Phosphorene Oxide Quantum Dots Decorated ZnO Nanostructure-Based Hydrogen Gas Sensor
Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast me...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 6; pp. 7283 - 7290 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-<inline-formula> <tex-math notation="LaTeX">8~\mu \text{L} </tex-math></inline-formula>) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs (<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs(<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications. |
---|---|
AbstractList | Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-<inline-formula> <tex-math notation="LaTeX">8~\mu \text{L} </tex-math></inline-formula>) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs (<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs(<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications. Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-[Formula Omitted]) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs ([Formula Omitted])/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs([Formula Omitted])/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications. |
Author | Alwarappan, Subbiah Valappil, Manila Ozhukil Kumar, Ashok Bhati, Vijendra Singh Kumar, Mahesh |
Author_xml | – sequence: 1 givenname: Vijendra Singh orcidid: 0000-0001-7003-7667 surname: Bhati fullname: Bhati, Vijendra Singh organization: Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, India – sequence: 2 givenname: Ashok orcidid: 0000-0001-7192-0793 surname: Kumar fullname: Kumar, Ashok organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India – sequence: 3 givenname: Manila Ozhukil orcidid: 0000-0003-0973-2091 surname: Valappil fullname: Valappil, Manila Ozhukil organization: Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India – sequence: 4 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah organization: Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India – sequence: 5 givenname: Mahesh orcidid: 0000-0002-5357-7300 surname: Kumar fullname: Kumar, Mahesh email: mkumar@iitj.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India |
BookMark | eNp9kE1PwkAQhjcGEwH9AcZLE8_F_Wi73aMCgoaABkyMl822nUoJ7OLuNpF_bxuIBw-eZjJ5n5nM00MdbTQgdE3wgBAs7p6X4_mAYooHDEdJwuMz1CVxnIaER2mn7RkOI8bfL1DPuQ3GRPCYd9HqZW3cfm0saAgW31UBwWuttK93wch4F4wgN1Z5KIIPvQjmShvnbZ372kL4oFwznx4Kaz5BBxPlgiVoZ-wlOi_V1sHVqfbR2-N4NZyGs8XkaXg_C3MqmA8TXPAoY4RBRsqYZGWGMQXOMQeVi7JMU65ESZkClpU8YiyhScSUSAvFmxhlfXR73Lu35qsG5-XG1FY3JyWNBE3jJBWsSZFjKrfGOQul3Ntqp-xBEixbebKVJ1t58iSvYfgfJq-88pXR3qpq-y95cyQrAPi9JBimSfPpD7NkfmQ |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1063_5_0151356 crossref_primary_10_1109_TNANO_2024_3413719 crossref_primary_10_1021_acsami_4c10014 crossref_primary_10_1103_PhysRevB_105_245416 crossref_primary_10_1134_S1061934823080087 crossref_primary_10_1016_j_sna_2022_113647 crossref_primary_10_1016_j_molliq_2022_119103 crossref_primary_10_1063_5_0167403 crossref_primary_10_1007_s11581_022_04523_5 crossref_primary_10_1109_TIM_2023_3243681 |
Cites_doi | 10.1021/acs.jpclett.8b03600 10.1103/PhysRevB.91.085407 10.1016/j.snb.2019.03.095 10.1016/j.snb.2019.126693 10.3390/s120709635 10.1021/acscentsci.5b00244 10.1038/s41598-019-43961-6 10.1103/PhysRevB.93.165413 10.1016/j.snb.2016.08.084 10.1021/am5057322 10.1088/1361-6528/aabd72 10.1038/s41598-017-14544-0 10.1016/j.snb.2020.128779 10.1038/ncomms9632 10.1039/C7RA06808E 10.1103/PhysRevLett.114.046801 10.1039/C8CC07266C 10.1016/S1003-6326(18)64923-4 10.1016/j.snb.2017.05.028 10.1039/C4NR05384B 10.1016/j.snb.2019.127437 10.1016/j.snb.2016.07.017 10.1016/S1369-7021(03)00922-2 10.1016/j.snb.2014.08.091 10.1021/jacs.7b08474 10.1007/s10971-018-4841-5 10.1038/35104634 10.1021/am302294v 10.1021/am5073645 10.1063/1.1992666 10.1016/j.snb.2014.05.086 10.1016/1352-2310(95)00219-7 10.1002/anie.201705012 10.1063/1.4926953 10.1016/j.snb.2017.08.106 10.1021/acsami.7b19169 10.1016/j.snb.2014.01.029 10.1016/j.mseb.2017.12.036 10.1016/j.snb.2019.01.146 10.1021/acsami.8b05811 10.1016/j.egyr.2019.08.070 10.1016/j.apsusc.2019.143660 10.1039/C9CP00943D 10.1063/1.5123479 10.1021/acsami.5b01817 10.1021/jz501188k 10.1021/nn501226z 10.1016/j.snb.2015.07.120 10.1063/1.4902520 10.3390/s100302088 10.1021/acsami.6b12501 10.1007/s00604-018-2750-5 10.1016/j.snb.2019.01.077 10.1002/adma.201503825 10.1021/acsami.7b17877 10.1021/acsami.5b08416 10.1088/2053-1583/3/2/025002 10.1039/C5CC10482C 10.1016/j.mseb.2014.10.007 10.1021/acs.jpcc.8b08566 10.1007/s00604-019-3532-4 10.1039/C6NR08810D 10.1016/j.ijhydene.2015.07.086 10.1016/j.matlet.2018.09.129 10.1016/j.orgel.2013.10.012 10.1016/j.snb.2009.10.038 10.1016/S0360-3199(97)00112-2 10.1007/s40820-014-0023-3 10.1021/acsami.7b19334 10.1016/j.snb.2013.12.093 10.1021/acsami.6b16111 10.1021/acsomega.8b01989 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3046675 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 7290 |
ExternalDocumentID | 10_1109_JSEN_2020_3046675 9302631 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science & Engineering Research Board grantid: IMP/2019/000075 funderid: 10.13039/501100001843 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-60d74b313eb1f51bfb002e7707eac9ff887a9f23ae3bf743362643a98da7e7723 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 07:21:59 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 03:37:00 EDT 2025 Wed Aug 27 02:44:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-60d74b313eb1f51bfb002e7707eac9ff887a9f23ae3bf743362643a98da7e7723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7003-7667 0000-0002-5357-7300 0000-0001-7192-0793 0000-0003-0973-2091 |
PQID | 2492856893 |
PQPubID | 75733 |
PageCount | 8 |
ParticipantIDs | ieee_primary_9302631 crossref_primary_10_1109_JSEN_2020_3046675 proquest_journals_2492856893 crossref_citationtrail_10_1109_JSEN_2020_3046675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 bhati (ref21) 2019; 299 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 özgür (ref11) 2005; 98 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref57 doi: 10.1021/acs.jpclett.8b03600 – ident: ref45 doi: 10.1103/PhysRevB.91.085407 – ident: ref12 doi: 10.1016/j.snb.2019.03.095 – ident: ref66 doi: 10.1016/j.snb.2019.126693 – ident: ref10 doi: 10.3390/s120709635 – ident: ref44 doi: 10.1021/acscentsci.5b00244 – ident: ref61 doi: 10.1038/s41598-019-43961-6 – ident: ref48 doi: 10.1103/PhysRevB.93.165413 – ident: ref68 doi: 10.1016/j.snb.2016.08.084 – ident: ref24 doi: 10.1021/am5057322 – ident: ref51 doi: 10.1088/1361-6528/aabd72 – ident: ref19 doi: 10.1038/s41598-017-14544-0 – ident: ref67 doi: 10.1016/j.snb.2020.128779 – ident: ref32 doi: 10.1038/ncomms9632 – ident: ref26 doi: 10.1039/C7RA06808E – ident: ref41 doi: 10.1103/PhysRevLett.114.046801 – ident: ref56 doi: 10.1039/C8CC07266C – ident: ref63 doi: 10.1016/S1003-6326(18)64923-4 – ident: ref5 doi: 10.1016/j.snb.2017.05.028 – ident: ref42 doi: 10.1039/C4NR05384B – ident: ref55 doi: 10.1016/j.snb.2019.127437 – ident: ref15 doi: 10.1016/j.snb.2016.07.017 – ident: ref3 doi: 10.1016/S1369-7021(03)00922-2 – ident: ref23 doi: 10.1016/j.snb.2014.08.091 – ident: ref50 doi: 10.1021/jacs.7b08474 – ident: ref65 doi: 10.1007/s10971-018-4841-5 – ident: ref2 doi: 10.1038/35104634 – ident: ref13 doi: 10.1021/am302294v – ident: ref8 doi: 10.1021/am5073645 – volume: 98 year: 2005 ident: ref11 article-title: A comprehensive review of ZnO materials and devices publication-title: J Appl Phys doi: 10.1063/1.1992666 – ident: ref22 doi: 10.1016/j.snb.2014.05.086 – ident: ref1 doi: 10.1016/1352-2310(95)00219-7 – ident: ref43 doi: 10.1002/anie.201705012 – ident: ref59 doi: 10.1063/1.4926953 – ident: ref25 doi: 10.1016/j.snb.2017.08.106 – ident: ref37 doi: 10.1021/acsami.7b19169 – ident: ref54 doi: 10.1016/j.snb.2014.01.029 – ident: ref58 doi: 10.1016/j.mseb.2017.12.036 – ident: ref62 doi: 10.1016/j.snb.2019.01.146 – ident: ref18 doi: 10.1021/acsami.8b05811 – ident: ref6 doi: 10.1016/j.egyr.2019.08.070 – ident: ref39 doi: 10.1016/j.apsusc.2019.143660 – ident: ref38 doi: 10.1039/C9CP00943D – ident: ref28 doi: 10.1063/1.5123479 – ident: ref53 doi: 10.1021/acsami.5b01817 – ident: ref33 doi: 10.1021/jz501188k – ident: ref35 doi: 10.1021/nn501226z – ident: ref52 doi: 10.1016/j.snb.2015.07.120 – ident: ref9 doi: 10.1063/1.4902520 – ident: ref72 doi: 10.3390/s100302088 – ident: ref71 doi: 10.1021/acsami.6b12501 – ident: ref30 doi: 10.1007/s00604-018-2750-5 – ident: ref16 doi: 10.1016/j.snb.2019.01.077 – ident: ref29 doi: 10.1002/adma.201503825 – ident: ref60 doi: 10.1021/acsami.7b17877 – volume: 299 year: 2019 ident: ref21 article-title: PAN/(PAN-b-PMMA) derived nanoporous carbon nanofibers loaded on ZnO nanostructures for hydrogen detection publication-title: Sens Actuators B Chem – ident: ref7 doi: 10.1021/acsami.5b08416 – ident: ref34 doi: 10.1088/2053-1583/3/2/025002 – ident: ref73 doi: 10.1039/C5CC10482C – ident: ref14 doi: 10.1016/j.mseb.2014.10.007 – ident: ref40 doi: 10.1021/acs.jpcc.8b08566 – ident: ref64 doi: 10.1007/s00604-019-3532-4 – ident: ref47 doi: 10.1039/C6NR08810D – ident: ref69 doi: 10.1016/j.ijhydene.2015.07.086 – ident: ref20 doi: 10.1016/j.matlet.2018.09.129 – ident: ref27 doi: 10.1016/j.orgel.2013.10.012 – ident: ref70 doi: 10.1016/j.snb.2009.10.038 – ident: ref4 doi: 10.1016/S0360-3199(97)00112-2 – ident: ref31 doi: 10.1007/s40820-014-0023-3 – ident: ref36 doi: 10.1021/acsami.7b19334 – ident: ref17 doi: 10.1016/j.snb.2013.12.093 – ident: ref46 doi: 10.1021/acsami.6b16111 – ident: ref49 doi: 10.1021/acsomega.8b01989 |
SSID | ssj0019757 |
Score | 2.36486 |
Snippet | Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7283 |
SubjectTerms | Chemical sensors Decoration Depletion Gas detectors Gas sensors heterojunctions Hydrogen hydrogen sensor II-VI semiconductor materials Industrial applications Nanostructure Nanostructures Operating temperature Phosphorene POQDs Power consumption Quantum dots RF sputtering Sensors Temperature sensors Zinc oxide ZnO |
Title | Phosphorene Oxide Quantum Dots Decorated ZnO Nanostructure-Based Hydrogen Gas Sensor |
URI | https://ieeexplore.ieee.org/document/9302631 https://www.proquest.com/docview/2492856893 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ui3rwLdYXe_Akbk2z2WxzVFstgi9UKF5CNjtLRW2kbUD99c4maREV8ZbDDCz77c4jO_MNwF6gyYtY2eQqQcWDRCLXaSi4TK1wIaw0RS_MxWXYuQ_Ou7I7BQeTXhhELIrPsO4-i7d8k6W5-1V2GJF66JqmpylxK3u1Ji8GkSpYPekCezwQqlu9YDa86PD8tn1JmaBPCSplg6ErKfzig4qhKj8sceFeThfhYrywsqrkqZ6PdD39-MbZ-N-VL8FCFWeyo_JgLMMU9ldg_gv74ArMVgPQe--rcHfdy4avvcwRXLKrt0eD7CanTc9fWCsbDVnLZakUlhr20L9iZJKzkng2HyA_JkdoWOfdDDI6jewsGbJbSo6zwRrcn7bvTjq8GrjAU_L6Ix56RgVaNAQZcCsb2joXjkp5isxzZC0ZpCSyvkhQaEuhh6OyCUQSNU2iSMwX6zDTz_q4Acx4vpYq0SJNbYAB6UWhrz1r0aLvK6yBN4YgTis2cjcU4zkushIvih1qsUMtrlCrwf5E5bWk4vhLeNWhMBGsAKjB9hjnuLqsw9iRJjZlSJHb5u9aWzDnu1IWV8Ynt2GGNhh3KBYZ6d3iEH4CmVDaaQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB1V5VA48NGCCBTwAS5Im27s9Tp74ACkbfqVgppKEZdlvR4rqCVbZbNqw2_hr_DfGO86UVUQt0rccvAc1jOeNy8evwF4HWlCESu7gcpQBVEmMdB5LAKZW-FKWGnqtzBHg7h_Gu2P5GgFfi7fwiBi3XyGbfezvss3RV65v8q2EjKPRce3UB7g_JIIWvlur0fefMP5zvbwYz_wMwSCnIBsFsShUZEWHUE5ycqOtg6VUKlQUcZJrKUzliWWiwyFtoSmTp0lElnSNZmiZU7WgBL8HaozJG9ehy3vKBJV64hSygiDSKiRvzPthMnW_sn2gLgnJ0pM_DN2TYzXUK8e4_JH7q8BbecB_FpsRdPHctauZrqd_7ihEvm_7tVDuO8rafa-Cf1HsIKTdbh3TV9xHdb8iPfxfAOGn8ZFeTEunIQnO776ZpB9riisqu-sV8xK1nM8nApvw75MjhmBTtFI61ZTDD4Q1BvWn5tpQeeN7WYlOyH6X0wfw-mtfOITWJ0UE3wKzIRcS5Vpkec2wojskpjr0Fq0yLnCFoQLl6e511t3Yz_O05p3hUnqoiR1UZL6KGnB26XJRSM28q_FG87ry4Xe4S3YXMRV6tNRmTpZyK6MqTZ99nerV7DWHx4dpod7g4PncJe7xh3XtCg3YZU2G19Q5TXTL-sDwODrbUfRb7tmN74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+Oxide+Quantum+Dots+Decorated+ZnO+Nanostructure-Based+Hydrogen+Gas+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Vijendra+Singh+Bhati&rft.au=Kumar%2C+Ashok&rft.au=Valappil%2C+Manila+Ozhukil&rft.au=Subbiah+Alwarappan&rft.date=2021-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=6&rft.spage=7283&rft_id=info:doi/10.1109%2FJSEN.2020.3046675&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |