A Kernel Clustering Algorithm With Fuzzy Factor: Application to SAR Image Segmentation
The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisf...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 11; no. 7; pp. 1290 - 1294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation. |
---|---|
AbstractList | The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation. The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation. [PUBLICATION ABSTRACT] |
Author | Deliang Xiang Yu Li Canbin Hu Yi Su Tao Tang |
Author_xml | – sequence: 1 givenname: Deliang surname: Xiang fullname: Xiang, Deliang – sequence: 2 givenname: Tao surname: Tang fullname: Tang, Tao – sequence: 3 givenname: Canbin surname: Hu fullname: Hu, Canbin – sequence: 4 givenname: Yu surname: Li fullname: Li, Yu – sequence: 5 givenname: Yi surname: Su fullname: Su, Yi |
BookMark | eNp9kEtLw0AUhQepYFv9AeJmwHXqPDKPuAvF1mJBaH3twmQ6iSl5OZks2l9vYooLF27uvXDPuYf7TcCorEoDwDVGM4xRcLdebrYzgjCdERIQSdAZGGPGpIeYwKN-9pnHAvlxASZNs0eI-FKKMXgL4ZOxpcnhPG8bZ2xWpjDM08pm7rOA712Fi_Z4PMCF0q6y9zCs6zzTymVVCV0Ft-EGrgqVGrg1aWFK97O5BOeJyhtzdepT8Lp4eJk_euvn5Woerj1NAuo8ThLCaaIpjTXZcYwYI74SkmApEraTQvhaJH5AWaBjHlCKjfIVj7lPuRGxT6fgdrhb2-qrNY2L9lVryy4ywgwJxpkgslPhQaVt1TTWJFFts0LZQ4RR1OOLenxRjy864es84o9HZ8Nvzqos_9d5MzgzY8xvEueSSY7oNzadfaM |
CODEN | IGRSBY |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3257548 crossref_primary_10_3390_app11041603 crossref_primary_10_1049_iet_ipr_2017_0290 crossref_primary_10_1080_01431161_2018_1547450 crossref_primary_10_1109_LGRS_2019_2943406 crossref_primary_10_1007_s11042_023_14703_8 crossref_primary_10_1515_jisys_2021_0096 crossref_primary_10_3390_rs13163174 crossref_primary_10_1109_JSTARS_2015_2502991 crossref_primary_10_1016_j_ins_2023_119087 crossref_primary_10_1016_j_neucom_2016_03_046 crossref_primary_10_1371_journal_pone_0259266 crossref_primary_10_3233_IDT_210091 crossref_primary_10_1109_JSTARS_2020_2987653 crossref_primary_10_1109_TFUZZ_2016_2637373 crossref_primary_10_1007_s00371_022_02590_3 crossref_primary_10_1016_j_sigpro_2018_08_010 crossref_primary_10_1109_LGRS_2020_3045744 crossref_primary_10_1016_j_patcog_2018_02_018 crossref_primary_10_1016_j_sigpro_2020_107483 crossref_primary_10_1109_TITS_2015_2497320 crossref_primary_10_1109_ACCESS_2019_2905847 crossref_primary_10_1007_s12517_021_07069_4 crossref_primary_10_1109_LGRS_2015_2425225 crossref_primary_10_1109_JSTARS_2019_2944943 crossref_primary_10_1109_TGRS_2016_2645226 crossref_primary_10_1109_TGRS_2022_3174651 crossref_primary_10_1364_AO_58_004812 crossref_primary_10_1109_TGRS_2021_3076446 crossref_primary_10_3390_rs12132141 crossref_primary_10_1109_JSTARS_2018_2792841 crossref_primary_10_1007_s12559_021_09988_6 crossref_primary_10_1109_TGRS_2021_3126669 crossref_primary_10_3390_rs16152802 crossref_primary_10_1109_TAES_2015_120817 crossref_primary_10_1007_s00371_023_02821_1 crossref_primary_10_1016_j_dsp_2021_102963 crossref_primary_10_1016_j_sigpro_2020_107518 crossref_primary_10_1109_TGRS_2024_3499374 crossref_primary_10_1016_j_dsp_2018_01_017 crossref_primary_10_1109_JSTARS_2022_3218983 crossref_primary_10_1109_TGRS_2020_3041281 crossref_primary_10_3390_rs12050803 crossref_primary_10_1109_JSTARS_2015_2492552 crossref_primary_10_1109_JSTARS_2015_2425211 crossref_primary_10_1016_j_asoc_2020_106468 crossref_primary_10_1080_22797254_2019_1579616 crossref_primary_10_1002_col_22023 crossref_primary_10_1016_j_eswa_2020_114327 crossref_primary_10_1109_JSTARS_2017_2716620 crossref_primary_10_3233_MGS_200337 crossref_primary_10_3390_rs10101597 crossref_primary_10_1109_LGRS_2018_2821711 crossref_primary_10_1080_03772063_2021_1913072 crossref_primary_10_1109_JOE_2018_2863961 crossref_primary_10_1016_j_rsase_2021_100491 crossref_primary_10_1109_ACCESS_2018_2876173 crossref_primary_10_1016_j_engappai_2019_05_004 crossref_primary_10_1109_JSTARS_2017_2743338 crossref_primary_10_1080_01431161_2024_2311794 |
Cites_doi | 10.1109/TGRS.2011.2107915 10.1016/j.sigpro.2012.08.024 10.1109/TIP.2012.2219547 10.1109/TIP.2010.2066982 10.1016/S0165-1684(96)00125-9 10.1080/01431161.2012.718455 10.1109/34.192463 10.1109/LGRS.2012.2231662 10.1016/j.patcog.2006.07.011 10.1109/TIP.2011.2146190 10.1109/34.868688 10.1016/S0167-8655(98)00121-4 10.1109/TGRS.2008.918647 10.1109/42.996338 10.1109/TIP.2010.2040763 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2013.2292820 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 1294 |
ExternalDocumentID | 3246849671 10_1109_LGRS_2013_2292820 6685860 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61171135 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-62f263fc33bc2d6105524a782187f5d8774c7f49359cb69331ea4a6b6436e7b43 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 08:32:45 EDT 2025 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 03:45:27 EDT 2025 Tue Aug 26 16:50:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | wavelet decomposition synthetic aperture radar (SAR) image segmentation weighted fuzzy factor Fuzzy C-means (FCM) clustering |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-62f263fc33bc2d6105524a782187f5d8774c7f49359cb69331ea4a6b6436e7b43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1507565728 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LGRS_2013_2292820 crossref_citationtrail_10_1109_LGRS_2013_2292820 proquest_journals_1507565728 ieee_primary_6685860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 li (ref16) 2011; 20 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 lemarechal (ref5) 0 ref6 li (ref14) 2013; 10 |
References_xml | – ident: ref13 doi: 10.1109/TGRS.2011.2107915 – ident: ref1 doi: 10.1016/j.sigpro.2012.08.024 – start-page: 111 year: 0 ident: ref5 article-title: SAR image segmentation by morphological methods publication-title: Proc SPIE – ident: ref10 doi: 10.1109/TIP.2012.2219547 – ident: ref15 doi: 10.1109/TIP.2010.2066982 – ident: ref4 doi: 10.1016/S0165-1684(96)00125-9 – ident: ref11 doi: 10.1080/01431161.2012.718455 – ident: ref12 doi: 10.1109/34.192463 – volume: 10 start-page: 1124 year: 2013 ident: ref14 article-title: A spatial clustering method with edge weighting for image segmentation publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2231662 – ident: ref8 doi: 10.1016/j.patcog.2006.07.011 – volume: 20 start-page: 2007 year: 2011 ident: ref16 article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2146190 – ident: ref2 doi: 10.1109/34.868688 – ident: ref6 doi: 10.1016/S0167-8655(98)00121-4 – ident: ref3 doi: 10.1109/TGRS.2008.918647 – ident: ref7 doi: 10.1109/42.996338 – ident: ref9 doi: 10.1109/TIP.2010.2040763 |
SSID | ssj0024887 |
Score | 2.343692 |
Snippet | The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1290 |
SubjectTerms | Algorithms Clustering algorithms Fuzzy C-means (FCM) clustering Fuzzy logic Image segmentation Kernel Noise Objective function Robustness Speckle Synthetic aperture radar synthetic aperture radar (SAR) image segmentation wavelet decomposition weighted fuzzy factor |
Title | A Kernel Clustering Algorithm With Fuzzy Factor: Application to SAR Image Segmentation |
URI | https://ieeexplore.ieee.org/document/6685860 https://www.proquest.com/docview/1507565728 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CJDQu42uI8iUfdpqWktiuG-8WVbTAxg50bL1FteMAok2nkhzav37PjlvEQIhLlIMdWXn2e7_n9_ED-BwJ2c5bVAW2eVbAVaaD2IgwiDOJ51JHaLPt1cDVT3F-wy8HrcEKfF3WwhhjXPKZadpXF8vPJrqyV2WnwjZLF-igr6LjVtdqPfXVix0ZnkUEQUvGAx_BjEJ5-qN33bdJXKxJqUQXI3xmgxypygtN7MxLdxOuFgurs0oemlWpmnr-X8_G9658Cz56nEmSemNsw4opduCDpzy_m-3Aes9x-s524XdCvptpYUakM6ps3wS0ZiQZ3U6m9-XdmPzBJ-lW8_mMdB05zzeSPEW9STkh_eSaXIxRMZG-uR37YqbiE9x0z351zgNPtxBotPllIGhOBcs1Y0rTTFjmTMqHiCCiGMWZxQgUdTvntpRXKyEZi8yQD4VCTCNMW3G2B2vFpDD7QNACyhyVgaEZ5e1YKaplpHLKGWMtkUcNCBcCSLXvRW4pMUap80lCmVqZpVZmqZdZA74sp_ytG3G8NXjXymA50P_-BhwtpJz6o_qYWkRsY780Pnh91iFs4Ld5naN7BGvltDLHiERKdeK24D9LJdZ_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB5RUAUXaKEVAdruob1UcrDX642NxMGiDUkTOBBoc3Oz6zUgEgcFWyh5lr5K362z600QbdUbUi-WD17_7Iznm9mdmQ_gvcejRhZQ4ejmWQ4TqXRCxV0nTCP8L6WHmK2XBk5OeeuCfekH_SX4saiFUUqZ5DNV16dmLz8dy1Ivle1z3SyduzaFsqOm9xig3R22P6E0P1Da_Hx-1HIsh4AjEcgKh9OMcj-Tvi8kTbmmg6RsgLDohfiOaYjej2xkTNenSsExuvfUgA24QKDmqiGYj_d9BivoZwS0qg576OQXGvo97YM4QRT27Z6p50b73eOznk4b8-uURhjUuI9Qz9C4_GH7DaA1N-DnfCqqPJabelmIupz91iXyf52rF7BuPWkSV6r_EpZUvgmrltT9aroJz48Na_F0C77GpKMmuRqSo2GpO0MgXpN4eDmeXBdXI_INj6RZzmZT0jT0QwckftjXJ8WY9OIz0h6h6SU9dTmy5Vr5K7h4kg98Dcv5OFfbQBDjowzNnaIpZY1QCCojT2SU-b4f8MyrgTsXeCJtt3VN-jFMTNTlRonWkUTrSGJ1pAYfF0Nuq1Yj_7p4S8t8caEVdw325lqVWGN0l2ifX-9u03Dn76PewWrr_KSbdNunnV1Yw-ewKiN5D5aLSaneoN9ViLdG_Ql8f2od-gVGGjEi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kernel+Clustering+Algorithm+With+Fuzzy+Factor%3A+Application+to+SAR+Image+Segmentation&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xiang%2C+Deliang&rft.au=Tang%2C+Tao&rft.au=Hu%2C+Canbin&rft.au=Li%2C+Yu&rft.date=2014-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=11&rft.issue=7&rft.spage=1290&rft_id=info:doi/10.1109%2FLGRS.2013.2292820&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3246849671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |