A Kernel Clustering Algorithm With Fuzzy Factor: Application to SAR Image Segmentation

The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisf...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 11; no. 7; pp. 1290 - 1294
Main Authors Xiang, Deliang, Tang, Tao, Hu, Canbin, Li, Yu, Su, Yi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation.
AbstractList The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation.
The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy C-means (FCM) algorithm and its variants (e.g., the FCM_S, the fast generalized FCM, the fuzzy local information C-means, etc.) can achieve satisfactory segmentation results and are robust to Gaussian noise, uniform noise, and salt and pepper noise, they are not adaptable to SAR image speckle. This letter presents a kernel FCM algorithm with pixel intensity and location information for SAR image segmentation. We incorporate a weighted fuzzy factor into the objective function, which considers the spatial and intensity distances of all neighboring pixels simultaneously. In addition, the energy measures of SAR image wavelet decomposition are used to represent the texture information, and a kernel metric is adopted to measure the feature similarity. The weighted fuzzy factor and the kernel distance measure are both robust to speckle. Experimental results on synthetic and real SAR images demonstrate that the proposed algorithm is effective for SAR image segmentation. [PUBLICATION ABSTRACT]
Author Deliang Xiang
Yu Li
Canbin Hu
Yi Su
Tao Tang
Author_xml – sequence: 1
  givenname: Deliang
  surname: Xiang
  fullname: Xiang, Deliang
– sequence: 2
  givenname: Tao
  surname: Tang
  fullname: Tang, Tao
– sequence: 3
  givenname: Canbin
  surname: Hu
  fullname: Hu, Canbin
– sequence: 4
  givenname: Yu
  surname: Li
  fullname: Li, Yu
– sequence: 5
  givenname: Yi
  surname: Su
  fullname: Su, Yi
BookMark eNp9kEtLw0AUhQepYFv9AeJmwHXqPDKPuAvF1mJBaH3twmQ6iSl5OZks2l9vYooLF27uvXDPuYf7TcCorEoDwDVGM4xRcLdebrYzgjCdERIQSdAZGGPGpIeYwKN-9pnHAvlxASZNs0eI-FKKMXgL4ZOxpcnhPG8bZ2xWpjDM08pm7rOA712Fi_Z4PMCF0q6y9zCs6zzTymVVCV0Ft-EGrgqVGrg1aWFK97O5BOeJyhtzdepT8Lp4eJk_euvn5Woerj1NAuo8ThLCaaIpjTXZcYwYI74SkmApEraTQvhaJH5AWaBjHlCKjfIVj7lPuRGxT6fgdrhb2-qrNY2L9lVryy4ywgwJxpkgslPhQaVt1TTWJFFts0LZQ4RR1OOLenxRjy864es84o9HZ8Nvzqos_9d5MzgzY8xvEueSSY7oNzadfaM
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3257548
crossref_primary_10_3390_app11041603
crossref_primary_10_1049_iet_ipr_2017_0290
crossref_primary_10_1080_01431161_2018_1547450
crossref_primary_10_1109_LGRS_2019_2943406
crossref_primary_10_1007_s11042_023_14703_8
crossref_primary_10_1515_jisys_2021_0096
crossref_primary_10_3390_rs13163174
crossref_primary_10_1109_JSTARS_2015_2502991
crossref_primary_10_1016_j_ins_2023_119087
crossref_primary_10_1016_j_neucom_2016_03_046
crossref_primary_10_1371_journal_pone_0259266
crossref_primary_10_3233_IDT_210091
crossref_primary_10_1109_JSTARS_2020_2987653
crossref_primary_10_1109_TFUZZ_2016_2637373
crossref_primary_10_1007_s00371_022_02590_3
crossref_primary_10_1016_j_sigpro_2018_08_010
crossref_primary_10_1109_LGRS_2020_3045744
crossref_primary_10_1016_j_patcog_2018_02_018
crossref_primary_10_1016_j_sigpro_2020_107483
crossref_primary_10_1109_TITS_2015_2497320
crossref_primary_10_1109_ACCESS_2019_2905847
crossref_primary_10_1007_s12517_021_07069_4
crossref_primary_10_1109_LGRS_2015_2425225
crossref_primary_10_1109_JSTARS_2019_2944943
crossref_primary_10_1109_TGRS_2016_2645226
crossref_primary_10_1109_TGRS_2022_3174651
crossref_primary_10_1364_AO_58_004812
crossref_primary_10_1109_TGRS_2021_3076446
crossref_primary_10_3390_rs12132141
crossref_primary_10_1109_JSTARS_2018_2792841
crossref_primary_10_1007_s12559_021_09988_6
crossref_primary_10_1109_TGRS_2021_3126669
crossref_primary_10_3390_rs16152802
crossref_primary_10_1109_TAES_2015_120817
crossref_primary_10_1007_s00371_023_02821_1
crossref_primary_10_1016_j_dsp_2021_102963
crossref_primary_10_1016_j_sigpro_2020_107518
crossref_primary_10_1109_TGRS_2024_3499374
crossref_primary_10_1016_j_dsp_2018_01_017
crossref_primary_10_1109_JSTARS_2022_3218983
crossref_primary_10_1109_TGRS_2020_3041281
crossref_primary_10_3390_rs12050803
crossref_primary_10_1109_JSTARS_2015_2492552
crossref_primary_10_1109_JSTARS_2015_2425211
crossref_primary_10_1016_j_asoc_2020_106468
crossref_primary_10_1080_22797254_2019_1579616
crossref_primary_10_1002_col_22023
crossref_primary_10_1016_j_eswa_2020_114327
crossref_primary_10_1109_JSTARS_2017_2716620
crossref_primary_10_3233_MGS_200337
crossref_primary_10_3390_rs10101597
crossref_primary_10_1109_LGRS_2018_2821711
crossref_primary_10_1080_03772063_2021_1913072
crossref_primary_10_1109_JOE_2018_2863961
crossref_primary_10_1016_j_rsase_2021_100491
crossref_primary_10_1109_ACCESS_2018_2876173
crossref_primary_10_1016_j_engappai_2019_05_004
crossref_primary_10_1109_JSTARS_2017_2743338
crossref_primary_10_1080_01431161_2024_2311794
Cites_doi 10.1109/TGRS.2011.2107915
10.1016/j.sigpro.2012.08.024
10.1109/TIP.2012.2219547
10.1109/TIP.2010.2066982
10.1016/S0165-1684(96)00125-9
10.1080/01431161.2012.718455
10.1109/34.192463
10.1109/LGRS.2012.2231662
10.1016/j.patcog.2006.07.011
10.1109/TIP.2011.2146190
10.1109/34.868688
10.1016/S0167-8655(98)00121-4
10.1109/TGRS.2008.918647
10.1109/42.996338
10.1109/TIP.2010.2040763
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2013.2292820
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1294
ExternalDocumentID 3246849671
10_1109_LGRS_2013_2292820
6685860
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61171135
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-62f263fc33bc2d6105524a782187f5d8774c7f49359cb69331ea4a6b6436e7b43
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 08:32:45 EDT 2025
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 03:45:27 EDT 2025
Tue Aug 26 16:50:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords wavelet decomposition
synthetic aperture radar (SAR) image segmentation
weighted fuzzy factor
Fuzzy C-means (FCM) clustering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-62f263fc33bc2d6105524a782187f5d8774c7f49359cb69331ea4a6b6436e7b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1507565728
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2013_2292820
crossref_citationtrail_10_1109_LGRS_2013_2292820
proquest_journals_1507565728
ieee_primary_6685860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
li (ref16) 2011; 20
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
lemarechal (ref5) 0
ref6
li (ref14) 2013; 10
References_xml – ident: ref13
  doi: 10.1109/TGRS.2011.2107915
– ident: ref1
  doi: 10.1016/j.sigpro.2012.08.024
– start-page: 111
  year: 0
  ident: ref5
  article-title: SAR image segmentation by morphological methods
  publication-title: Proc SPIE
– ident: ref10
  doi: 10.1109/TIP.2012.2219547
– ident: ref15
  doi: 10.1109/TIP.2010.2066982
– ident: ref4
  doi: 10.1016/S0165-1684(96)00125-9
– ident: ref11
  doi: 10.1080/01431161.2012.718455
– ident: ref12
  doi: 10.1109/34.192463
– volume: 10
  start-page: 1124
  year: 2013
  ident: ref14
  article-title: A spatial clustering method with edge weighting for image segmentation
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2231662
– ident: ref8
  doi: 10.1016/j.patcog.2006.07.011
– volume: 20
  start-page: 2007
  year: 2011
  ident: ref16
  article-title: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2146190
– ident: ref2
  doi: 10.1109/34.868688
– ident: ref6
  doi: 10.1016/S0167-8655(98)00121-4
– ident: ref3
  doi: 10.1109/TGRS.2008.918647
– ident: ref7
  doi: 10.1109/42.996338
– ident: ref9
  doi: 10.1109/TIP.2010.2040763
SSID ssj0024887
Score 2.343692
Snippet The presence of multiplicative noise in synthetic aperture radar (SAR) images makes segmentation and classification difficult to handle. Although a fuzzy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1290
SubjectTerms Algorithms
Clustering algorithms
Fuzzy C-means (FCM) clustering
Fuzzy logic
Image segmentation
Kernel
Noise
Objective function
Robustness
Speckle
Synthetic aperture radar
synthetic aperture radar (SAR) image segmentation
wavelet decomposition
weighted fuzzy factor
Title A Kernel Clustering Algorithm With Fuzzy Factor: Application to SAR Image Segmentation
URI https://ieeexplore.ieee.org/document/6685860
https://www.proquest.com/docview/1507565728
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH8CJDQu42uI8iUfdpqWktiuG-8WVbTAxg50bL1FteMAok2nkhzav37PjlvEQIhLlIMdWXn2e7_n9_ED-BwJ2c5bVAW2eVbAVaaD2IgwiDOJ51JHaLPt1cDVT3F-wy8HrcEKfF3WwhhjXPKZadpXF8vPJrqyV2WnwjZLF-igr6LjVtdqPfXVix0ZnkUEQUvGAx_BjEJ5-qN33bdJXKxJqUQXI3xmgxypygtN7MxLdxOuFgurs0oemlWpmnr-X8_G9658Cz56nEmSemNsw4opduCDpzy_m-3Aes9x-s524XdCvptpYUakM6ps3wS0ZiQZ3U6m9-XdmPzBJ-lW8_mMdB05zzeSPEW9STkh_eSaXIxRMZG-uR37YqbiE9x0z351zgNPtxBotPllIGhOBcs1Y0rTTFjmTMqHiCCiGMWZxQgUdTvntpRXKyEZi8yQD4VCTCNMW3G2B2vFpDD7QNACyhyVgaEZ5e1YKaplpHLKGWMtkUcNCBcCSLXvRW4pMUap80lCmVqZpVZmqZdZA74sp_ytG3G8NXjXymA50P_-BhwtpJz6o_qYWkRsY780Pnh91iFs4Ld5naN7BGvltDLHiERKdeK24D9LJdZ_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB5RUAUXaKEVAdruob1UcrDX642NxMGiDUkTOBBoc3Oz6zUgEgcFWyh5lr5K362z600QbdUbUi-WD17_7Iznm9mdmQ_gvcejRhZQ4ejmWQ4TqXRCxV0nTCP8L6WHmK2XBk5OeeuCfekH_SX4saiFUUqZ5DNV16dmLz8dy1Ivle1z3SyduzaFsqOm9xig3R22P6E0P1Da_Hx-1HIsh4AjEcgKh9OMcj-Tvi8kTbmmg6RsgLDohfiOaYjej2xkTNenSsExuvfUgA24QKDmqiGYj_d9BivoZwS0qg576OQXGvo97YM4QRT27Z6p50b73eOznk4b8-uURhjUuI9Qz9C4_GH7DaA1N-DnfCqqPJabelmIupz91iXyf52rF7BuPWkSV6r_EpZUvgmrltT9aroJz48Na_F0C77GpKMmuRqSo2GpO0MgXpN4eDmeXBdXI_INj6RZzmZT0jT0QwckftjXJ8WY9OIz0h6h6SU9dTmy5Vr5K7h4kg98Dcv5OFfbQBDjowzNnaIpZY1QCCojT2SU-b4f8MyrgTsXeCJtt3VN-jFMTNTlRonWkUTrSGJ1pAYfF0Nuq1Yj_7p4S8t8caEVdw325lqVWGN0l2ifX-9u03Dn76PewWrr_KSbdNunnV1Yw-ewKiN5D5aLSaneoN9ViLdG_Ql8f2od-gVGGjEi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Kernel+Clustering+Algorithm+With+Fuzzy+Factor%3A+Application+to+SAR+Image+Segmentation&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Xiang%2C+Deliang&rft.au=Tang%2C+Tao&rft.au=Hu%2C+Canbin&rft.au=Li%2C+Yu&rft.date=2014-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-598X&rft.eissn=1558-0571&rft.volume=11&rft.issue=7&rft.spage=1290&rft_id=info:doi/10.1109%2FLGRS.2013.2292820&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3246849671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon