A Classification Approach Based on Directed Acyclic Graph to Predict Locomotion Activities With One Inertial Sensor on the Thigh
Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body pa...
Saved in:
Published in | IEEE transactions on medical robotics and bionics Vol. 3; no. 2; pp. 436 - 445 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body parts usually entail discomfort and poor usability for the user. This paper presents an intention detection method that relies on the features extracted from an inertial measurement unit worn on the thigh and an online phase estimator. The algorithm classifies the locomotion mode of the upcoming stride among the three modes of ground-level walking, stair ascent, and stair descent. A two-stage classification process first distinguishes between transient and steady-state strides and then classifies the locomotion mode of the impending stride based on directed acyclic graphs of binary classifiers. The classification is performed at 75% or 85% of the previous stride phase, respectively for steady-state and transient strides. Data were gathered from 10 healthy subjects and processed offline. Feature design and selection were based on the data of all subjects, while the classification performance was assessed by leave-one-subject-out cross-validation. Results presented a median recognition accuracy of 98.7% for steady-state strides and 95.6% for transitions, suggesting that the method was inherently robust to variations in gait cadence, since all of the features were phase-based and not dependent on fixed time intervals. These results inform the design of control strategies for active transfemoral prostheses able to predict the user's locomotion intention during the next stride, using minimum sensors. |
---|---|
AbstractList | Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy, prediction performance, and robustness to both speed changes and subject-specific gait patterns. However, multiple sensors placed on different body parts usually entail discomfort and poor usability for the user. This paper presents an intention detection method that relies on the features extracted from an inertial measurement unit worn on the thigh and an online phase estimator. The algorithm classifies the locomotion mode of the upcoming stride among the three modes of ground-level walking, stair ascent, and stair descent. A two-stage classification process first distinguishes between transient and steady-state strides and then classifies the locomotion mode of the impending stride based on directed acyclic graphs of binary classifiers. The classification is performed at 75% or 85% of the previous stride phase, respectively for steady-state and transient strides. Data were gathered from 10 healthy subjects and processed offline. Feature design and selection were based on the data of all subjects, while the classification performance was assessed by leave-one-subject-out cross-validation. Results presented a median recognition accuracy of 98.7% for steady-state strides and 95.6% for transitions, suggesting that the method was inherently robust to variations in gait cadence, since all of the features were phase-based and not dependent on fixed time intervals. These results inform the design of control strategies for active transfemoral prostheses able to predict the user's locomotion intention during the next stride, using minimum sensors. |
Author | Crea, S. Vitiello, N. Gruppioni, E. Papapicco, V. Sacchetti, R. Davalli, A. Chen, B. Munih, M. |
Author_xml | – sequence: 1 givenname: V. orcidid: 0000-0002-3525-177X surname: Papapicco fullname: Papapicco, V. email: vito.papapicco@santannapisa.it organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy – sequence: 2 givenname: B. orcidid: 0000-0002-2840-7617 surname: Chen fullname: Chen, B. email: baojun_chen@tju.edu.cn organization: School of Mechanical Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: M. surname: Munih fullname: Munih, M. email: marko.munih@robo.fe.uni-lj.si organization: Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia – sequence: 4 givenname: A. orcidid: 0000-0002-5007-8661 surname: Davalli fullname: Davalli, A. email: a.davalli@inail.it organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy – sequence: 5 givenname: R. surname: Sacchetti fullname: Sacchetti, R. email: r.sacchetti@inail.it organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy – sequence: 6 givenname: E. orcidid: 0000-0003-0732-8378 surname: Gruppioni fullname: Gruppioni, E. email: e.gruppioni@inail.it organization: INAIL, Prosthesis Center, Vigorso di Budrio, Italy – sequence: 7 givenname: S. orcidid: 0000-0001-9833-4401 surname: Crea fullname: Crea, S. email: simona.crea@santannapisa.it organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy – sequence: 8 givenname: N. orcidid: 0000-0001-8636-7716 surname: Vitiello fullname: Vitiello, N. email: nicola.vitiello@santannapisa.it organization: The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy |
BookMark | eNp9kE1LAzEQhoNUsNb-APES8Nyaj93N7rGtWguVihY8Ltl01k3ZbmqSCr35083aIuLB0wzD-8wwzznqNKYBhC4pGVJKspvl4_N4yAijQ05ETLLkBHVZLJIBD8POr_4M9Z1bExKiMRE86aLPEZ7U0jldaiW9Ng0ebbfWSFXhsXSwwmFyqy0oH_qR2qtaKzy1clthb_CThZVWHs-NMhtzwJXXH9prcPhV-wovGsCzBqzXssYv0Dhj252-Arys9Ft1gU5LWTvoH2sPLe_vlpOHwXwxnU1G84FiGfeDJKKCUR4JtmJFUlJZCC4iKFJBSyIjllLJCwJpQWUaQkWskigTq1IoxlVa8h66PqwNz73vwPl8bXa2CRdzFnMSNKZZFFLikFLWOGehzJX231q8lbrOKclb4XkrPG-F50fhgaR_yK3VG2n3_zJXB0YDwE8-iyhJWMq_AFMujTw |
CitedBy_id | crossref_primary_10_1109_TNSRE_2021_3086843 crossref_primary_10_1109_TNSRE_2022_3202658 crossref_primary_10_3390_app112311487 crossref_primary_10_1007_s13534_024_00351_w crossref_primary_10_1007_s10489_025_06416_2 crossref_primary_10_1109_TNSRE_2023_3327751 |
Cites_doi | 10.1109/TNSRE.2015.2412461 10.3390/s140202776 10.1186/1743-0003-10-62 10.3390/s120911910 10.1109/ICORR.2019.8779412 10.1007/s10514-016-9566-0 10.1109/MRA.2014.2360305 10.1186/1743-0003-12-1 10.1016/j.neunet.2018.02.017 10.1007/978-3-319-89327-3_15 10.3390/s20051448 10.1109/TBME.2010.2070840 10.1109/TBME.2004.840727 10.1080/00140130110085547 10.1109/JSEN.2017.2707921 10.1115/1.4005784 10.23919/ACC.2017.7963159 10.1109/TNSRE.2013.2285101 10.1109/TNSRE.2012.2225640 10.1109/TMECH.2012.2200498 10.1016/j.jbiomech.2005.07.025 10.1109/JSEN.2019.2895289 10.1109/TBME.2017.2750139 10.2307/2984653 10.1109/TNSRE.2010.2100828 10.1186/s12938-016-0284-9 10.1109/CBS.2017.8266123 10.1016/j.neunet.2008.03.006 10.1109/NER.2013.6696148 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
DOI | 10.1109/TMRB.2021.3075096 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-3202 |
EndPage | 445 |
ExternalDocumentID | 10_1109_TMRB_2021_3075096 9410628 |
Genre | orig-research |
GrantInformation_xml | – fundername: Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro (INAIL) grantid: PPR-AI 1/2 MOTU funderid: 10.13039/501100007707 – fundername: Declaration of Helsinki – fundername: Joint Ethics Committee of Scuola Superiore Sant’Anna grantid: 9 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION 7SP 8FD K9. L7M |
ID | FETCH-LOGICAL-c293t-6417213472d2b6f1ab7374eb871f0a4281a3b0e8b1a8472b5c6497df7c23c8f3 |
IEDL.DBID | RIE |
ISSN | 2576-3202 |
IngestDate | Mon Jun 30 03:01:18 EDT 2025 Tue Jul 01 02:51:46 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Wed Aug 27 02:51:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-6417213472d2b6f1ab7374eb871f0a4281a3b0e8b1a8472b5c6497df7c23c8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8636-7716 0000-0002-2840-7617 0000-0003-0732-8378 0000-0001-9833-4401 0000-0002-3525-177X 0000-0002-5007-8661 |
PQID | 2530110894 |
PQPubID | 4437212 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2530110894 crossref_citationtrail_10_1109_TMRB_2021_3075096 crossref_primary_10_1109_TMRB_2021_3075096 ieee_primary_9410628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on medical robotics and bionics |
PublicationTitleAbbrev | TMRB |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref16 ref19 ref18 chen (ref17) 2019; 21 madgwick (ref21) 2010 ref24 ref23 ref25 ref20 ref28 ref27 gorši? (ref26) 2014; 14 ref29 ref8 ref7 ref9 platt (ref22) 2000 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1109/TNSRE.2015.2412461 – volume: 14 start-page: 2776 year: 2014 ident: ref26 article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis, (Switzerland) publication-title: SENSORS doi: 10.3390/s140202776 – ident: ref9 doi: 10.1186/1743-0003-10-62 – ident: ref31 doi: 10.3390/s120911910 – volume: 21 start-page: 653 year: 2019 ident: ref17 publication-title: A Preliminary Study on Locomotion Mode Recognition With Wearable Sensors – ident: ref28 doi: 10.1109/ICORR.2019.8779412 – ident: ref25 doi: 10.1007/s10514-016-9566-0 – ident: ref12 doi: 10.1109/MRA.2014.2360305 – ident: ref2 doi: 10.1186/1743-0003-12-1 – start-page: 547 year: 2000 ident: ref22 article-title: Large margin DAGs for multiclass classification publication-title: Proc 12th Int Conf Neural Inf Process Syst – ident: ref16 doi: 10.1016/j.neunet.2018.02.017 – ident: ref23 doi: 10.1007/978-3-319-89327-3_15 – ident: ref20 doi: 10.3390/s20051448 – ident: ref10 doi: 10.1109/TBME.2010.2070840 – ident: ref32 doi: 10.1109/TBME.2004.840727 – start-page: 1 year: 2010 ident: ref21 article-title: Estimation of IMU and MARG orientation using a gradient descent algorithm publication-title: Proc IEEE Int Conf Rehabil Robot – ident: ref29 doi: 10.1080/00140130110085547 – ident: ref15 doi: 10.1109/JSEN.2017.2707921 – ident: ref7 doi: 10.1115/1.4005784 – ident: ref14 doi: 10.23919/ACC.2017.7963159 – ident: ref3 doi: 10.1109/TNSRE.2013.2285101 – ident: ref5 doi: 10.1109/TNSRE.2012.2225640 – ident: ref6 doi: 10.1109/TMECH.2012.2200498 – ident: ref30 doi: 10.1016/j.jbiomech.2005.07.025 – ident: ref19 doi: 10.1109/JSEN.2019.2895289 – ident: ref18 doi: 10.1109/TBME.2017.2750139 – ident: ref24 doi: 10.2307/2984653 – ident: ref11 doi: 10.1109/TNSRE.2010.2100828 – ident: ref1 doi: 10.1186/s12938-016-0284-9 – ident: ref27 doi: 10.1109/CBS.2017.8266123 – ident: ref4 doi: 10.1016/j.neunet.2008.03.006 – ident: ref8 doi: 10.1109/NER.2013.6696148 |
SSID | ssj0002150736 |
Score | 2.2120693 |
Snippet | Current state-of-the-art locomotion mode classifiers for controlling robotic lower-limb prostheses rely on multiple sensors to achieve high accuracy,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 436 |
SubjectTerms | Active control Algorithms Body parts Classification Classifiers directed acyclic graph Feature extraction Graph theory inertial measurement unit Inertial platforms Inertial sensing devices Legged locomotion Locomotion Locomotion mode classification machine learning Prostheses Robot sensing systems Sensors Stairs Steady state support vector machines Thigh |
Title | A Classification Approach Based on Directed Acyclic Graph to Predict Locomotion Activities With One Inertial Sensor on the Thigh |
URI | https://ieeexplore.ieee.org/document/9410628 https://www.proquest.com/docview/2530110894 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2xe4JDP_hQt6XIB05VsyS248TH3QpKEduidhHcothxxAqUoCV7aA9Vf3pnnOyKFoS4WZFtWXq2Z1488wZgXxidh0VqAm0LE8g81YGOUxvgSeKkxqK5z3KdfFXH5_LkMr5cg4-rXBjnnA8-c0Nq-rf8orYL-lV2oGVEKX896CFxa3O1Vv9TOHk2QnUPl1GoD6aT72MkgDwaCm8X1T-mx9dSeXABe6ty9BImy_W0wSTXw0VjhvbXf1KNz13wK3jRuZds1O6H17Dmqk3YuCc6uAV_RsxXwqQYIQ8LG3W64myMJq1g-KW9CLE9sj_tzcyyz6RrzZqanc3pZadhp7Wt2wpA2MdXoEDKzS5mzRX7Vjn2paJ4bVzJD6TJ9ZzmRE-TTUkdeRumR4fTT8dBV4chsOgMNIGSxBOFTHjBjSqj3CQikc4g1yrDHPlLlAsTutREOdo6bmKrpE6KMrFc2LQUO9Cv6sq9AcbDxKkyEUVMKvupSrUyOc5pE4foSTOAcIlQZjuNciqVcZN5rhLqjEDNCNSsA3UAH1ZDbluBjqc6bxFIq44dPgPYXW6DrDvCdxmP6e4LUy3fPj7qHazT3G304y70m_nCvUcPpTF70Jv8PtzzG_Qv7o3kAQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215UB74KOlYqFQHzihZpvYjhMft4iyhd2C2iB6i2LHEatWSbXNHuDET2fGya5KQag3K7IdS8_2zHhm3gC8EUYXYZmaQNvSBLJIdaDj1AZ4kjixsWjus1ynp2r8VX68iC_W4GCVC-Oc88FnbkhN78svG7ugp7JDLSNK-VuHByj346jL1lq9qHDSbYTqXZdRqA-z6dkRmoA8GgovGdUfwsdXU_nrCvZy5fgxTJcr6sJJLoeL1gztzztkjfdd8hN41CuYbNTtiKew5upt2LpFO7gDv0bM18KkKCEPDBv1zOLsCIVayfBLdxVie2R_2KuZZR-I2Zq1DfsyJ99OyyaNbboaQNjH16BAo5t9m7Xf2efasZOaIrZxJedoKDdzmhN1TZYRP_IzyI7fZ-_GQV-JIbCoDrSBkmQpCpnwkhtVRYVJRCKdQWurCgu0YKJCmNClJipQ2nETWyV1UlaJ5cKmldiFjbqp3XNgPEycqhJRxsSzn6pUK1PgnDZxiJ40AwiXCOW2ZymnYhlXubdWQp0TqDmBmvegDuDtash1R9Hxv847BNKqY4_PAPaW2yDvD_FNzmO6_cJUyxf_HrUPD8fZdJJPTk4_vYRN-k8XC7kHG-184V6hvtKa136b_gaU_-YZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Classification+Approach+Based+on+Directed+Acyclic+Graph+to+Predict+Locomotion+Activities+With+One+Inertial+Sensor+on+the+Thigh&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Papapicco%2C+V.&rft.au=Chen%2C+B.&rft.au=Munih%2C+M.&rft.au=Davalli%2C+A.&rft.date=2021-05-01&rft.issn=2576-3202&rft.eissn=2576-3202&rft.volume=3&rft.issue=2&rft.spage=436&rft.epage=445&rft_id=info:doi/10.1109%2FTMRB.2021.3075096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMRB_2021_3075096 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |