Phosphorene Oxide Quantum Dots Decorated ZnO Nanostructure-Based Hydrogen Gas Sensor

Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast me...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 6; pp. 7283 - 7290
Main Authors Bhati, Vijendra Singh, Kumar, Ashok, Valappil, Manila Ozhukil, Alwarappan, Subbiah, Kumar, Mahesh
Format Journal Article
LanguageEnglish
Published New York IEEE 15.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-<inline-formula> <tex-math notation="LaTeX">8~\mu \text{L} </tex-math></inline-formula>) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs (<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs(<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications.
AbstractList Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-<inline-formula> <tex-math notation="LaTeX">8~\mu \text{L} </tex-math></inline-formula>) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs (<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs(<inline-formula> <tex-math notation="LaTeX">6~\mu \text{L} </tex-math></inline-formula>)/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications.
Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide quantum dots (POQDs) on RF sputtered grown ZnO nanostructures for hydrogen gas sensing application. A simplistic approach such as drop cast method is employed to decorate electrosynthesized POQDs (2-[Formula Omitted]) onto interdigitated electrodes over ZnO nanostructures. The suggested hydrogen sensor based on POQDs ([Formula Omitted])/ZnO nanostructures exhibits an outstanding sensing response (~70.6%) as compared to all the sensors for 100 ppm at 150°C. Enhanced sensing response from the POQDs([Formula Omitted])/ZnO nanostructure might be due to the enormous active surface area of POQDs (provides more active sites for hydrogen gas) and modulation of depletion region at the interface of POQDs and ZnO. The proposed sensor can be operated at mild temperature and consume low power which is the need of the hour for the hydrogen sensors for industrial applications.
Author Alwarappan, Subbiah
Valappil, Manila Ozhukil
Kumar, Ashok
Bhati, Vijendra Singh
Kumar, Mahesh
Author_xml – sequence: 1
  givenname: Vijendra Singh
  orcidid: 0000-0001-7003-7667
  surname: Bhati
  fullname: Bhati, Vijendra Singh
  organization: Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, India
– sequence: 2
  givenname: Ashok
  orcidid: 0000-0001-7192-0793
  surname: Kumar
  fullname: Kumar, Ashok
  organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
– sequence: 3
  givenname: Manila Ozhukil
  orcidid: 0000-0003-0973-2091
  surname: Valappil
  fullname: Valappil, Manila Ozhukil
  organization: Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
– sequence: 4
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
  organization: Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India
– sequence: 5
  givenname: Mahesh
  orcidid: 0000-0002-5357-7300
  surname: Kumar
  fullname: Kumar, Mahesh
  email: mkumar@iitj.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
BookMark eNp9kE1PwkAQhjcGEwH9AcZLE8_F_Wi73aMCgoaABkyMl822nUoJ7OLuNpF_bxuIBw-eZjJ5n5nM00MdbTQgdE3wgBAs7p6X4_mAYooHDEdJwuMz1CVxnIaER2mn7RkOI8bfL1DPuQ3GRPCYd9HqZW3cfm0saAgW31UBwWuttK93wch4F4wgN1Z5KIIPvQjmShvnbZ372kL4oFwznx4Kaz5BBxPlgiVoZ-wlOi_V1sHVqfbR2-N4NZyGs8XkaXg_C3MqmA8TXPAoY4RBRsqYZGWGMQXOMQeVi7JMU65ESZkClpU8YiyhScSUSAvFmxhlfXR73Lu35qsG5-XG1FY3JyWNBE3jJBWsSZFjKrfGOQul3Ntqp-xBEixbebKVJ1t58iSvYfgfJq-88pXR3qpq-y95cyQrAPi9JBimSfPpD7NkfmQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1063_5_0151356
crossref_primary_10_1109_TNANO_2024_3413719
crossref_primary_10_1021_acsami_4c10014
crossref_primary_10_1103_PhysRevB_105_245416
crossref_primary_10_1134_S1061934823080087
crossref_primary_10_1016_j_sna_2022_113647
crossref_primary_10_1016_j_molliq_2022_119103
crossref_primary_10_1063_5_0167403
crossref_primary_10_1007_s11581_022_04523_5
crossref_primary_10_1109_TIM_2023_3243681
Cites_doi 10.1021/acs.jpclett.8b03600
10.1103/PhysRevB.91.085407
10.1016/j.snb.2019.03.095
10.1016/j.snb.2019.126693
10.3390/s120709635
10.1021/acscentsci.5b00244
10.1038/s41598-019-43961-6
10.1103/PhysRevB.93.165413
10.1016/j.snb.2016.08.084
10.1021/am5057322
10.1088/1361-6528/aabd72
10.1038/s41598-017-14544-0
10.1016/j.snb.2020.128779
10.1038/ncomms9632
10.1039/C7RA06808E
10.1103/PhysRevLett.114.046801
10.1039/C8CC07266C
10.1016/S1003-6326(18)64923-4
10.1016/j.snb.2017.05.028
10.1039/C4NR05384B
10.1016/j.snb.2019.127437
10.1016/j.snb.2016.07.017
10.1016/S1369-7021(03)00922-2
10.1016/j.snb.2014.08.091
10.1021/jacs.7b08474
10.1007/s10971-018-4841-5
10.1038/35104634
10.1021/am302294v
10.1021/am5073645
10.1063/1.1992666
10.1016/j.snb.2014.05.086
10.1016/1352-2310(95)00219-7
10.1002/anie.201705012
10.1063/1.4926953
10.1016/j.snb.2017.08.106
10.1021/acsami.7b19169
10.1016/j.snb.2014.01.029
10.1016/j.mseb.2017.12.036
10.1016/j.snb.2019.01.146
10.1021/acsami.8b05811
10.1016/j.egyr.2019.08.070
10.1016/j.apsusc.2019.143660
10.1039/C9CP00943D
10.1063/1.5123479
10.1021/acsami.5b01817
10.1021/jz501188k
10.1021/nn501226z
10.1016/j.snb.2015.07.120
10.1063/1.4902520
10.3390/s100302088
10.1021/acsami.6b12501
10.1007/s00604-018-2750-5
10.1016/j.snb.2019.01.077
10.1002/adma.201503825
10.1021/acsami.7b17877
10.1021/acsami.5b08416
10.1088/2053-1583/3/2/025002
10.1039/C5CC10482C
10.1016/j.mseb.2014.10.007
10.1021/acs.jpcc.8b08566
10.1007/s00604-019-3532-4
10.1039/C6NR08810D
10.1016/j.ijhydene.2015.07.086
10.1016/j.matlet.2018.09.129
10.1016/j.orgel.2013.10.012
10.1016/j.snb.2009.10.038
10.1016/S0360-3199(97)00112-2
10.1007/s40820-014-0023-3
10.1021/acsami.7b19334
10.1016/j.snb.2013.12.093
10.1021/acsami.6b16111
10.1021/acsomega.8b01989
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3046675
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 7290
ExternalDocumentID 10_1109_JSEN_2020_3046675
9302631
Genre orig-research
GrantInformation_xml – fundername: Science & Engineering Research Board
  grantid: IMP/2019/000075
  funderid: 10.13039/501100001843
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-60d74b313eb1f51bfb002e7707eac9ff887a9f23ae3bf743362643a98da7e7723
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 07:21:59 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 03:37:00 EDT 2025
Wed Aug 27 02:44:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-60d74b313eb1f51bfb002e7707eac9ff887a9f23ae3bf743362643a98da7e7723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7003-7667
0000-0002-5357-7300
0000-0001-7192-0793
0000-0003-0973-2091
PQID 2492856893
PQPubID 75733
PageCount 8
ParticipantIDs ieee_primary_9302631
crossref_primary_10_1109_JSEN_2020_3046675
proquest_journals_2492856893
crossref_citationtrail_10_1109_JSEN_2020_3046675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
bhati (ref21) 2019; 299
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
özgür (ref11) 2005; 98
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref57
  doi: 10.1021/acs.jpclett.8b03600
– ident: ref45
  doi: 10.1103/PhysRevB.91.085407
– ident: ref12
  doi: 10.1016/j.snb.2019.03.095
– ident: ref66
  doi: 10.1016/j.snb.2019.126693
– ident: ref10
  doi: 10.3390/s120709635
– ident: ref44
  doi: 10.1021/acscentsci.5b00244
– ident: ref61
  doi: 10.1038/s41598-019-43961-6
– ident: ref48
  doi: 10.1103/PhysRevB.93.165413
– ident: ref68
  doi: 10.1016/j.snb.2016.08.084
– ident: ref24
  doi: 10.1021/am5057322
– ident: ref51
  doi: 10.1088/1361-6528/aabd72
– ident: ref19
  doi: 10.1038/s41598-017-14544-0
– ident: ref67
  doi: 10.1016/j.snb.2020.128779
– ident: ref32
  doi: 10.1038/ncomms9632
– ident: ref26
  doi: 10.1039/C7RA06808E
– ident: ref41
  doi: 10.1103/PhysRevLett.114.046801
– ident: ref56
  doi: 10.1039/C8CC07266C
– ident: ref63
  doi: 10.1016/S1003-6326(18)64923-4
– ident: ref5
  doi: 10.1016/j.snb.2017.05.028
– ident: ref42
  doi: 10.1039/C4NR05384B
– ident: ref55
  doi: 10.1016/j.snb.2019.127437
– ident: ref15
  doi: 10.1016/j.snb.2016.07.017
– ident: ref3
  doi: 10.1016/S1369-7021(03)00922-2
– ident: ref23
  doi: 10.1016/j.snb.2014.08.091
– ident: ref50
  doi: 10.1021/jacs.7b08474
– ident: ref65
  doi: 10.1007/s10971-018-4841-5
– ident: ref2
  doi: 10.1038/35104634
– ident: ref13
  doi: 10.1021/am302294v
– ident: ref8
  doi: 10.1021/am5073645
– volume: 98
  year: 2005
  ident: ref11
  article-title: A comprehensive review of ZnO materials and devices
  publication-title: J Appl Phys
  doi: 10.1063/1.1992666
– ident: ref22
  doi: 10.1016/j.snb.2014.05.086
– ident: ref1
  doi: 10.1016/1352-2310(95)00219-7
– ident: ref43
  doi: 10.1002/anie.201705012
– ident: ref59
  doi: 10.1063/1.4926953
– ident: ref25
  doi: 10.1016/j.snb.2017.08.106
– ident: ref37
  doi: 10.1021/acsami.7b19169
– ident: ref54
  doi: 10.1016/j.snb.2014.01.029
– ident: ref58
  doi: 10.1016/j.mseb.2017.12.036
– ident: ref62
  doi: 10.1016/j.snb.2019.01.146
– ident: ref18
  doi: 10.1021/acsami.8b05811
– ident: ref6
  doi: 10.1016/j.egyr.2019.08.070
– ident: ref39
  doi: 10.1016/j.apsusc.2019.143660
– ident: ref38
  doi: 10.1039/C9CP00943D
– ident: ref28
  doi: 10.1063/1.5123479
– ident: ref53
  doi: 10.1021/acsami.5b01817
– ident: ref33
  doi: 10.1021/jz501188k
– ident: ref35
  doi: 10.1021/nn501226z
– ident: ref52
  doi: 10.1016/j.snb.2015.07.120
– ident: ref9
  doi: 10.1063/1.4902520
– ident: ref72
  doi: 10.3390/s100302088
– ident: ref71
  doi: 10.1021/acsami.6b12501
– ident: ref30
  doi: 10.1007/s00604-018-2750-5
– ident: ref16
  doi: 10.1016/j.snb.2019.01.077
– ident: ref29
  doi: 10.1002/adma.201503825
– ident: ref60
  doi: 10.1021/acsami.7b17877
– volume: 299
  year: 2019
  ident: ref21
  article-title: PAN/(PAN-b-PMMA) derived nanoporous carbon nanofibers loaded on ZnO nanostructures for hydrogen detection
  publication-title: Sens Actuators B Chem
– ident: ref7
  doi: 10.1021/acsami.5b08416
– ident: ref34
  doi: 10.1088/2053-1583/3/2/025002
– ident: ref73
  doi: 10.1039/C5CC10482C
– ident: ref14
  doi: 10.1016/j.mseb.2014.10.007
– ident: ref40
  doi: 10.1021/acs.jpcc.8b08566
– ident: ref64
  doi: 10.1007/s00604-019-3532-4
– ident: ref47
  doi: 10.1039/C6NR08810D
– ident: ref69
  doi: 10.1016/j.ijhydene.2015.07.086
– ident: ref20
  doi: 10.1016/j.matlet.2018.09.129
– ident: ref27
  doi: 10.1016/j.orgel.2013.10.012
– ident: ref70
  doi: 10.1016/j.snb.2009.10.038
– ident: ref4
  doi: 10.1016/S0360-3199(97)00112-2
– ident: ref31
  doi: 10.1007/s40820-014-0023-3
– ident: ref36
  doi: 10.1021/acsami.7b19334
– ident: ref17
  doi: 10.1016/j.snb.2013.12.093
– ident: ref46
  doi: 10.1021/acsami.6b16111
– ident: ref49
  doi: 10.1021/acsomega.8b01989
SSID ssj0019757
Score 2.36486
Snippet Pristine ZnO based hydrogen sensors pose low sensitivity (~ 43%) at the operating temperature of 150°. Herein, we explore the decoration of Phosphorene oxide...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7283
SubjectTerms Chemical sensors
Decoration
Depletion
Gas detectors
Gas sensors
heterojunctions
Hydrogen
hydrogen sensor
II-VI semiconductor materials
Industrial applications
Nanostructure
Nanostructures
Operating temperature
Phosphorene
POQDs
Power consumption
Quantum dots
RF sputtering
Sensors
Temperature sensors
Zinc oxide
ZnO
Title Phosphorene Oxide Quantum Dots Decorated ZnO Nanostructure-Based Hydrogen Gas Sensor
URI https://ieeexplore.ieee.org/document/9302631
https://www.proquest.com/docview/2492856893
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7Ui3rwLdYXe_Akbk2z2WxzVFstgi9UKF5CNjtLRW2kbUD99c4maREV8ZbDDCz77c4jO_MNwF6gyYtY2eQqQcWDRCLXaSi4TK1wIaw0RS_MxWXYuQ_Ou7I7BQeTXhhELIrPsO4-i7d8k6W5-1V2GJF66JqmpylxK3u1Ji8GkSpYPekCezwQqlu9YDa86PD8tn1JmaBPCSplg6ErKfzig4qhKj8sceFeThfhYrywsqrkqZ6PdD39-MbZ-N-VL8FCFWeyo_JgLMMU9ldg_gv74ArMVgPQe--rcHfdy4avvcwRXLKrt0eD7CanTc9fWCsbDVnLZakUlhr20L9iZJKzkng2HyA_JkdoWOfdDDI6jewsGbJbSo6zwRrcn7bvTjq8GrjAU_L6Ix56RgVaNAQZcCsb2joXjkp5isxzZC0ZpCSyvkhQaEuhh6OyCUQSNU2iSMwX6zDTz_q4Acx4vpYq0SJNbYAB6UWhrz1r0aLvK6yBN4YgTis2cjcU4zkushIvih1qsUMtrlCrwf5E5bWk4vhLeNWhMBGsAKjB9hjnuLqsw9iRJjZlSJHb5u9aWzDnu1IWV8Ynt2GGNhh3KBYZ6d3iEH4CmVDaaQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB1V5VA48NGCCBTwAS5Im27s9Tp74ACkbfqVgppKEZdlvR4rqCVbZbNqw2_hr_DfGO86UVUQt0rccvAc1jOeNy8evwF4HWlCESu7gcpQBVEmMdB5LAKZW-FKWGnqtzBHg7h_Gu2P5GgFfi7fwiBi3XyGbfezvss3RV65v8q2EjKPRce3UB7g_JIIWvlur0fefMP5zvbwYz_wMwSCnIBsFsShUZEWHUE5ycqOtg6VUKlQUcZJrKUzliWWiwyFtoSmTp0lElnSNZmiZU7WgBL8HaozJG9ehy3vKBJV64hSygiDSKiRvzPthMnW_sn2gLgnJ0pM_DN2TYzXUK8e4_JH7q8BbecB_FpsRdPHctauZrqd_7ihEvm_7tVDuO8rafa-Cf1HsIKTdbh3TV9xHdb8iPfxfAOGn8ZFeTEunIQnO776ZpB9riisqu-sV8xK1nM8nApvw75MjhmBTtFI61ZTDD4Q1BvWn5tpQeeN7WYlOyH6X0wfw-mtfOITWJ0UE3wKzIRcS5Vpkec2wojskpjr0Fq0yLnCFoQLl6e511t3Yz_O05p3hUnqoiR1UZL6KGnB26XJRSM28q_FG87ry4Xe4S3YXMRV6tNRmTpZyK6MqTZ99nerV7DWHx4dpod7g4PncJe7xh3XtCg3YZU2G19Q5TXTL-sDwODrbUfRb7tmN74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorene+Oxide+Quantum+Dots+Decorated+ZnO+Nanostructure-Based+Hydrogen+Gas+Sensor&rft.jtitle=IEEE+sensors+journal&rft.au=Vijendra+Singh+Bhati&rft.au=Kumar%2C+Ashok&rft.au=Valappil%2C+Manila+Ozhukil&rft.au=Subbiah+Alwarappan&rft.date=2021-03-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=6&rft.spage=7283&rft_id=info:doi/10.1109%2FJSEN.2020.3046675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon