Fiber-Optic Hydrogen Sensors: A Review
Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 11; pp. 12706 - 12718 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO 3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed. |
---|---|
AbstractList | Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed. Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO 3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed. |
Author | Wang, Gaopeng Yang, Minghong Dai, Jixiang |
Author_xml | – sequence: 1 givenname: Gaopeng surname: Wang fullname: Wang, Gaopeng organization: College of Material Sciences, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Jixiang surname: Dai fullname: Dai, Jixiang organization: National Engineering Laboratory for Fiber-Optic Sensing Technology, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Minghong orcidid: 0000-0001-7423-385X surname: Yang fullname: Yang, Minghong email: minghong.yang@whut.edu.cn organization: National Engineering Laboratory for Fiber-Optic Sensing Technology, Wuhan University of Technology, Wuhan, China |
BookMark | eNp9kEFLwzAUgINMcJv-APFSELy15iXN0ngbY3PKcOAUvIU0SSVjNjPplP17WzY8ePD03uH73oNvgHq1ry1Cl4AzACxuH1fTp4xggjOKiWAgTlAfGCtS4HnR63aK05zytzM0iHGNMQjOeB_dzFxpQ7rcNk4n870J_t3WycrW0Yd4l4yTZ_vl7Pc5Oq3UJtqL4xyi19n0ZTJPF8v7h8l4kWoiaJOyiltQhjCCqbIjY6DEWAswpapKJiqmKo4ZE9oAL0eq0FABocAMVaTMGaFDdH24uw3-c2djI9d-F-r2pSSM0lwAKfKW4gdKBx9jsJXUrlGN83UTlNtIwLKLIrsososij1FaE_6Y2-A-VNj_61wdHGet_eUFacvmhP4A-sFtEg |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1016_j_snb_2025_137229 crossref_primary_10_1016_j_surfin_2022_102074 crossref_primary_10_3390_s24206637 crossref_primary_10_1002_lpor_202400179 crossref_primary_10_1007_s13320_025_0750_8 crossref_primary_10_1109_JSEN_2024_3504502 crossref_primary_10_1149_2754_2726_ad0736 crossref_primary_10_1016_j_optcom_2024_131291 crossref_primary_10_1021_acssensors_4c00251 crossref_primary_10_1364_OE_538312 crossref_primary_10_1364_OL_474083 crossref_primary_10_3390_nano13182563 crossref_primary_10_1016_j_photonics_2025_101355 crossref_primary_10_3390_s22020485 crossref_primary_10_3390_photonics10020122 crossref_primary_10_1364_AO_504686 crossref_primary_10_1007_s00339_024_07905_w crossref_primary_10_1109_JLT_2023_3338848 crossref_primary_10_1364_OE_493033 crossref_primary_10_3390_nano15060440 crossref_primary_10_1002_admt_202201273 crossref_primary_10_1016_j_optlaseng_2023_107518 crossref_primary_10_1016_j_saa_2024_124727 crossref_primary_10_1109_JSEN_2024_3503665 crossref_primary_10_3390_electronics12040830 crossref_primary_10_1109_JSEN_2023_3244698 crossref_primary_10_1364_OE_482473 crossref_primary_10_1364_OE_518672 crossref_primary_10_1016_j_ijhydene_2024_07_230 crossref_primary_10_1016_j_sna_2023_114594 crossref_primary_10_1016_j_snb_2023_135250 crossref_primary_10_1016_j_nxmate_2024_100298 crossref_primary_10_1016_j_optlastec_2024_110850 crossref_primary_10_1360_TB_2022_0297 crossref_primary_10_1109_JSEN_2024_3447016 crossref_primary_10_1364_AO_471473 crossref_primary_10_3390_s24103146 crossref_primary_10_1016_j_optlastec_2024_110955 crossref_primary_10_1016_j_ijhydene_2025_01_112 crossref_primary_10_1016_j_physe_2022_115464 crossref_primary_10_3390_mi13122219 crossref_primary_10_1117_1_OE_63_3_036102 crossref_primary_10_1016_j_sna_2024_115440 crossref_primary_10_1007_s11664_024_11604_w crossref_primary_10_1002_adfm_202112379 crossref_primary_10_1016_j_snb_2024_136322 crossref_primary_10_1038_s41377_023_01123_4 |
Cites_doi | 10.1016/S0925-4005(00)00330-0 10.1016/j.optcom.2015.09.041 10.1021/acssensors.9b01074 10.1109/LEOS.1994.586465 10.1109/JSEN.2019.2950505 10.1063/1.1927690 10.1109/LPT.2017.2701840 10.1109/JSEN.2019.2957838 10.1016/j.snb.2008.12.019 10.1016/j.ijhydene.2014.05.042 10.1364/OE.25.008777 10.1016/S0925-4005(00)00728-0 10.1016/j.snb.2017.03.155 10.3390/s17030577 10.1364/OE.23.022826 10.1109/JLT.2018.2807789 10.1109/JSEN.2019.2891523 10.1364/OL.44.004773 10.1016/j.snb.2013.09.080 10.1016/j.snb.2012.04.066 10.1016/j.snb.2014.03.048 10.1021/ac0494883 10.1109/LPT.2004.829760 10.1109/JSEN.2019.2942599 10.1016/j.snb.2011.01.033 10.1021/acsami.5b01858 10.1364/OME.8.001493 10.1016/j.snb.2011.04.070 10.1016/j.snb.2018.05.060 10.1016/j.snb.2017.02.084 10.1016/j.snb.2011.05.008 10.1364/OE.16.016854 10.1016/j.optcom.2017.12.012 10.1016/j.snb.2014.09.093 10.1016/j.yofte.2012.09.006 10.1016/j.yofte.2019.101979 10.1109/LPT.2009.2030685 10.1016/S0925-4005(03)00211-9 10.1016/j.snb.2017.11.180 10.1039/C8NR03751E 10.1016/j.ijhydene.2019.08.143 10.1364/OE.19.006141 10.1016/j.snb.2005.01.009 10.1063/1.95060 10.1109/LPT.2015.2466614 10.1364/OPEX.13.005087 10.1364/AO.57.008011 10.1016/S0925-4005(99)00240-3 10.1364/OL.389433 10.1364/OE.21.000382 10.1364/OE.19.0A1175 10.1016/j.snb.2012.07.018 10.1016/j.snb.2018.08.019 10.1016/j.snb.2017.01.004 10.1016/j.snb.2012.07.120 10.1016/j.optlaseng.2009.04.002 10.1109/JSEN.2017.2735193 10.1016/j.snb.2013.04.072 10.1039/C9NR04274A 10.1016/j.snb.2006.09.058 10.1002/anie.201406911 10.1016/j.snb.2014.02.069 10.1109/JLT.2017.2713038 10.1016/j.ijhydene.2010.04.176 10.1063/1.3571302 10.1016/S0925-4005(00)00391-9 10.1063/1.341414 10.1364/JOSAB.36.003471 10.1016/j.snb.2017.09.124 10.1109/LPT.2006.888973 10.1016/j.snb.2004.11.100 10.1016/j.snb.2007.09.032 10.1364/OL.41.001594 10.1117/12.970177 10.1016/S0925-4005(00)00407-X 10.1016/j.snb.2004.11.068 10.1149/1.2086073 10.1103/PhysRevLett.93.197404 10.1016/j.snb.2013.08.083 10.1016/j.snb.2020.127813 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3029519 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 12718 |
ExternalDocumentID | 10_1109_JSEN_2020_3029519 9217442 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61515751 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-5f7e1ad25203ae6dd1b00c91dbafb59f5af70559cd17b6a8c1f12315d3a2b4523 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:24:22 EDT 2025 Tue Jul 01 03:36:58 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Wed Aug 27 02:30:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-5f7e1ad25203ae6dd1b00c91dbafb59f5af70559cd17b6a8c1f12315d3a2b4523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7423-385X |
PQID | 2533491284 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2533491284 ieee_primary_9217442 crossref_citationtrail_10_1109_JSEN_2020_3029519 crossref_primary_10_1109_JSEN_2020_3029519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref38 doi: 10.1016/S0925-4005(00)00330-0 – ident: ref21 doi: 10.1016/j.optcom.2015.09.041 – ident: ref51 doi: 10.1021/acssensors.9b01074 – ident: ref27 doi: 10.1109/LEOS.1994.586465 – ident: ref68 doi: 10.1109/JSEN.2019.2950505 – ident: ref10 doi: 10.1063/1.1927690 – ident: ref79 doi: 10.1109/LPT.2017.2701840 – ident: ref44 doi: 10.1109/JSEN.2019.2957838 – ident: ref23 doi: 10.1016/j.snb.2008.12.019 – ident: ref6 doi: 10.1016/j.ijhydene.2014.05.042 – ident: ref74 doi: 10.1364/OE.25.008777 – ident: ref45 doi: 10.1016/S0925-4005(00)00728-0 – ident: ref29 doi: 10.1016/j.snb.2017.03.155 – ident: ref55 doi: 10.3390/s17030577 – ident: ref20 doi: 10.1364/OE.23.022826 – ident: ref73 doi: 10.1109/JLT.2018.2807789 – ident: ref70 doi: 10.1109/JSEN.2019.2891523 – ident: ref50 doi: 10.1364/OL.44.004773 – ident: ref13 doi: 10.1016/j.snb.2013.09.080 – ident: ref24 doi: 10.1016/j.snb.2012.04.066 – ident: ref16 doi: 10.1016/j.snb.2014.03.048 – ident: ref9 doi: 10.1021/ac0494883 – ident: ref76 doi: 10.1109/LPT.2004.829760 – ident: ref47 doi: 10.1109/JSEN.2019.2942599 – ident: ref34 doi: 10.1016/j.snb.2011.01.033 – ident: ref1 doi: 10.1021/acsami.5b01858 – ident: ref61 doi: 10.1364/OME.8.001493 – ident: ref4 doi: 10.1016/j.snb.2011.04.070 – ident: ref62 doi: 10.1016/j.snb.2018.05.060 – ident: ref43 doi: 10.1016/j.snb.2017.02.084 – ident: ref18 doi: 10.1016/j.snb.2011.05.008 – ident: ref53 doi: 10.1364/OE.16.016854 – ident: ref67 doi: 10.1016/j.optcom.2017.12.012 – ident: ref35 doi: 10.1016/j.snb.2014.09.093 – ident: ref60 doi: 10.1016/j.yofte.2012.09.006 – ident: ref80 doi: 10.1016/j.yofte.2019.101979 – ident: ref78 doi: 10.1109/LPT.2009.2030685 – ident: ref39 doi: 10.1016/S0925-4005(03)00211-9 – ident: ref71 doi: 10.1016/j.snb.2017.11.180 – ident: ref69 doi: 10.1039/C8NR03751E – ident: ref12 doi: 10.1016/j.ijhydene.2019.08.143 – ident: ref58 doi: 10.1364/OE.19.006141 – ident: ref41 doi: 10.1016/j.snb.2005.01.009 – ident: ref25 doi: 10.1063/1.95060 – ident: ref22 doi: 10.1109/LPT.2015.2466614 – ident: ref40 doi: 10.1364/OPEX.13.005087 – ident: ref75 doi: 10.1364/AO.57.008011 – ident: ref52 doi: 10.1016/S0925-4005(99)00240-3 – ident: ref64 doi: 10.1364/OL.389433 – ident: ref49 doi: 10.1364/OE.21.000382 – ident: ref48 doi: 10.1364/OE.19.0A1175 – ident: ref59 doi: 10.1016/j.snb.2012.07.018 – ident: ref63 doi: 10.1016/j.snb.2018.08.019 – ident: ref2 doi: 10.1016/j.snb.2017.01.004 – ident: ref19 doi: 10.1016/j.snb.2012.07.120 – ident: ref11 doi: 10.1016/j.optlaseng.2009.04.002 – ident: ref5 doi: 10.1109/JSEN.2017.2735193 – ident: ref46 doi: 10.1016/j.snb.2013.04.072 – ident: ref65 doi: 10.1039/C9NR04274A – ident: ref33 doi: 10.1016/j.snb.2006.09.058 – ident: ref15 doi: 10.1002/anie.201406911 – ident: ref57 doi: 10.1016/j.snb.2014.02.069 – ident: ref72 doi: 10.1109/JLT.2017.2713038 – ident: ref7 doi: 10.1016/j.ijhydene.2010.04.176 – ident: ref17 doi: 10.1063/1.3571302 – ident: ref37 doi: 10.1016/S0925-4005(00)00391-9 – ident: ref26 doi: 10.1063/1.341414 – ident: ref36 doi: 10.1364/JOSAB.36.003471 – ident: ref66 doi: 10.1016/j.snb.2017.09.124 – ident: ref77 doi: 10.1109/LPT.2006.888973 – ident: ref8 doi: 10.1016/j.snb.2004.11.100 – ident: ref32 doi: 10.1016/j.snb.2007.09.032 – ident: ref28 doi: 10.1364/OL.41.001594 – ident: ref56 doi: 10.1117/12.970177 – ident: ref31 doi: 10.1016/S0925-4005(00)00407-X – ident: ref42 doi: 10.1016/j.snb.2004.11.068 – ident: ref30 doi: 10.1149/1.2086073 – ident: ref14 doi: 10.1103/PhysRevLett.93.197404 – ident: ref54 doi: 10.1016/j.snb.2013.08.083 – ident: ref3 doi: 10.1016/j.snb.2020.127813 |
SSID | ssj0019757 |
Score | 2.5235248 |
SecondaryResourceType | review_article |
Snippet | Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12706 |
SubjectTerms | Bragg gratings Chemical sensors Fiber optics Hydrogen Metals microstructure nanostructures Optical fiber polarization Optical fiber sensors Optical fibers Optical interferometry palladium alloys Sensors Temperature sensors tungsten trioxide |
Title | Fiber-Optic Hydrogen Sensors: A Review |
URI | https://ieeexplore.ieee.org/document/9217442 https://www.proquest.com/docview/2533491284 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qL-rBR6tYrbIH8SCmTbKvxluRllJoPdRCb8tuHghKV_o41F_vZHe7-EK85ZBAyCQz82VmvgG4Fq5gkruCBKYTEEuoRIQKGDGxRGXohZJTW5w8GgeDqTec-bMK3JW1MFrrLPlMt-wwi-WrVK7tV1lbWP_ZQ4W7g8Atr9UqIwYizFg98QFT4rnhrIhgMiraw0lvjEiQI0ClHD0K8cUGZU1VfmjizLz0D2G03VieVfLSWq-Slnz_xtn4350fwUHhZzrd_GIcQ0XPa7D_iX2wBrtFA_TnTR1u-jZzhDyiApHOYKMWKV4sZ4IYN10s752uk8cQTmDa7z09DEjRQoFItOMr4ptQs1hxn1M31oFSDJ-ZFEwlsUl8YfzYWDodIRULkyDuSGbQlDFfuTFPPASpp1Cdp3N9Bo6rkw6N3U5ic_8RpAhXBuh-hcZQ7fuhbADdHmokC35x2-biNcpwBhWRlUNk5RAVcmjAbbnkLSfX-Gty3Z5rObE40gY0t5KLiue3jLgtMBbW9J7_vuoC9rhNTsm-U5pQXS3W-hK9i1VylV2rD71_x2Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBVxWrVfcgHsS0SXaz23gTaamP1kNb6G3ZzQNBaaWPQ_31Tna3xRfiLYcEwkzmlZn5BuBc-pIp7ksS2npIHKASkTpkxCYKlWEQKU5dc3K7E7b6wf1ADFbgatkLY4zJis9M1S2zXL4eqZn7KqtJ5z8HqHDX0O4LlndrLXMGMspwPVGEKQn8aFDkMBmVtftuo4OxIMcQlXL0KeQXK5SNVfmhizMD09yG9uJqeV3JS3U2Tavq_Rtq43_vvgNbhafp3eRPYxdWzHAPNj_hD-7BejEC_Xlegoumqx0hT6hClNea6_EIn5bXxSh3NJ5cezdenkXYh36z0bttkWKIAlFoyadE2MiwRHPBqZ-YUGuGgqYk02liUyGtSKwD1JFKsygNk7piFo0ZE9pPeBpgmHoAq8PR0ByC55u0ThO_nrrqfwxTpK9CZERkLTVCRKoMdEHUWBUI427QxWucRRpUxo4PseNDXPChDJfLI285vMZfm0uOrsuNBUnLUFlwLi4EcBJz12IsnfE9-v3UGay3eu3H-PGu83AMG9yVqmSfKxVYnY5n5gR9jWl6mj2xD1Uvyq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber-Optic+Hydrogen+Sensors%3A+A+Review&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Gaopeng&rft.au=Dai%2C+Jixiang&rft.au=Yang%2C+Minghong&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=11&rft.spage=12706&rft_id=info:doi/10.1109%2FJSEN.2020.3029519&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |