Minimum Error Entropy Kalman Filter

To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criteri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 51; no. 9; pp. 5819 - 5829
Main Authors Chen, Badong, Dang, Lujuan, Gu, Yuantao, Zheng, Nanning, Principe, Jose C.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in this article, we develop a new Kalman-type filter, called minimum error entropy KF (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC-based KFs, the proposed filter is also an online algorithm with the recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the MEE extended KF (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results.
AbstractList To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE) criterion. In order to improve the robustness with respect to impulsive (or heavy-tailed) non-Gaussian noises, the maximum correntropy criterion (MCC) has recently been used to replace the MMSE criterion in developing several robust Kalman-type filters. To deal with more complicated non-Gaussian noises such as noises from multimodal distributions, in this article, we develop a new Kalman-type filter, called minimum error entropy KF (MEE-KF), by using the minimum error entropy (MEE) criterion instead of the MMSE or MCC. Similar to the MCC-based KFs, the proposed filter is also an online algorithm with the recursive process, in which the propagation equations are used to give prior estimates of the state and covariance matrix, and a fixed-point algorithm is used to update the posterior estimates. In addition, the MEE extended KF (MEE-EKF) is also developed for performance improvement in the nonlinear situations. The high accuracy and strong robustness of MEE-KF and MEE-EKF are confirmed by experimental results.
Author Zheng, Nanning
Gu, Yuantao
Chen, Badong
Dang, Lujuan
Principe, Jose C.
Author_xml – sequence: 1
  givenname: Badong
  orcidid: 0000-0003-1710-3818
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 2
  givenname: Lujuan
  orcidid: 0000-0002-8929-8127
  surname: Dang
  fullname: Dang, Lujuan
  email: danglj@stu.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Yuantao
  orcidid: 0000-0002-8427-1021
  surname: Gu
  fullname: Gu, Yuantao
  email: gyt@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Nanning
  orcidid: 0000-0003-1608-8257
  surname: Zheng
  fullname: Zheng, Nanning
  email: nnzheng@mail.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Jose C.
  orcidid: 0000-0002-3449-3531
  surname: Principe
  fullname: Principe, Jose C.
  email: principe@cnel.ufl.edu
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
BookMark eNo9kD1vwjAQhq2KSqWUH1B1icSc9O7sOPZYodBWBXUonS1DbCmIfNRJBv59g0BMd8P7vHd6HtmkbmrH2DNCggj6dfuzWSYEqBPSaUZS37EpoVQxEafJbUf5wOZddwAAJCU5yClbbMq6rIYqykNoQpTXfWjaU_Rlj5Wto1V57F14YvfeHjs3v84Z-13l2-VHvP5-_1y-reM9ad7HkkSWEVgQ3nkPIIoiQ9zJVAlCoXQmRLFX1mK6K-RIWOWtLAqgFKzPNOcztrj0tqH5G1zXm0MzhHo8aSiVxFErrcYUXlL70HRdcN60oaxsOBkEc9ZhzjrMWYe56hiZlwtTOudueaX5-DDn_wS2WmU
CODEN ITSMFE
CitedBy_id crossref_primary_10_3390_s22041683
crossref_primary_10_1109_JSEN_2024_3383656
crossref_primary_10_1016_j_measurement_2023_113417
crossref_primary_10_1016_j_aej_2024_03_039
crossref_primary_10_1016_j_dsp_2022_103796
crossref_primary_10_1109_JSEN_2022_3154161
crossref_primary_10_1109_TAES_2023_3312057
crossref_primary_10_1016_j_inffus_2023_102193
crossref_primary_10_1016_j_patcog_2022_109188
crossref_primary_10_3390_su141610246
crossref_primary_10_1109_TSP_2022_3185903
crossref_primary_10_1007_s11071_023_09088_0
crossref_primary_10_1016_j_neunet_2023_09_034
crossref_primary_10_1109_LSENS_2023_3335122
crossref_primary_10_1016_j_sigpro_2023_109271
crossref_primary_10_1016_j_neucom_2023_126324
crossref_primary_10_3390_e24040516
crossref_primary_10_1109_TSMC_2021_3098299
crossref_primary_10_1016_j_isatra_2024_05_035
crossref_primary_10_1109_TIM_2023_3293566
crossref_primary_10_1109_LSP_2021_3055748
crossref_primary_10_1109_ACCESS_2020_2966508
crossref_primary_10_1109_TAC_2022_3176837
crossref_primary_10_1109_TIM_2023_3275997
crossref_primary_10_1109_TCSII_2022_3161263
crossref_primary_10_1109_TCSII_2024_3361812
crossref_primary_10_1016_j_isatra_2022_02_047
crossref_primary_10_1109_TCSII_2023_3252597
crossref_primary_10_1016_j_isatra_2022_10_025
crossref_primary_10_5194_npg_28_295_2021
crossref_primary_10_1016_j_inffus_2022_11_016
crossref_primary_10_1016_j_sigpro_2024_109465
crossref_primary_10_1109_TIM_2022_3157005
crossref_primary_10_3390_e24121845
crossref_primary_10_1007_s00034_024_02654_w
crossref_primary_10_1007_s11432_022_3560_8
crossref_primary_10_1109_LSP_2023_3310152
crossref_primary_10_1109_TAES_2022_3158638
crossref_primary_10_1002_asjc_3402
crossref_primary_10_1007_s00034_022_02004_8
crossref_primary_10_1186_s13638_022_02100_y
crossref_primary_10_1109_LSP_2023_3285118
crossref_primary_10_1109_TCSII_2023_3312149
crossref_primary_10_1016_j_jfranklin_2024_106941
crossref_primary_10_1016_j_measurement_2024_114844
crossref_primary_10_1088_1361_6501_ad3fd7
crossref_primary_10_1088_1674_1056_acb9fc
crossref_primary_10_1016_j_sigpro_2022_108806
crossref_primary_10_1016_j_sigpro_2020_107836
crossref_primary_10_1016_j_sigpro_2020_107914
crossref_primary_10_1109_TII_2022_3192670
crossref_primary_10_1109_LWC_2022_3175531
crossref_primary_10_1016_j_sigpro_2024_109535
crossref_primary_10_1016_j_dsp_2021_103377
crossref_primary_10_1016_j_neucom_2024_127634
crossref_primary_10_1088_1361_6501_acfa15
crossref_primary_10_3390_jmse10091210
crossref_primary_10_1061__ASCE_AS_1943_5525_0001456
crossref_primary_10_1007_s00034_024_02752_9
crossref_primary_10_1109_LSP_2022_3221852
crossref_primary_10_1109_TAES_2023_3266176
crossref_primary_10_1109_TCSII_2022_3196452
crossref_primary_10_1016_j_dsp_2024_104508
crossref_primary_10_1109_TSTE_2022_3175662
crossref_primary_10_1109_LSENS_2022_3225235
crossref_primary_10_1016_j_isatra_2022_10_040
crossref_primary_10_1016_j_sigpro_2022_108913
crossref_primary_10_1109_TIM_2023_3306521
crossref_primary_10_1007_s11760_024_03135_y
crossref_primary_10_1109_TSMC_2022_3212975
crossref_primary_10_1002_acs_3716
crossref_primary_10_1016_j_ins_2023_120026
crossref_primary_10_1016_j_sigpro_2024_109405
crossref_primary_10_1109_LSP_2021_3089918
crossref_primary_10_1109_TCE_2023_3254595
crossref_primary_10_1109_TSMC_2023_3300318
crossref_primary_10_1109_TSMC_2023_3321115
crossref_primary_10_34133_2022_9854601
crossref_primary_10_1016_j_engappai_2023_107766
crossref_primary_10_1109_TAES_2022_3164012
crossref_primary_10_1016_j_sigpro_2023_109306
crossref_primary_10_1109_JAS_2021_1004350
crossref_primary_10_1016_j_dsp_2023_103982
crossref_primary_10_1016_j_jpowsour_2023_233282
crossref_primary_10_1016_j_energy_2023_128738
crossref_primary_10_3390_electronics13050992
crossref_primary_10_1109_TCSII_2022_3183617
crossref_primary_10_1109_TSP_2022_3151199
crossref_primary_10_1109_TSMC_2022_3161412
crossref_primary_10_3390_app13158762
crossref_primary_10_1109_TII_2020_3015001
crossref_primary_10_1016_j_ymssp_2024_111343
Cites_doi 10.1049/iet-rsn.2016.0594
10.1109/TIE.2011.2162714
10.1016/j.sigpro.2019.03.003
10.1109/TNNLS.2016.2636160
10.1109/TSMC.2016.2523914
10.1109/TSP.2002.1011217
10.1109/TAC.2017.2730480
10.1162/neco.2006.18.9.2036
10.1016/j.isatra.2018.05.001
10.1109/CISS.2016.7460553
10.1109/78.995074
10.1115/1.3662552
10.2514/1.G001576
10.3390/s18061724
10.1080/00207721.2016.1277407
10.1007/s11760-018-1272-2
10.1007/978-1-4419-1570-2
10.1016/j.automatica.2016.10.004
10.1016/j.jfranklin.2017.10.023
10.1371/journal.pcbi.1005910
10.1117/12.280797
10.1109/TAES.2017.2756763
10.1109/IJCNN.2012.6252730
10.3390/e19120648
10.1016/j.sigpro.2019.02.030
10.1109/ICIF.2005.1592007
10.1109/LSP.2012.2204435
10.1109/TSP.2007.896065
10.1109/TSMC.2019.2917712
10.1109/TSP.2010.2056923
10.1109/TNN.2002.1031936
10.1109/TSP.2011.2178406
10.1109/PESGM40551.2019.8973525
10.1109/TSMC.2018.2795340
10.1016/j.sysconle.2017.07.016
10.1016/j.neucom.2013.04.037
10.1109/TII.2019.2917940
10.3390/e17085549
10.1109/TSMC.2018.2883706
10.1109/TSMC.2016.2598845
10.1109/IJCNN.2009.5178823
10.1109/TCSI.2019.2920773
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2019.2957269
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 5829
ExternalDocumentID 10_1109_TSMC_2019_2957269
8937723
Genre orig-research
GrantInformation_xml – fundername: National NSF of China
  grantid: 91648208; U1613219
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFB1002501
  funderid: 10.13039/501100012166
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFS
ACIWK
AKJIK
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-6247720a04feff004dd711b658421489744dc8aa15bd6293a8fa6dd0250af7933
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Thu Oct 10 19:50:58 EDT 2024
Fri Aug 23 03:30:00 EDT 2024
Wed Jun 26 19:28:50 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-6247720a04feff004dd711b658421489744dc8aa15bd6293a8fa6dd0250af7933
ORCID 0000-0002-8427-1021
0000-0003-1710-3818
0000-0002-3449-3531
0000-0003-1608-8257
0000-0002-8929-8127
PQID 2562319898
PQPubID 75739
PageCount 11
ParticipantIDs crossref_primary_10_1109_TSMC_2019_2957269
proquest_journals_2562319898
ieee_primary_8937723
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
cameron (ref48) 2017
ref14
chen (ref15) 2013
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref42
ref41
ref44
ref43
ref49
makridis (ref26) 2018
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
welch (ref2) 2001
uhlman (ref3) 1997; 80
ref24
kulikova (ref22) 2019; 21
ref23
ref25
ref20
ref21
ref28
ref27
ref29
(ref47) 2017
References_xml – ident: ref36
  doi: 10.1049/iet-rsn.2016.0594
– ident: ref5
  doi: 10.1109/TIE.2011.2162714
– ident: ref23
  doi: 10.1016/j.sigpro.2019.03.003
– ident: ref45
  doi: 10.1109/TNNLS.2016.2636160
– ident: ref4
  doi: 10.1109/TSMC.2016.2523914
– ident: ref38
  doi: 10.1109/TSP.2002.1011217
– ident: ref7
  doi: 10.1109/TAC.2017.2730480
– ident: ref41
  doi: 10.1162/neco.2006.18.9.2036
– ident: ref35
  doi: 10.1016/j.isatra.2018.05.001
– ident: ref20
  doi: 10.1109/CISS.2016.7460553
– ident: ref42
  doi: 10.1109/78.995074
– ident: ref1
  doi: 10.1115/1.3662552
– ident: ref24
  doi: 10.2514/1.G001576
– ident: ref33
  doi: 10.3390/s18061724
– ident: ref31
  doi: 10.1080/00207721.2016.1277407
– ident: ref29
  doi: 10.1007/s11760-018-1272-2
– ident: ref14
  doi: 10.1007/978-1-4419-1570-2
– ident: ref18
  doi: 10.1016/j.automatica.2016.10.004
– ident: ref32
  doi: 10.1016/j.jfranklin.2017.10.023
– ident: ref49
  doi: 10.1371/journal.pcbi.1005910
– ident: ref9
  doi: 10.1117/12.280797
– ident: ref10
  doi: 10.1109/TAES.2017.2756763
– ident: ref19
  doi: 10.1109/IJCNN.2012.6252730
– ident: ref25
  doi: 10.3390/e19120648
– ident: ref27
  doi: 10.1016/j.sigpro.2019.02.030
– ident: ref46
  doi: 10.1109/ICIF.2005.1592007
– ident: ref37
  doi: 10.1109/LSP.2012.2204435
– ident: ref16
  doi: 10.1109/TSP.2007.896065
– year: 2017
  ident: ref47
  publication-title: Udacity's Self-Driving Car Simulator
– ident: ref28
  doi: 10.1109/TSMC.2019.2917712
– ident: ref12
  doi: 10.1109/TSP.2010.2056923
– ident: ref40
  doi: 10.1109/TNN.2002.1031936
– year: 2017
  ident: ref48
  publication-title: Race Self-Driving Cars With Udacity-Udacity Inc-Medium
  contributor:
    fullname: cameron
– year: 2013
  ident: ref15
  publication-title: Information Theoretic Criteria and Algorithms for System Parameter Identification
  contributor:
    fullname: chen
– ident: ref43
  doi: 10.1109/TSP.2011.2178406
– ident: ref30
  doi: 10.1109/PESGM40551.2019.8973525
– ident: ref11
  doi: 10.1109/TSMC.2018.2795340
– ident: ref21
  doi: 10.1016/j.sysconle.2017.07.016
– year: 2001
  ident: ref2
  publication-title: An introduction to the Kalman filter
  contributor:
    fullname: welch
– volume: 80
  start-page: 128
  year: 1997
  ident: ref3
  article-title: Algorithms for multiple target tracking
  publication-title: Amer Sci
  contributor:
    fullname: uhlman
– ident: ref44
  doi: 10.1016/j.neucom.2013.04.037
– ident: ref34
  doi: 10.1109/TII.2019.2917940
– ident: ref39
  doi: 10.3390/e17085549
– start-page: 12
  year: 2018
  ident: ref26
  article-title: Dynamic CPU resource provisioning in virtualized servers using maximum correntropy criterion Kalman filters
  publication-title: Proc IEEE Int Conf Emerg Tech Factory Autom (ETFA)
  contributor:
    fullname: makridis
– ident: ref6
  doi: 10.1109/TSMC.2018.2883706
– volume: 21
  start-page: 1
  year: 2019
  ident: ref22
  article-title: Sequential maximum correntropy Kalman filtering
  publication-title: Asian J Control
  contributor:
    fullname: kulikova
– ident: ref8
  doi: 10.1109/TSMC.2016.2598845
– ident: ref17
  doi: 10.1109/IJCNN.2009.5178823
– ident: ref13
  doi: 10.1109/TCSI.2019.2920773
SSID ssj0001286306
Score 2.5542254
Snippet To date, most linear and nonlinear Kalman filters (KFs) have been developed under the Gaussian assumption and the well-known minimum mean square error (MMSE)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 5819
SubjectTerms Algorithms
Covariance matrices
Covariance matrix
Criteria
Entropy
Errors
Estimates
Estimation
Kalman filtering
Kalman filters
Measurement uncertainty
minimum error entropy (MEE)
non-Gaussian noises
Probability density function
Recursive functions
robust estimation
Robustness
Title Minimum Error Entropy Kalman Filter
URI https://ieeexplore.ieee.org/document/8937723
https://www.proquest.com/docview/2562319898
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFH6ZO-nBX9M4nYZET0Y2WqDA0SxbFg1e3JLdSKFtsujYgnDQv97XwpZFPXghJNDQfPT1fe37-h7AnXSkoyiXdqhcz_YigiYlw8x28QEVSJCVybMdv7DJzHua-_MWPGzPwkgpjfhM9vWtieWLVVbprbKB9q0BdfdgL4ii-qzWzn5KyFxTSpMShj8fr00QkzjRYPoaD7WOK-rTyA-oljfvuCFTV-XXZGw8zPgI4k3famHJW78q03729SNt4387fwyHDdW0HuuxcQItmZ_CwU4Cwg7cxot8sayW1qgoVoU10rL19af1zN-XPLfGCx1KP4PZeDQdTuymbIKdoe8ubUY9_JDDHU9JpdAIhAgISTXVoLj4wQWEJ7KQc-KngmELHirOhNBkiCs0V_cc2vkqlxdgEc5D9OfEz5A3-UJyZEMuYyJKhWI4y3fhfoNisq6zYyRmVeFEiYY80ZAnDeRd6GhUti82gHSht8E9aeznI6Galmk5V3j5d6sr2KdaXWLUXj1ol0Ulr5EelOmNGRffhtW0Ig
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgHf6ERRV2iJ-PG1m1lOxoCQWFchITb0q1tQpRBcBz0r_e1G4SoBy_Lkq1Z862v72vf1_cA7oUtbEmYMAPpeqYXOmhSIkhNFx8QjgRZ6jzb0ZD2xt7LxJ9U4HFzFkYIocVnwlK3OpbP5-lKbZU1lW9tEXcHdn3FK4rTWls7KgF1dTFN4lD8_Xgtw5iOHTZHr1FbKblCi4R-iyiB85Yj0pVVfk3H2sd0jyBa966QlrxZqzyx0q8fiRv_2_1jOCzJpvFUjI4TqIjsFA62UhDW4C6aZtPZamZ0lsv50ugo4fri0-iz9xnLjO5UBdPPYNztjNo9syycYKbovXOTEg8_ZDPbk0JKNAPOW46TKLJBcPmDSwiPpwFjjp9wii1YIBnlXNEhJtFg3XOoZvNMXIDhMBagR3f8FJmTzwVDPuRSysOES4rzfB0e1ijGiyI_RqzXFXYYK8hjBXlcQl6HmkJl82IJSB0aa9zj0oI-YqKImRJ0BZd_t7qFvd4oGsSD52H_CvaJ0ppo7VcDqvlyJa6RLOTJjR4j3yoQt28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+Error+Entropy+Kalman+Filter&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Chen%2C+Badong&rft.au=Dang%2C+Lujuan&rft.au=Gu%2C+Yuantao&rft.au=Zheng%2C+Nanning&rft.date=2021-09-01&rft.pub=IEEE&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=51&rft.issue=9&rft.spage=5819&rft.epage=5829&rft_id=info:doi/10.1109%2FTSMC.2019.2957269&rft.externalDocID=8937723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon