/TBME.2017.2750139
10.2307/2984653
10.1109/TNSRE.2010.2100828
10.1186/s12938-016-0284-9
10.1109/CBS.2017.8266123
10.1016/j.neunet.2008.03.006
10.1109/NER.2013.6696148
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
DOI 10.1109/TMRB.2021.3075096
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 445
ExternalDocumentID 10_1109_TMRB_2021_3075096
9410628
Genre orig-research
GrantInformation_xml – fundername: Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro (INAIL)
  grantid: PPR-AI 1/2 MOTU
  funderid: 10.13039/501100007707
– fundername: Declaration of Helsinki
– fundername: Joint Ethics Committee of Scuola Superiore Sant’Anna
  grantid: 9
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
K9.
L7M
ID FETCH-LOGICAL-c293t-6417213472d2b6f1ab7374eb871f0a4281a3b0e8b1a8472b5c6497df7c23c8f3
IEDL.DBID RIE
ISSN 2576-3202
IngestDate Mon Jun 30 03:01:18 EDT 2025
Tue Jul 01 02:51:46 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Wed Aug 27 02:51:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6417213472d2b6f1ab7374eb871f0a4281a3b0e8b1a8472b5c6497df7c23c8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8636-7716
0000-0002-2840-7617
0000-0003-0732-8378
0000-0001-9833-4401
0000-0002-3525-177X
0000-0002-5007-8661
PQID 2530110894
PQPubID 4437212
PageCount 10
ParticipantIDs proquest_journals_2530110894
crossref_citationtrail_10_1109_TMRB_2021_3075096
crossref_primary_10_1109_TMRB_2021_3075096
ieee_primary_9410628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref16
ref19
ref18
chen (ref17) 2019; 21
madgwick (ref21) 2010
ref24
ref23
ref25
ref20
ref28
ref27
gorši? (ref26) 2014; 14
ref29
ref8
ref7
ref9
platt (ref22) 2000
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1109/TNSRE.2015.2412461
– volume: 14
  start-page: 2776
  year: 2014
  ident: ref26
  article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis, (Switzerland)
  publication-title: SENSORS
  doi: 10.3390/s140202776
– ident: ref9
  doi: 10.1186/1743-0003-10-62
– ident: ref31
  doi: 10.3390/s120911910
– volume: 21
  start-page: 653
  year: 2019
  ident: ref17
  publication-title: A Preliminary Study on Locomotion Mode Recognition With Wearable Sensors
– ident: ref28
  doi: 10.1109/ICORR.2019.8779412
– ident: ref25
  doi: 10.1007/s10514-016-9566-0
– ident: ref12
  doi: 10.1109/MRA.2014.2360305
– ident: ref2
  doi: 10.1186/1743-0003-12-1
– start-page: 547
  year: 2000
  ident: ref22
  article-title: Large margin DAGs for multiclass classification
  publication-title: Proc 12th Int Conf Neural Inf Process Syst
– ident: ref16
  doi: 10.1016/j.neunet.2018.02.017
– ident: ref23
  doi: 10.1007/978-3-319-89327-3_15
– ident: ref20
  doi: 10.3390/s20051448
– ident: ref10
  doi: 10.1109/TBME.2010.2070840
– ident: ref32
  doi: 10.1109/TBME.2004.840727
– start-page: 1
  year: 2010
  ident: ref21
  article-title: Estimation of IMU and MARG orientation using a gradient descent algorithm
  publication-title: Proc IEEE Int Conf Rehabil Robot
– ident: ref29
  doi: 10.1080/00140130110085547
– ident: ref15
  doi: 10.1109/JSEN.2017.2707921
– ident: ref7
  doi: 10.1115/1.4005784
– ident: ref14
  doi: 10.23919/ACC.2017.7963159
– ident: ref3
  doi: 10.1109/TNSRE.2013.2285101
– ident: ref5
  doi: 10.1109/TNSRE.2012.2225640
– ident: ref6
  doi: 10.1109/TMECH.2012.2200498
– ident: ref30
  doi: 10.1016/j.jbiomech.2005.07.025
– ident: ref19
  doi: 10.1109/JSEN.2019.2895289
– ident: ref18
  doi: 10.1109/TBME.2017.2750139
– ident: ref24
  doi: 10.2307/2984653
– ident: ref11
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref1
  doi: 10.1186/s12938-016-0284-9
– ident: ref27
  doi: 10.1109/CBS.2017.8266123
– ident: ref4
  doi: 10.1016/j.neunet.2008.03.006
– ident: ref8
  doi: 10.1109/NER.2013.6696148
SSID ssj0002150736
Score 2.2120693
Snippet Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 436
SubjectTerms Active control
Algorithms
Body parts
Classification
Classifiers
directed acyclic graph
Feature extraction
Graph theory
inertial measurement unit
Inertial platforms
Inertial sensing devices
Legged locomotion
Locomotion
Locomotion mode classification
machine learning
Prostheses
Robot sensing systems
Sensors
Stairs
Steady state
support vector machines
Thigh
Title A Classification Approach Based on Directed Acyclic Graph to Predict Locomotion Activities With One Inertial Sensor on the Thigh
URI https://ieeexplore.ieee.org/document/9410628
https://www.proquest.com/docview/2530110894
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2xe4JDP_hQt6XIB05VsyS248TH3QpKEduidhHcothxxAqUoCV7aA9Vf3pnnOyKFoS4WZFtWXq2Z1488wZgXxidh0VqAm0LE8g81YGOUxvgSeKkxqK5z3KdfFXH5_LkMr5cg4-rXBjnnA8-c0Nq-rf8orYL-lV2oGVEKX896CFxa3O1Vv9TOHk2QnUPl1GoD6aT72MkgDwaCm8X1T-mx9dSeXABe6ty9BImy_W0wSTXw0VjhvbXf1KNz13wK3jRuZds1O6H17Dmqk3YuCc6uAV_RsxXwqQYIQ8LG3W64myMJq1g-KW9CLE9sj_tzcyyz6RrzZqanc3pZadhp7Wt2wpA2MdXoEDKzS5mzRX7Vjn2paJ4bVzJD6TJ9ZzmRE-TTUkdeRumR4fTT8dBV4chsOgMNIGSxBOFTHjBjSqj3CQikc4g1yrDHPlLlAsTutREOdo6bmKrpE6KMrFc2LQUO9Cv6sq9AcbDxKkyEUVMKvupSrUyOc5pE4foSTOAcIlQZjuNciqVcZN5rhLqjEDNCNSsA3UAH1ZDbluBjqc6bxFIq44dPgPYXW6DrDvCdxmP6e4LUy3fPj7qHazT3G304y70m_nCvUcPpTF70Jv8PtzzG_Qv7o3kAQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215UB74KOlYqFQHzihZpvYjhMft4iyhd2C2iB6i2LHEatWSbXNHuDET2fGya5KQag3K7IdS8_2zHhm3gC8EUYXYZmaQNvSBLJIdaDj1AZ4kjixsWjus1ynp2r8VX68iC_W4GCVC-Oc88FnbkhN78svG7ugp7JDLSNK-VuHByj346jL1lq9qHDSbYTqXZdRqA-z6dkRmoA8GgovGdUfwsdXU_nrCvZy5fgxTJcr6sJJLoeL1gztzztkjfdd8hN41CuYbNTtiKew5upt2LpFO7gDv0bM18KkKCEPDBv1zOLsCIVayfBLdxVie2R_2KuZZR-I2Zq1DfsyJ99OyyaNbboaQNjH16BAo5t9m7Xf2efasZOaIrZxJedoKDdzmhN1TZYRP_IzyI7fZ-_GQV-JIbCoDrSBkmQpCpnwkhtVRYVJRCKdQWurCgu0YKJCmNClJipQ2nETWyV1UlaJ5cKmldiFjbqp3XNgPEycqhJRxsSzn6pUK1PgnDZxiJ40AwiXCOW2ZymnYhlXubdWQp0TqDmBmvegDuDtash1R9Hxv847BNKqY4_PAPaW2yDvD_FNzmO6_cJUyxf_HrUPD8fZdJJPTk4_vYRN-k8XC7kHG-184V6hvtKa136b_gaU_-YZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Classification+Approach+Based+on+Directed+Acyclic+Graph+to+Predict+Locomotion+Activities+With+One+Inertial+Sensor+on+the+Thigh&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Papapicco%2C+V.&rft.au=Chen%2C+B.&rft.au=Munih%2C+M.&rft.au=Davalli%2C+A.&rft.date=2021-05-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=3&rft.issue=2&rft.spage=436&rft.epage=445&rft_id=info:doi/10.1109%2FTMRB.2021.3075096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2021_3075096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon