Minimum Error Entropy Kalman Filter
To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criteri...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 51; no. 9; pp. 5819 - 5829 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in this article, we develop a new Kalman-type filter, called minimum error entropy KF (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC-based KFs, the proposed filter is also an online algorithm with the recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the MEE extended KF (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results. |
---|---|
AbstractList | To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in this article, we develop a new Kalman-type filter, called minimum error entropy KF (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC-based KFs, the proposed filter is also an online algorithm with the recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the MEE extended KF (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results. |
Author | Zheng, Nanning Gu, Yuantao Chen, Badong Dang, Lujuan Principe, Jose C. |
Author_xml | – sequence: 1 givenname: Badong orcidid: 0000-0003-1710-3818 surname: Chen fullname: Chen, Badong email: chenbd@mail.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 2 givenname: Lujuan orcidid: 0000-0002-8929-8127 surname: Dang fullname: Dang, Lujuan email: danglj@stu.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 3 givenname: Yuantao orcidid: 0000-0002-8427-1021 surname: Gu fullname: Gu, Yuantao email: gyt@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China – sequence: 4 givenname: Nanning orcidid: 0000-0003-1608-8257 surname: Zheng fullname: Zheng, Nanning email: nnzheng@mail.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China – sequence: 5 givenname: Jose C. orcidid: 0000-0002-3449-3531 surname: Principe fullname: Principe, Jose C. email: principe@cnel.ufl.edu organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China |
BookMark | eNo9kD1vwjAQhq2KSqWUH1B1icSc9O7sOPZYodBWBXUonS1DbCmIfNRJBv59g0BMd8P7vHd6HtmkbmrH2DNCggj6dfuzWSYEqBPSaUZS37EpoVQxEafJbUf5wOZddwAAJCU5yClbbMq6rIYqykNoQpTXfWjaU_Rlj5Wto1V57F14YvfeHjs3v84Z-13l2-VHvP5-_1y-reM9ad7HkkSWEVgQ3nkPIIoiQ9zJVAlCoXQmRLFX1mK6K-RIWOWtLAqgFKzPNOcztrj0tqH5G1zXm0MzhHo8aSiVxFErrcYUXlL70HRdcN60oaxsOBkEc9ZhzjrMWYe56hiZlwtTOudueaX5-DDn_wS2WmU |
CODEN | ITSMFE |
CitedBy_id | crossref_primary_10_3390_s22041683 crossref_primary_10_1109_JSEN_2024_3383656 crossref_primary_10_1016_j_measurement_2023_113417 crossref_primary_10_1016_j_aej_2024_03_039 crossref_primary_10_1016_j_dsp_2022_103796 crossref_primary_10_1109_JSEN_2022_3154161 crossref_primary_10_1109_TAES_2023_3312057 crossref_primary_10_1016_j_inffus_2023_102193 crossref_primary_10_1016_j_patcog_2022_109188 crossref_primary_10_3390_su141610246 crossref_primary_10_1109_TSP_2022_3185903 crossref_primary_10_1007_s11071_023_09088_0 crossref_primary_10_1016_j_neunet_2023_09_034 crossref_primary_10_1109_LSENS_2023_3335122 crossref_primary_10_1016_j_sigpro_2023_109271 crossref_primary_10_1016_j_neucom_2023_126324 crossref_primary_10_3390_e24040516 crossref_primary_10_1109_TSMC_2021_3098299 crossref_primary_10_1016_j_isatra_2024_05_035 crossref_primary_10_1109_TIM_2023_3293566 crossref_primary_10_1109_LSP_2021_3055748 crossref_primary_10_1109_ACCESS_2020_2966508 crossref_primary_10_1109_TAC_2022_3176837 crossref_primary_10_1109_TIM_2023_3275997 crossref_primary_10_1109_TCSII_2022_3161263 crossref_primary_10_1109_TCSII_2024_3361812 crossref_primary_10_1016_j_isatra_2022_02_047 crossref_primary_10_1109_TCSII_2023_3252597 crossref_primary_10_1016_j_isatra_2022_10_025 crossref_primary_10_5194_npg_28_295_2021 crossref_primary_10_1016_j_inffus_2022_11_016 crossref_primary_10_1016_j_sigpro_2024_109465 crossref_primary_10_1109_TIM_2022_3157005 crossref_primary_10_3390_e24121845 crossref_primary_10_1007_s00034_024_02654_w crossref_primary_10_1007_s11432_022_3560_8 crossref_primary_10_1109_LSP_2023_3310152 crossref_primary_10_1109_TAES_2022_3158638 crossref_primary_10_1002_asjc_3402 crossref_primary_10_1007_s00034_022_02004_8 crossref_primary_10_1186_s13638_022_02100_y crossref_primary_10_1109_LSP_2023_3285118 crossref_primary_10_1109_TCSII_2023_3312149 crossref_primary_10_1016_j_jfranklin_2024_106941 crossref_primary_10_1016_j_measurement_2024_114844 crossref_primary_10_1088_1361_6501_ad3fd7 crossref_primary_10_1088_1674_1056_acb9fc crossref_primary_10_1016_j_sigpro_2022_108806 crossref_primary_10_1016_j_sigpro_2020_107836 crossref_primary_10_1016_j_sigpro_2020_107914 crossref_primary_10_1109_TII_2022_3192670 crossref_primary_10_1109_LWC_2022_3175531 crossref_primary_10_1016_j_sigpro_2024_109535 crossref_primary_10_1016_j_dsp_2021_103377 crossref_primary_10_1016_j_neucom_2024_127634 crossref_primary_10_1088_1361_6501_acfa15 crossref_primary_10_3390_jmse10091210 crossref_primary_10_1061__ASCE_AS_1943_5525_0001456 crossref_primary_10_1007_s00034_024_02752_9 crossref_primary_10_1109_LSP_2022_3221852 crossref_primary_10_1109_TAES_2023_3266176 crossref_primary_10_1109_TCSII_2022_3196452 crossref_primary_10_1016_j_dsp_2024_104508 crossref_primary_10_1109_TSTE_2022_3175662 crossref_primary_10_1109_LSENS_2022_3225235 crossref_primary_10_1016_j_isatra_2022_10_040 crossref_primary_10_1016_j_sigpro_2022_108913 crossref_primary_10_1109_TIM_2023_3306521 crossref_primary_10_1007_s11760_024_03135_y crossref_primary_10_1109_TSMC_2022_3212975 crossref_primary_10_1002_acs_3716 crossref_primary_10_1016_j_ins_2023_120026 crossref_primary_10_1016_j_sigpro_2024_109405 crossref_primary_10_1109_LSP_2021_3089918 crossref_primary_10_1109_TCE_2023_3254595 crossref_primary_10_1109_TSMC_2023_3300318 crossref_primary_10_1109_TSMC_2023_3321115 crossref_primary_10_34133_2022_9854601 crossref_primary_10_1016_j_engappai_2023_107766 crossref_primary_10_1109_TAES_2022_3164012 crossref_primary_10_1016_j_sigpro_2023_109306 crossref_primary_10_1109_JAS_2021_1004350 crossref_primary_10_1016_j_dsp_2023_103982 crossref_primary_10_1016_j_jpowsour_2023_233282 crossref_primary_10_1016_j_energy_2023_128738 crossref_primary_10_3390_electronics13050992 crossref_primary_10_1109_TCSII_2022_3183617 crossref_primary_10_1109_TSP_2022_3151199 crossref_primary_10_1109_TSMC_2022_3161412 crossref_primary_10_3390_app13158762 crossref_primary_10_1109_TII_2020_3015001 crossref_primary_10_1016_j_ymssp_2024_111343 |
Cites_doi | 10.1049/iet-rsn.2016.0594 10.1109/TIE.2011.2162714 10.1016/j.sigpro.2019.03.003 10.1109/TNNLS.2016.2636160 10.1109/TSMC.2016.2523914 10.1109/TSP.2002.1011217 10.1109/TAC.2017.2730480 10.1162/neco.2006.18.9.2036 10.1016/j.isatra.2018.05.001 10.1109/CISS.2016.7460553 10.1109/78.995074 10.1115/1.3662552 10.2514/1.G001576 10.3390/s18061724 10.1080/00207721.2016.1277407 10.1007/s11760-018-1272-2 10.1007/978-1-4419-1570-2 10.1016/j.automatica.2016.10.004 10.1016/j.jfranklin.2017.10.023 10.1371/journal.pcbi.1005910 10.1117/12.280797 10.1109/TAES.2017.2756763 10.1109/IJCNN.2012.6252730 10.3390/e19120648 10.1016/j.sigpro.2019.02.030 10.1109/ICIF.2005.1592007 10.1109/LSP.2012.2204435 10.1109/TSP.2007.896065 10.1109/TSMC.2019.2917712 10.1109/TSP.2010.2056923 10.1109/TNN.2002.1031936 10.1109/TSP.2011.2178406 10.1109/PESGM40551.2019.8973525 10.1109/TSMC.2018.2795340 10.1016/j.sysconle.2017.07.016 10.1016/j.neucom.2013.04.037 10.1109/TII.2019.2917940 10.3390/e17085549 10.1109/TSMC.2018.2883706 10.1109/TSMC.2016.2598845 10.1109/IJCNN.2009.5178823 10.1109/TCSI.2019.2920773 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1109/TSMC.2019.2957269 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2232 |
EndPage | 5829 |
ExternalDocumentID | 10_1109_TSMC_2019_2957269 8937723 |
Genre | orig-research |
GrantInformation_xml | – fundername: National NSF of China grantid: 91648208; U1613219 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFB1002501 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFS ACIWK AKJIK ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-6247720a04feff004dd711b658421489744dc8aa15bd6293a8fa6dd0250af7933 |
IEDL.DBID | RIE |
ISSN | 2168-2216 |
IngestDate | Thu Oct 10 19:50:58 EDT 2024 Fri Aug 23 03:30:00 EDT 2024 Wed Jun 26 19:28:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-6247720a04feff004dd711b658421489744dc8aa15bd6293a8fa6dd0250af7933 |
ORCID | 0000-0002-8427-1021 0000-0003-1710-3818 0000-0002-3449-3531 0000-0003-1608-8257 0000-0002-8929-8127 |
PQID | 2562319898 |
PQPubID | 75739 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TSMC_2019_2957269 proquest_journals_2562319898 ieee_primary_8937723 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
PublicationTitleAbbrev | TSMC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 cameron (ref48) 2017 ref14 chen (ref15) 2013 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref42 ref41 ref44 ref43 ref49 makridis (ref26) 2018 ref8 ref7 ref9 ref4 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 welch (ref2) 2001 uhlman (ref3) 1997; 80 ref24 kulikova (ref22) 2019; 21 ref23 ref25 ref20 ref21 ref28 ref27 ref29 (ref47) 2017 |
References_xml | – ident: ref36 doi: 10.1049/iet-rsn.2016.0594 – ident: ref5 doi: 10.1109/TIE.2011.2162714 – ident: ref23 doi: 10.1016/j.sigpro.2019.03.003 – ident: ref45 doi: 10.1109/TNNLS.2016.2636160 – ident: ref4 doi: 10.1109/TSMC.2016.2523914 – ident: ref38 doi: 10.1109/TSP.2002.1011217 – ident: ref7 doi: 10.1109/TAC.2017.2730480 – ident: ref41 doi: 10.1162/neco.2006.18.9.2036 – ident: ref35 doi: 10.1016/j.isatra.2018.05.001 – ident: ref20 doi: 10.1109/CISS.2016.7460553 – ident: ref42 doi: 10.1109/78.995074 – ident: ref1 doi: 10.1115/1.3662552 – ident: ref24 doi: 10.2514/1.G001576 – ident: ref33 doi: 10.3390/s18061724 – ident: ref31 doi: 10.1080/00207721.2016.1277407 – ident: ref29 doi: 10.1007/s11760-018-1272-2 – ident: ref14 doi: 10.1007/978-1-4419-1570-2 – ident: ref18 doi: 10.1016/j.automatica.2016.10.004 – ident: ref32 doi: 10.1016/j.jfranklin.2017.10.023 – ident: ref49 doi: 10.1371/journal.pcbi.1005910 – ident: ref9 doi: 10.1117/12.280797 – ident: ref10 doi: 10.1109/TAES.2017.2756763 – ident: ref19 doi: 10.1109/IJCNN.2012.6252730 – ident: ref25 doi: 10.3390/e19120648 – ident: ref27 doi: 10.1016/j.sigpro.2019.02.030 – ident: ref46 doi: 10.1109/ICIF.2005.1592007 – ident: ref37 doi: 10.1109/LSP.2012.2204435 – ident: ref16 doi: 10.1109/TSP.2007.896065 – year: 2017 ident: ref47 publication-title: Udacity's Self-Driving Car Simulator – ident: ref28 doi: 10.1109/TSMC.2019.2917712 – ident: ref12 doi: 10.1109/TSP.2010.2056923 – ident: ref40 doi: 10.1109/TNN.2002.1031936 – year: 2017 ident: ref48 publication-title: Race Self-Driving Cars With Udacity-Udacity Inc-Medium contributor: fullname: cameron – year: 2013 ident: ref15 publication-title: Information Theoretic Criteria and Algorithms for System Parameter Identification contributor: fullname: chen – ident: ref43 doi: 10.1109/TSP.2011.2178406 – ident: ref30 doi: 10.1109/PESGM40551.2019.8973525 – ident: ref11 doi: 10.1109/TSMC.2018.2795340 – ident: ref21 doi: 10.1016/j.sysconle.2017.07.016 – year: 2001 ident: ref2 publication-title: An introduction to the Kalman filter contributor: fullname: welch – volume: 80 start-page: 128 year: 1997 ident: ref3 article-title: Algorithms for multiple target tracking publication-title: Amer Sci contributor: fullname: uhlman – ident: ref44 doi: 10.1016/j.neucom.2013.04.037 – ident: ref34 doi: 10.1109/TII.2019.2917940 – ident: ref39 doi: 10.3390/e17085549 – start-page: 12 year: 2018 ident: ref26 article-title: Dynamic CPU resource provisioning in virtualized servers using maximum correntropy criterion Kalman filters publication-title: Proc IEEE Int Conf Emerg Tech Factory Autom (ETFA) contributor: fullname: makridis – ident: ref6 doi: 10.1109/TSMC.2018.2883706 – volume: 21 start-page: 1 year: 2019 ident: ref22 article-title: Sequential maximum correntropy Kalman filtering publication-title: Asian J Control contributor: fullname: kulikova – ident: ref8 doi: 10.1109/TSMC.2016.2598845 – ident: ref17 doi: 10.1109/IJCNN.2009.5178823 – ident: ref13 doi: 10.1109/TCSI.2019.2920773 |
SSID | ssj0001286306 |
Score | 2.5542254 |
Snippet | To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 5819 |
SubjectTerms | Algorithms Covariance matrices Covariance matrix Criteria Entropy Errors Estimates Estimation Kalman filtering Kalman filters Measurement uncertainty minimum error entropy (MEE) non-Gaussian noises Probability density function Recursive functions robust estimation Robustness |
Title | Minimum Error Entropy Kalman Filter |
URI | https://ieeexplore.ieee.org/document/8937723 https://www.proquest.com/docview/2562319898 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFH6ZO-nBX9M4nYZET0Y2WqDA0SxbFg1e3JLdSKFtsujYgnDQv97XwpZFPXghJNDQfPT1fe37-h7AnXSkoyiXdqhcz_YigiYlw8x28QEVSJCVybMdv7DJzHua-_MWPGzPwkgpjfhM9vWtieWLVVbprbKB9q0BdfdgL4ii-qzWzn5KyFxTSpMShj8fr00QkzjRYPoaD7WOK-rTyA-oljfvuCFTV-XXZGw8zPgI4k3famHJW78q03729SNt4387fwyHDdW0HuuxcQItmZ_CwU4Cwg7cxot8sayW1qgoVoU10rL19af1zN-XPLfGCx1KP4PZeDQdTuymbIKdoe8ubUY9_JDDHU9JpdAIhAgISTXVoLj4wQWEJ7KQc-KngmELHirOhNBkiCs0V_cc2vkqlxdgEc5D9OfEz5A3-UJyZEMuYyJKhWI4y3fhfoNisq6zYyRmVeFEiYY80ZAnDeRd6GhUti82gHSht8E9aeznI6Galmk5V3j5d6sr2KdaXWLUXj1ol0Ulr5EelOmNGRffhtW0Ig |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgHf6ERRV2iJ-PG1m1lOxoCQWFchITb0q1tQpRBcBz0r_e1G4SoBy_Lkq1Z862v72vf1_cA7oUtbEmYMAPpeqYXOmhSIkhNFx8QjgRZ6jzb0ZD2xt7LxJ9U4HFzFkYIocVnwlK3OpbP5-lKbZU1lW9tEXcHdn3FK4rTWls7KgF1dTFN4lD8_Xgtw5iOHTZHr1FbKblCi4R-iyiB85Yj0pVVfk3H2sd0jyBa966QlrxZqzyx0q8fiRv_2_1jOCzJpvFUjI4TqIjsFA62UhDW4C6aZtPZamZ0lsv50ugo4fri0-iz9xnLjO5UBdPPYNztjNo9syycYKbovXOTEg8_ZDPbk0JKNAPOW46TKLJBcPmDSwiPpwFjjp9wii1YIBnlXNEhJtFg3XOoZvNMXIDhMBagR3f8FJmTzwVDPuRSysOES4rzfB0e1ijGiyI_RqzXFXYYK8hjBXlcQl6HmkJl82IJSB0aa9zj0oI-YqKImRJ0BZd_t7qFvd4oGsSD52H_CvaJ0ppo7VcDqvlyJa6RLOTJjR4j3yoQt28 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Error+Entropy+Kalman+Filter&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Chen%2C+Badong&rft.au=Dang%2C+Lujuan&rft.au=Gu%2C+Yuantao&rft.au=Zheng%2C+Nanning&rft.date=2021-09-01&rft.pub=IEEE&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=9&rft.spage=5819&rft.epage=5829&rft_id=info:doi/10.1109%2FTSMC.2019.2957269&rft.externalDocID=8937723 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |