Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte

The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) ar...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Electrochemical Society Vol. 171; no. 7; pp. 70529 - 70536
Main Authors Yersak, Thomas A., Zhang, Yubin, Hafiz, Hasnain, Pieczonka, Nicholas P. W., Gonzalez Malabet, Hernando J., Cunningham, Hayden, Cai, Mei
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI − ) anion coupled to a [Li(G3)] + solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li + to G3 in the [Li(G3)] + solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li 2 S·(30-x)P 2 S 5 ·xP 2 O 5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3) x TFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.
AbstractList The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI−) anion coupled to a [Li(G3)]+solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li+to G3 in the [Li(G3)]+solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li2S·(30-x)P2S5·xP2O5(x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3)xTFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.
The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI − ) anion coupled to a [Li(G3)] + solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li + to G3 in the [Li(G3)] + solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li 2 S·(30-x)P 2 S 5 ·xP 2 O 5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3) x TFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs.
Author Zhang, Yubin
Cai, Mei
Hafiz, Hasnain
Gonzalez Malabet, Hernando J.
Yersak, Thomas A.
Pieczonka, Nicholas P. W.
Cunningham, Hayden
Author_xml – sequence: 1
  givenname: Thomas A.
  orcidid: 0000-0001-8275-7960
  surname: Yersak
  fullname: Yersak, Thomas A.
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
– sequence: 2
  givenname: Yubin
  surname: Zhang
  fullname: Zhang, Yubin
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
– sequence: 3
  givenname: Hasnain
  surname: Hafiz
  fullname: Hafiz, Hasnain
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
– sequence: 4
  givenname: Nicholas P. W.
  surname: Pieczonka
  fullname: Pieczonka, Nicholas P. W.
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
– sequence: 5
  givenname: Hernando J.
  surname: Gonzalez Malabet
  fullname: Gonzalez Malabet, Hernando J.
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
– sequence: 6
  givenname: Hayden
  surname: Cunningham
  fullname: Cunningham, Hayden
  organization: Optimal, Inc., Plymouth, Michigan 48170, United States of America
– sequence: 7
  givenname: Mei
  surname: Cai
  fullname: Cai, Mei
  organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America
BackLink https://www.osti.gov/biblio/2580126$$D View this record in Osti.gov
BookMark eNp9kM9LwzAUx4NMcE7vHounCdYlTdI2RxnbLAx22DyHLD9YRtfUphv2vzelIh7E0-O97-f7eO97C0aVqzQADwi-IETYDDFC4wwhNBMqTVhyBcY_oxEYQ4hwTFKKbsCt98fQopxkY3AoTnXjLlpF21bsbWnbLnIm2nx2_lwaq3S0daVVcVBbHS1KLdvGlV2rfWSraG2nK_y0W26LHrv0SOEqK4PwcbbqN38Hro0ovb7_rhPwvlzs5m_xerMq5q_rWCYMt3EKDYIZNUoxioQ0xihKCIbCYGFySFiuMq2MYDRFWrI9JQnGIt-nFGoGc4Yn4HHY63xruZe21fIgXVWFS3hCc4iSNEBwgGTjvG-04XVjT6LpOIK8j5P32fE-Oz7EGSzPg8W6mh_duanCF__h0z_wow6WDPGMwwzShPFaGfwFSnuFFw
CODEN JESOAN
Cites_doi 10.1016/j.cej.2019.123046
10.1021/ct700248k
10.1021/jp506772f
10.1021/acsenergylett.1c00445
10.1002/aenm.201500865
10.1007/s12274-022-5304-4
10.1021/acs.jpcc.3c00447
10.1002/aesr.202200019
10.1016/j.jpowsour.2005.03.063
10.1016/j.ensm.2019.06.021
10.1149/2.0221902jes
10.1149/1945-7111/acc365
10.1021/acsaem.9b00290
10.1021/jp307378j
10.1002/aenm.201900938
10.1039/C4EE00372A
10.1007/s10853-018-2971-3
10.1016/j.ensm.2019.05.019
10.1039/D1EE02567H
10.1002/aenm.201701003
10.14852/jcersjsuppl.112.0.S709.0
10.1021/acs.chemmater.7b00931
10.5796/electrochemistry.81.428
10.1021/acs.chemrev.2c00196
10.1063/5.0004997
10.1007/s10008-013-2149-5
10.1149/1945-7111/ad07ff
10.1002/aenm.201802927
10.3389/fenrg.2022.882508
10.1039/D1MA00926E
10.1149/2.0121514jes
10.1039/D2TA02179J
10.1149/2.0181514jes
10.1007/s10853-013-7226-8
10.1021/jp810292n
10.1039/C9RA07824J
10.1002/aenm.201200267
10.1149/2.111308jes
10.1021/jp060670c
10.1021/acsaem.9b01111
10.1016/j.chempr.2022.01.002
10.1021/acs.chemrev.9b00268
10.1002/aenm.201703644
10.1021/acsami.7b11566
10.1021/acsami.8b17524
10.1016/j.jnoncrysol.2007.07.059
ContentType Journal Article
Copyright 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
CorporateAuthor General Motors LLC, Detroit, MI (United States)
CorporateAuthor_xml – name: General Motors LLC, Detroit, MI (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1149/1945-7111/ad6292
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1945-7111
ExternalDocumentID 2580126
10_1149_1945_7111_ad6292
jesad6292
GrantInformation_xml – fundername: Department of Energy EERE VTO BMR
  grantid: DE-EE0008857
GroupedDBID -~X
.DC
0R~
29L
5GY
AATNI
ABDNZ
ABJNI
ACBEA
ACHIP
ADEQX
ADNWM
AENEX
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CJUJL
CS3
DU5
EBS
F5P
IOP
IZVLO
JGOPE
KOT
MV1
N5L
NFQFE
NHB
REC
RHI
RNS
ROL
RPA
TAE
TN5
UPT
WH7
YQT
~02
AAYXX
CITATION
OTOTI
ID FETCH-LOGICAL-c293t-60f1075fdd951acfffd54430af3af80498d7edfa9561ec9b54233a8b650e90893
IEDL.DBID IOP
ISSN 0013-4651
IngestDate Mon Aug 25 02:20:58 EDT 2025
Thu Jul 03 08:20:56 EDT 2025
Tue Aug 20 22:16:33 EDT 2024
Tue Jun 17 22:16:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-60f1075fdd951acfffd54430af3af80498d7edfa9561ec9b54233a8b650e90893
Notes JES-112171.R2
None
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0008857
ORCID 0000-0001-8275-7960
0000000182757960
PageCount 8
ParticipantIDs iop_journals_10_1149_1945_7111_ad6292
crossref_primary_10_1149_1945_7111_ad6292
osti_scitechconnect_2580126
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the Electrochemical Society
PublicationTitleAbbrev JES
PublicationTitleAlternate J. Electrochem. Soc
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fan (jesad6292bib8) 2022; 122
Shin (jesad6292bib14) 2019; 9
Oh (jesad6292bib18) 2015; 5
Kim (jesad6292bib31) 2006; 110
Yi (jesad6292bib17) 2023; 16
Gamo (jesad6292bib35) 2022; 3
Mizuno (jesad6292bib42) 2004
Moon (jesad6292bib23) 2014; 118
Ohtomo (jesad6292bib28) 2013; 17
Cao (jesad6292bib19) 2020; 382
Apra (jesad6292bib38) 2020; 152
Ohtomo (jesad6292bib30) 2013; 81
Han (jesad6292bib34) 2018; 8
Ueno (jesad6292bib13) 2012; 116
Xing (jesad6292bib9) 2022; 8
Nowak (jesad6292bib21) 2015; 162
Koerver (jesad6292bib3) 2017; 29
Ohtomo (jesad6292bib43) 2005; 146
Wang (jesad6292bib48) 2019; 9
Dudney (jesad6292bib1) 2015
Marenich (jesad6292bib40) 2009; 113
Albertus (jesad6292bib2) 2021; 6
Day (jesad6292bib20) 2015; 162
Dokko (jesad6292bib25) 2013; 160
Hwang (jesad6292bib12) 2021; 14
LePage (jesad6292bib46) 2019; 166
Liang (jesad6292bib7) 2019; 21
Lu (jesad6292bib10) 2019; 23
Shin (jesad6292bib15) 2017; 9
Masias (jesad6292bib45) 2019; 54
Watanabe (jesad6292bib24) 2023; 127
Porz (jesad6292bib33) 2017; 7
Fang (jesad6292bib47) 2016
Maddar (jesad6292bib22) 2023; 170
Tan (jesad6292bib37) 2019; 2
Chen (jesad6292bib11) 2019; 120
Minami (jesad6292bib41) 2008; 354
Yersak (jesad6292bib6) 2022; 3
Yersak (jesad6292bib4) 2013; 3
Ohtomo (jesad6292bib29) 2013; 48
Oh (jesad6292bib16) 2019; 9
Yersak (jesad6292bib27) 2022; 10
Yersak (jesad6292bib32) 2019; 2
Malabet (jesad6292bib44) 2023; 170
Tirado-Rives (jesad6292bib39) 2008; 4
Woolley (jesad6292bib5) 2023; 11
Cuisinier (jesad6292bib26) 2014; 7
Kim (jesad6292bib36) 2018; 11
References_xml – volume: 382
  year: 2020
  ident: jesad6292bib19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123046
– volume: 4
  start-page: 297
  year: 2008
  ident: jesad6292bib39
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700248k
– volume: 118
  start-page: 20246
  year: 2014
  ident: jesad6292bib23
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/jp506772f
– volume: 6
  start-page: 1399
  year: 2021
  ident: jesad6292bib2
  publication-title: ACS Energy Letters
  doi: 10.1021/acsenergylett.1c00445
– volume: 5
  year: 2015
  ident: jesad6292bib18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500865
– volume: 16
  start-page: 8411
  year: 2023
  ident: jesad6292bib17
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5304-4
– volume: 127
  start-page: 6645
  year: 2023
  ident: jesad6292bib24
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.3c00447
– volume: 3
  year: 2022
  ident: jesad6292bib35
  publication-title: Advanced Energy and Sustainability Research
  doi: 10.1002/aesr.202200019
– volume: 146
  start-page: 715
  year: 2005
  ident: jesad6292bib43
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.063
– volume: 21
  start-page: 308
  year: 2019
  ident: jesad6292bib7
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.021
– volume: 166
  start-page: A89
  year: 2019
  ident: jesad6292bib46
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0221902jes
– volume: 170
  year: 2023
  ident: jesad6292bib22
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acc365
– volume: 2
  start-page: 3523
  year: 2019
  ident: jesad6292bib32
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00290
– volume: 116
  start-page: 11323
  year: 2012
  ident: jesad6292bib13
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp307378j
– volume: 9
  year: 2019
  ident: jesad6292bib14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900938
– volume: 7
  start-page: 2697
  year: 2014
  ident: jesad6292bib26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00372A
– volume: 54
  start-page: 2585
  year: 2019
  ident: jesad6292bib45
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2971-3
– volume: 23
  start-page: 144
  year: 2019
  ident: jesad6292bib10
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.019
– volume: 14
  start-page: 5834
  year: 2021
  ident: jesad6292bib12
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02567H
– volume: 7
  year: 2017
  ident: jesad6292bib33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701003
– start-page: S709
  year: 2004
  ident: jesad6292bib42
  doi: 10.14852/jcersjsuppl.112.0.S709.0
– volume: 29
  start-page: 5574
  year: 2017
  ident: jesad6292bib3
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00931
– volume: 81
  start-page: 428
  year: 2013
  ident: jesad6292bib30
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.81.428
– volume: 122
  start-page: 17155
  year: 2022
  ident: jesad6292bib8
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00196
– volume: 152
  start-page: 1
  year: 2020
  ident: jesad6292bib38
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0004997
– volume: 17
  start-page: 2551
  year: 2013
  ident: jesad6292bib28
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-013-2149-5
– volume: 170
  year: 2023
  ident: jesad6292bib44
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ad07ff
– volume: 9
  year: 2019
  ident: jesad6292bib16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802927
– volume: 10
  year: 2022
  ident: jesad6292bib27
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2022.882508
– volume: 3
  start-page: 3562
  year: 2022
  ident: jesad6292bib6
  publication-title: Materials Advances
  doi: 10.1039/D1MA00926E
– volume: 162
  year: 2015
  ident: jesad6292bib21
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121514jes
– volume: 11
  start-page: 1083
  year: 2023
  ident: jesad6292bib5
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02179J
– volume: 162
  year: 2015
  ident: jesad6292bib20
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0181514jes
– volume: 48
  start-page: 4137
  year: 2013
  ident: jesad6292bib29
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7226-8
– volume: 113
  start-page: 6378
  year: 2009
  ident: jesad6292bib40
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810292n
– volume: 9
  start-page: 41837
  year: 2019
  ident: jesad6292bib48
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07824J
– volume: 3
  start-page: 120
  year: 2013
  ident: jesad6292bib4
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200267
– volume: 160
  year: 2013
  ident: jesad6292bib25
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.111308jes
– year: 2015
  ident: jesad6292bib1
– volume: 110
  start-page: 16318
  year: 2006
  ident: jesad6292bib31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp060670c
– volume: 2
  start-page: 6542
  year: 2019
  ident: jesad6292bib37
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01111
– volume: 8
  start-page: 1201
  year: 2022
  ident: jesad6292bib9
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.01.002
– volume: 120
  start-page: 6820
  year: 2019
  ident: jesad6292bib11
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00268
– volume: 8
  year: 2018
  ident: jesad6292bib34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703644
– volume: 9
  start-page: 39357
  year: 2017
  ident: jesad6292bib15
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11566
– volume: 11
  start-page: 13
  year: 2018
  ident: jesad6292bib36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17524
– volume: 354
  start-page: 370
  year: 2008
  ident: jesad6292bib41
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2007.07.059
– year: 2016
  ident: jesad6292bib47
  article-title: Electrolyte and electrode structure
SSID ssj0011847
Score 2.4574153
Snippet The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles....
SourceID osti
crossref
iop
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 70529
SubjectTerms Electrochemistry
Materials Science
oxysulfide
semi-solid battery
solid-state electrolyte
solvate ionic liquid
stability
Title Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte
URI https://iopscience.iop.org/article/10.1149/1945-7111/ad6292
https://www.osti.gov/biblio/2580126
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED7x4wH2AIyBVtgmT2LSeEgpSewk2hOqWmAaYxIg8YBkObZPZKuabk2nlb-ec52ggiY07S1STnFytu--i---A9gzUcx1nPLAuq4mhIhtkHJlAuygwDSOMJv1jDz7Kk6u4s_X_HoBPj3UwpSj2vS36dITBXsV1sS22QGF3TxIXDqOMiLMyP4uRyk5Tle9d_7t4QiBQpekaV_gGn43Z5R_ecIjn7RI45J9LmmHzXma_jrcNO_oE0x-tCdV3tZ3T-gb__MjNmCtRqDsyIu-hAU73ISVbtP4bRNezHEUvoJb_9vBGka4dJZJO2UlsvM_0_FkgIWx7KIcFCaYoVbW8111BlNCsKwYsi_Fx-No_7J_cerEfjuRU0fGSzd-TgozL78FV_3eZfckqNszBJowQhWIDlLsyNEYQmlKI6JxZHodhZHClCKP1CTWoHKls1ZnOSfkFqk0J0xo3WljtA1Lw3JoXwMjWMEFdkIUkY4TG-cC4yRUoUp1noRWtGC_mSA58iwc0ldUZ9JpUjpNSq_JFnwgpct6K46fkXv_SO67JdnkUCaSrCAPMzky2IJdtw4kzaaj1NUu90hXMuTOr4udfxxpF1ZDgkI-yfcNLFW_JvYtQZkqfzdbsvfzX-kD
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgE98ChFXcrDSFSih2wXJ3aSIypdulDaSm2l3lzH9ojAarNts4jl1zOOE7RFqELiFimjOBk_5nM8830Ar22cCJNkInJe1YQQsYsyoW2EA5SYJTHmjWbk5wO5d5p8PBNnrc5pUwtTTdulv0-XgSg4uLAlts23adstotSn42grec63pxaX4LaIKXb6Cr7Do9_HCLR9STsJAy_63Z1T_uUp1-LSErVNa3RFs2wh2gwfwHn3niHJ5Ft_Vhd98_MPCsf_-JCHcL9FouxdMH8Et9xkFe7udAJwq7CywFX4GL6E3w_OMsKnTUbtnFXIDn_Mr2ZjLK1jx9W4tFGDXtluUNcZzwnJsnLC9ss3H-Ktk-HxyJt99yYjT8pLNy5mpV20X4PT4e7Jzl7UyjREhrBCHckB0h5SoLWE1rRBROtJ9QYaY40Z7UAymzqL2pfQOpMXghBcrLOCsKHzp47xE1ieVBO3DozghZA44Chjk6QuKSQmKddcZ6ZIuZM92Oo6SU0DG4cKldW58t5U3psqeLMHm-R41U7JqxvsXl2z--rINn2rUkWroeC5ol7pwYYfC4p61FPrGp-DZGrFhY_v8uk_tvQS7hy9H6r90cGnDbjHCR2FvN9nsFxfztxzQjd18aIZwb8AsbPuZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Stability+of+Oxysulfide+Solid-State+Electrolytes+in+Li%28G3%29TFSI+Solvate+Ionic+Liquid+Electrolyte&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.au=Yersak%2C+Thomas+A.&rft.au=Zhang%2C+Yubin&rft.au=Hafiz%2C+Hasnain&rft.au=Pieczonka%2C+Nicholas+P.+W.&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0013-4651&rft.eissn=1945-7111&rft.volume=171&rft.issue=7&rft_id=info:doi/10.1149%2F1945-7111%2Fad6292&rft.externalDocID=jesad6292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4651&client=summon