Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte
The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) ar...
Saved in:
Published in | Journal of the Electrochemical Society Vol. 171; no. 7; pp. 70529 - 70536 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI − ) anion coupled to a [Li(G3)] + solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li + to G3 in the [Li(G3)] + solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li 2 S·(30-x)P 2 S 5 ·xP 2 O 5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3) x TFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs. |
---|---|
AbstractList | The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI−) anion coupled to a [Li(G3)]+solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li+to G3 in the [Li(G3)]+solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li2S·(30-x)P2S5·xP2O5(x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3)xTFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs. The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles. Semi-solid batteries utilize a secondary electrolyte phase to wet the SSE/AM interface to improve cell performance. Solvate ionic liquids (SILs) are one class of liquid electrolytes under consideration for use in semi-solid batteries. This paper focuses on the Li(G3)TFSI SIL consisting of the bis(trifluoromethanesulfonyl)imide (TFSI − ) anion coupled to a [Li(G3)] + solvate cation. Sulfide SSEs are normally subject to nucleophilic attack by trigylme (G3), however, strong coordination of Li + to G3 in the [Li(G3)] + solvate cation prevents this reaction from taking place. Consequently, the stability of sulfide SSE depends on the ideal 1:1 molar ratio of G3 to TFSI, which may be difficult to maintain. We studied the chemical stability of 70Li 2 S·(30-x)P 2 S 5 ·xP 2 O 5 (x = 0, 2, 5, 10) (oxy)sulfide solid-state electrolyte in Li(G3)TFSI SIL. By physical measurement, UV–vis spectroscopy, electrochemical evaluation, X-ray photoelectron spectroscopy, and first principles calculation it is shown that increased oxygen content improves the stability of SSE in various Li(G3) x TFSI (x = 1, 2, 3, 4) liquid electrolytes. The results suggest that an oxysulfide SSE + SIL semi-solid electrolyte is a good choice for future semi-solid battery designs. |
Author | Zhang, Yubin Cai, Mei Hafiz, Hasnain Gonzalez Malabet, Hernando J. Yersak, Thomas A. Pieczonka, Nicholas P. W. Cunningham, Hayden |
Author_xml | – sequence: 1 givenname: Thomas A. orcidid: 0000-0001-8275-7960 surname: Yersak fullname: Yersak, Thomas A. organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America – sequence: 2 givenname: Yubin surname: Zhang fullname: Zhang, Yubin organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America – sequence: 3 givenname: Hasnain surname: Hafiz fullname: Hafiz, Hasnain organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America – sequence: 4 givenname: Nicholas P. W. surname: Pieczonka fullname: Pieczonka, Nicholas P. W. organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America – sequence: 5 givenname: Hernando J. surname: Gonzalez Malabet fullname: Gonzalez Malabet, Hernando J. organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America – sequence: 6 givenname: Hayden surname: Cunningham fullname: Cunningham, Hayden organization: Optimal, Inc., Plymouth, Michigan 48170, United States of America – sequence: 7 givenname: Mei surname: Cai fullname: Cai, Mei organization: General Motors Global R&D, Warren, Michigan 48092-2031, United States of America |
BackLink | https://www.osti.gov/biblio/2580126$$D View this record in Osti.gov |
BookMark | eNp9kM9LwzAUx4NMcE7vHounCdYlTdI2RxnbLAx22DyHLD9YRtfUphv2vzelIh7E0-O97-f7eO97C0aVqzQADwi-IETYDDFC4wwhNBMqTVhyBcY_oxEYQ4hwTFKKbsCt98fQopxkY3AoTnXjLlpF21bsbWnbLnIm2nx2_lwaq3S0daVVcVBbHS1KLdvGlV2rfWSraG2nK_y0W26LHrv0SOEqK4PwcbbqN38Hro0ovb7_rhPwvlzs5m_xerMq5q_rWCYMt3EKDYIZNUoxioQ0xihKCIbCYGFySFiuMq2MYDRFWrI9JQnGIt-nFGoGc4Yn4HHY63xruZe21fIgXVWFS3hCc4iSNEBwgGTjvG-04XVjT6LpOIK8j5P32fE-Oz7EGSzPg8W6mh_duanCF__h0z_wow6WDPGMwwzShPFaGfwFSnuFFw |
CODEN | JESOAN |
Cites_doi | 10.1016/j.cej.2019.123046 10.1021/ct700248k 10.1021/jp506772f 10.1021/acsenergylett.1c00445 10.1002/aenm.201500865 10.1007/s12274-022-5304-4 10.1021/acs.jpcc.3c00447 10.1002/aesr.202200019 10.1016/j.jpowsour.2005.03.063 10.1016/j.ensm.2019.06.021 10.1149/2.0221902jes 10.1149/1945-7111/acc365 10.1021/acsaem.9b00290 10.1021/jp307378j 10.1002/aenm.201900938 10.1039/C4EE00372A 10.1007/s10853-018-2971-3 10.1016/j.ensm.2019.05.019 10.1039/D1EE02567H 10.1002/aenm.201701003 10.14852/jcersjsuppl.112.0.S709.0 10.1021/acs.chemmater.7b00931 10.5796/electrochemistry.81.428 10.1021/acs.chemrev.2c00196 10.1063/5.0004997 10.1007/s10008-013-2149-5 10.1149/1945-7111/ad07ff 10.1002/aenm.201802927 10.3389/fenrg.2022.882508 10.1039/D1MA00926E 10.1149/2.0121514jes 10.1039/D2TA02179J 10.1149/2.0181514jes 10.1007/s10853-013-7226-8 10.1021/jp810292n 10.1039/C9RA07824J 10.1002/aenm.201200267 10.1149/2.111308jes 10.1021/jp060670c 10.1021/acsaem.9b01111 10.1016/j.chempr.2022.01.002 10.1021/acs.chemrev.9b00268 10.1002/aenm.201703644 10.1021/acsami.7b11566 10.1021/acsami.8b17524 10.1016/j.jnoncrysol.2007.07.059 |
ContentType | Journal Article |
Copyright | 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
CorporateAuthor | General Motors LLC, Detroit, MI (United States) |
CorporateAuthor_xml | – name: General Motors LLC, Detroit, MI (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1149/1945-7111/ad6292 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1945-7111 |
ExternalDocumentID | 2580126 10_1149_1945_7111_ad6292 jesad6292 |
GrantInformation_xml | – fundername: Department of Energy EERE VTO BMR grantid: DE-EE0008857 |
GroupedDBID | -~X .DC 0R~ 29L 5GY AATNI ABDNZ ABJNI ACBEA ACHIP ADEQX ADNWM AENEX AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CJUJL CS3 DU5 EBS F5P IOP IZVLO JGOPE KOT MV1 N5L NFQFE NHB REC RHI RNS ROL RPA TAE TN5 UPT WH7 YQT ~02 AAYXX CITATION OTOTI |
ID | FETCH-LOGICAL-c293t-60f1075fdd951acfffd54430af3af80498d7edfa9561ec9b54233a8b650e90893 |
IEDL.DBID | IOP |
ISSN | 0013-4651 |
IngestDate | Mon Aug 25 02:20:58 EDT 2025 Thu Jul 03 08:20:56 EDT 2025 Tue Aug 20 22:16:33 EDT 2024 Tue Jun 17 22:16:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-60f1075fdd951acfffd54430af3af80498d7edfa9561ec9b54233a8b650e90893 |
Notes | JES-112171.R2 None USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0008857 |
ORCID | 0000-0001-8275-7960 0000000182757960 |
PageCount | 8 |
ParticipantIDs | iop_journals_10_1149_1945_7111_ad6292 crossref_primary_10_1149_1945_7111_ad6292 osti_scitechconnect_2580126 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the Electrochemical Society |
PublicationTitleAbbrev | JES |
PublicationTitleAlternate | J. Electrochem. Soc |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Fan (jesad6292bib8) 2022; 122 Shin (jesad6292bib14) 2019; 9 Oh (jesad6292bib18) 2015; 5 Kim (jesad6292bib31) 2006; 110 Yi (jesad6292bib17) 2023; 16 Gamo (jesad6292bib35) 2022; 3 Mizuno (jesad6292bib42) 2004 Moon (jesad6292bib23) 2014; 118 Ohtomo (jesad6292bib28) 2013; 17 Cao (jesad6292bib19) 2020; 382 Apra (jesad6292bib38) 2020; 152 Ohtomo (jesad6292bib30) 2013; 81 Han (jesad6292bib34) 2018; 8 Ueno (jesad6292bib13) 2012; 116 Xing (jesad6292bib9) 2022; 8 Nowak (jesad6292bib21) 2015; 162 Koerver (jesad6292bib3) 2017; 29 Ohtomo (jesad6292bib43) 2005; 146 Wang (jesad6292bib48) 2019; 9 Dudney (jesad6292bib1) 2015 Marenich (jesad6292bib40) 2009; 113 Albertus (jesad6292bib2) 2021; 6 Day (jesad6292bib20) 2015; 162 Dokko (jesad6292bib25) 2013; 160 Hwang (jesad6292bib12) 2021; 14 LePage (jesad6292bib46) 2019; 166 Liang (jesad6292bib7) 2019; 21 Lu (jesad6292bib10) 2019; 23 Shin (jesad6292bib15) 2017; 9 Masias (jesad6292bib45) 2019; 54 Watanabe (jesad6292bib24) 2023; 127 Porz (jesad6292bib33) 2017; 7 Fang (jesad6292bib47) 2016 Maddar (jesad6292bib22) 2023; 170 Tan (jesad6292bib37) 2019; 2 Chen (jesad6292bib11) 2019; 120 Minami (jesad6292bib41) 2008; 354 Yersak (jesad6292bib6) 2022; 3 Yersak (jesad6292bib4) 2013; 3 Ohtomo (jesad6292bib29) 2013; 48 Oh (jesad6292bib16) 2019; 9 Yersak (jesad6292bib27) 2022; 10 Yersak (jesad6292bib32) 2019; 2 Malabet (jesad6292bib44) 2023; 170 Tirado-Rives (jesad6292bib39) 2008; 4 Woolley (jesad6292bib5) 2023; 11 Cuisinier (jesad6292bib26) 2014; 7 Kim (jesad6292bib36) 2018; 11 |
References_xml | – volume: 382 year: 2020 ident: jesad6292bib19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123046 – volume: 4 start-page: 297 year: 2008 ident: jesad6292bib39 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700248k – volume: 118 start-page: 20246 year: 2014 ident: jesad6292bib23 publication-title: The Journal of Physical Chemistry C doi: 10.1021/jp506772f – volume: 6 start-page: 1399 year: 2021 ident: jesad6292bib2 publication-title: ACS Energy Letters doi: 10.1021/acsenergylett.1c00445 – volume: 5 year: 2015 ident: jesad6292bib18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500865 – volume: 16 start-page: 8411 year: 2023 ident: jesad6292bib17 publication-title: Nano Res. doi: 10.1007/s12274-022-5304-4 – volume: 127 start-page: 6645 year: 2023 ident: jesad6292bib24 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.3c00447 – volume: 3 year: 2022 ident: jesad6292bib35 publication-title: Advanced Energy and Sustainability Research doi: 10.1002/aesr.202200019 – volume: 146 start-page: 715 year: 2005 ident: jesad6292bib43 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.063 – volume: 21 start-page: 308 year: 2019 ident: jesad6292bib7 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.021 – volume: 166 start-page: A89 year: 2019 ident: jesad6292bib46 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0221902jes – volume: 170 year: 2023 ident: jesad6292bib22 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acc365 – volume: 2 start-page: 3523 year: 2019 ident: jesad6292bib32 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00290 – volume: 116 start-page: 11323 year: 2012 ident: jesad6292bib13 publication-title: J. Phys. Chem. B doi: 10.1021/jp307378j – volume: 9 year: 2019 ident: jesad6292bib14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900938 – volume: 7 start-page: 2697 year: 2014 ident: jesad6292bib26 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00372A – volume: 54 start-page: 2585 year: 2019 ident: jesad6292bib45 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2971-3 – volume: 23 start-page: 144 year: 2019 ident: jesad6292bib10 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.019 – volume: 14 start-page: 5834 year: 2021 ident: jesad6292bib12 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02567H – volume: 7 year: 2017 ident: jesad6292bib33 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701003 – start-page: S709 year: 2004 ident: jesad6292bib42 doi: 10.14852/jcersjsuppl.112.0.S709.0 – volume: 29 start-page: 5574 year: 2017 ident: jesad6292bib3 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00931 – volume: 81 start-page: 428 year: 2013 ident: jesad6292bib30 publication-title: Electrochemistry doi: 10.5796/electrochemistry.81.428 – volume: 122 start-page: 17155 year: 2022 ident: jesad6292bib8 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00196 – volume: 152 start-page: 1 year: 2020 ident: jesad6292bib38 publication-title: J. Chem. Phys. doi: 10.1063/5.0004997 – volume: 17 start-page: 2551 year: 2013 ident: jesad6292bib28 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-013-2149-5 – volume: 170 year: 2023 ident: jesad6292bib44 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ad07ff – volume: 9 year: 2019 ident: jesad6292bib16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802927 – volume: 10 year: 2022 ident: jesad6292bib27 publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2022.882508 – volume: 3 start-page: 3562 year: 2022 ident: jesad6292bib6 publication-title: Materials Advances doi: 10.1039/D1MA00926E – volume: 162 year: 2015 ident: jesad6292bib21 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121514jes – volume: 11 start-page: 1083 year: 2023 ident: jesad6292bib5 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02179J – volume: 162 year: 2015 ident: jesad6292bib20 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181514jes – volume: 48 start-page: 4137 year: 2013 ident: jesad6292bib29 publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7226-8 – volume: 113 start-page: 6378 year: 2009 ident: jesad6292bib40 publication-title: J. Phys. Chem. B doi: 10.1021/jp810292n – volume: 9 start-page: 41837 year: 2019 ident: jesad6292bib48 publication-title: RSC Adv. doi: 10.1039/C9RA07824J – volume: 3 start-page: 120 year: 2013 ident: jesad6292bib4 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200267 – volume: 160 year: 2013 ident: jesad6292bib25 publication-title: J. Electrochem. Soc. doi: 10.1149/2.111308jes – year: 2015 ident: jesad6292bib1 – volume: 110 start-page: 16318 year: 2006 ident: jesad6292bib31 publication-title: J. Phys. Chem. B doi: 10.1021/jp060670c – volume: 2 start-page: 6542 year: 2019 ident: jesad6292bib37 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01111 – volume: 8 start-page: 1201 year: 2022 ident: jesad6292bib9 publication-title: Chem doi: 10.1016/j.chempr.2022.01.002 – volume: 120 start-page: 6820 year: 2019 ident: jesad6292bib11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00268 – volume: 8 year: 2018 ident: jesad6292bib34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703644 – volume: 9 start-page: 39357 year: 2017 ident: jesad6292bib15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11566 – volume: 11 start-page: 13 year: 2018 ident: jesad6292bib36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17524 – volume: 354 start-page: 370 year: 2008 ident: jesad6292bib41 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2007.07.059 – year: 2016 ident: jesad6292bib47 article-title: Electrolyte and electrode structure |
SSID | ssj0011847 |
Score | 2.4574153 |
Snippet | The performance of all solid-state batteries is limited by poor interfacial contact between active material and solid-state electrolyte (SSE) particles.... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 70529 |
SubjectTerms | Electrochemistry Materials Science oxysulfide semi-solid battery solid-state electrolyte solvate ionic liquid stability |
Title | Improved Stability of Oxysulfide Solid-State Electrolytes in Li(G3)TFSI Solvate Ionic Liquid Electrolyte |
URI | https://iopscience.iop.org/article/10.1149/1945-7111/ad6292 https://www.osti.gov/biblio/2580126 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED7x4wH2AIyBVtgmT2LSeEgpSewk2hOqWmAaYxIg8YBkObZPZKuabk2nlb-ec52ggiY07S1STnFytu--i---A9gzUcx1nPLAuq4mhIhtkHJlAuygwDSOMJv1jDz7Kk6u4s_X_HoBPj3UwpSj2vS36dITBXsV1sS22QGF3TxIXDqOMiLMyP4uRyk5Tle9d_7t4QiBQpekaV_gGn43Z5R_ecIjn7RI45J9LmmHzXma_jrcNO_oE0x-tCdV3tZ3T-gb__MjNmCtRqDsyIu-hAU73ISVbtP4bRNezHEUvoJb_9vBGka4dJZJO2UlsvM_0_FkgIWx7KIcFCaYoVbW8111BlNCsKwYsi_Fx-No_7J_cerEfjuRU0fGSzd-TgozL78FV_3eZfckqNszBJowQhWIDlLsyNEYQmlKI6JxZHodhZHClCKP1CTWoHKls1ZnOSfkFqk0J0xo3WljtA1Lw3JoXwMjWMEFdkIUkY4TG-cC4yRUoUp1noRWtGC_mSA58iwc0ldUZ9JpUjpNSq_JFnwgpct6K46fkXv_SO67JdnkUCaSrCAPMzky2IJdtw4kzaaj1NUu90hXMuTOr4udfxxpF1ZDgkI-yfcNLFW_JvYtQZkqfzdbsvfzX-kD |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgE98ChFXcrDSFSih2wXJ3aSIypdulDaSm2l3lzH9ojAarNts4jl1zOOE7RFqELiFimjOBk_5nM8830Ar22cCJNkInJe1YQQsYsyoW2EA5SYJTHmjWbk5wO5d5p8PBNnrc5pUwtTTdulv0-XgSg4uLAlts23adstotSn42grec63pxaX4LaIKXb6Cr7Do9_HCLR9STsJAy_63Z1T_uUp1-LSErVNa3RFs2wh2gwfwHn3niHJ5Ft_Vhd98_MPCsf_-JCHcL9FouxdMH8Et9xkFe7udAJwq7CywFX4GL6E3w_OMsKnTUbtnFXIDn_Mr2ZjLK1jx9W4tFGDXtluUNcZzwnJsnLC9ss3H-Ktk-HxyJt99yYjT8pLNy5mpV20X4PT4e7Jzl7UyjREhrBCHckB0h5SoLWE1rRBROtJ9QYaY40Z7UAymzqL2pfQOpMXghBcrLOCsKHzp47xE1ieVBO3DozghZA44Chjk6QuKSQmKddcZ6ZIuZM92Oo6SU0DG4cKldW58t5U3psqeLMHm-R41U7JqxvsXl2z--rINn2rUkWroeC5ol7pwYYfC4p61FPrGp-DZGrFhY_v8uk_tvQS7hy9H6r90cGnDbjHCR2FvN9nsFxfztxzQjd18aIZwb8AsbPuZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Stability+of+Oxysulfide+Solid-State+Electrolytes+in+Li%28G3%29TFSI+Solvate+Ionic+Liquid+Electrolyte&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.au=Yersak%2C+Thomas+A.&rft.au=Zhang%2C+Yubin&rft.au=Hafiz%2C+Hasnain&rft.au=Pieczonka%2C+Nicholas+P.+W.&rft.date=2024-07-01&rft.pub=IOP+Publishing&rft.issn=0013-4651&rft.eissn=1945-7111&rft.volume=171&rft.issue=7&rft_id=info:doi/10.1149%2F1945-7111%2Fad6292&rft.externalDocID=jesad6292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4651&client=summon |