Fiber-Optic Hydrogen Sensors: A Review

Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 11; pp. 12706 - 12718
Main Authors Wang, Gaopeng, Dai, Jixiang, Yang, Minghong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO 3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed.
AbstractList Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed.
Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades, varieties of optical fiber hydrogen sensors have been proposed, which could be categorized into five types, including interference type, micromirror type, evanescent field type, surface plasmon resonance type, and fiber Bragg grating type. This review focuses on the representative of the above five types of hydrogen sensors, based on Pd alloy or/and WO 3 sensitive materials. Whereas, their structures, characteristics, and sensing performances are critically overviewed.
Author Wang, Gaopeng
Yang, Minghong
Dai, Jixiang
Author_xml – sequence: 1
  givenname: Gaopeng
  surname: Wang
  fullname: Wang, Gaopeng
  organization: College of Material Sciences, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Jixiang
  surname: Dai
  fullname: Dai, Jixiang
  organization: National Engineering Laboratory for Fiber-Optic Sensing Technology, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Minghong
  orcidid: 0000-0001-7423-385X
  surname: Yang
  fullname: Yang, Minghong
  email: minghong.yang@whut.edu.cn
  organization: National Engineering Laboratory for Fiber-Optic Sensing Technology, Wuhan University of Technology, Wuhan, China
BookMark eNp9kEFLwzAUgINMcJv-APFSELy15iXN0ngbY3PKcOAUvIU0SSVjNjPplP17WzY8ePD03uH73oNvgHq1ry1Cl4AzACxuH1fTp4xggjOKiWAgTlAfGCtS4HnR63aK05zytzM0iHGNMQjOeB_dzFxpQ7rcNk4n870J_t3WycrW0Yd4l4yTZ_vl7Pc5Oq3UJtqL4xyi19n0ZTJPF8v7h8l4kWoiaJOyiltQhjCCqbIjY6DEWAswpapKJiqmKo4ZE9oAL0eq0FABocAMVaTMGaFDdH24uw3-c2djI9d-F-r2pSSM0lwAKfKW4gdKBx9jsJXUrlGN83UTlNtIwLKLIrsososij1FaE_6Y2-A-VNj_61wdHGet_eUFacvmhP4A-sFtEg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_snb_2025_137229
crossref_primary_10_1016_j_surfin_2022_102074
crossref_primary_10_3390_s24206637
crossref_primary_10_1002_lpor_202400179
crossref_primary_10_1007_s13320_025_0750_8
crossref_primary_10_1109_JSEN_2024_3504502
crossref_primary_10_1149_2754_2726_ad0736
crossref_primary_10_1016_j_optcom_2024_131291
crossref_primary_10_1021_acssensors_4c00251
crossref_primary_10_1364_OE_538312
crossref_primary_10_1364_OL_474083
crossref_primary_10_3390_nano13182563
crossref_primary_10_1016_j_photonics_2025_101355
crossref_primary_10_3390_s22020485
crossref_primary_10_3390_photonics10020122
crossref_primary_10_1364_AO_504686
crossref_primary_10_1007_s00339_024_07905_w
crossref_primary_10_1109_JLT_2023_3338848
crossref_primary_10_1364_OE_493033
crossref_primary_10_3390_nano15060440
crossref_primary_10_1002_admt_202201273
crossref_primary_10_1016_j_optlaseng_2023_107518
crossref_primary_10_1016_j_saa_2024_124727
crossref_primary_10_1109_JSEN_2024_3503665
crossref_primary_10_3390_electronics12040830
crossref_primary_10_1109_JSEN_2023_3244698
crossref_primary_10_1364_OE_482473
crossref_primary_10_1364_OE_518672
crossref_primary_10_1016_j_ijhydene_2024_07_230
crossref_primary_10_1016_j_sna_2023_114594
crossref_primary_10_1016_j_snb_2023_135250
crossref_primary_10_1016_j_nxmate_2024_100298
crossref_primary_10_1016_j_optlastec_2024_110850
crossref_primary_10_1360_TB_2022_0297
crossref_primary_10_1109_JSEN_2024_3447016
crossref_primary_10_1364_AO_471473
crossref_primary_10_3390_s24103146
crossref_primary_10_1016_j_optlastec_2024_110955
crossref_primary_10_1016_j_ijhydene_2025_01_112
crossref_primary_10_1016_j_physe_2022_115464
crossref_primary_10_3390_mi13122219
crossref_primary_10_1117_1_OE_63_3_036102
crossref_primary_10_1016_j_sna_2024_115440
crossref_primary_10_1007_s11664_024_11604_w
crossref_primary_10_1002_adfm_202112379
crossref_primary_10_1016_j_snb_2024_136322
crossref_primary_10_1038_s41377_023_01123_4
Cites_doi 10.1016/S0925-4005(00)00330-0
10.1016/j.optcom.2015.09.041
10.1021/acssensors.9b01074
10.1109/LEOS.1994.586465
10.1109/JSEN.2019.2950505
10.1063/1.1927690
10.1109/LPT.2017.2701840
10.1109/JSEN.2019.2957838
10.1016/j.snb.2008.12.019
10.1016/j.ijhydene.2014.05.042
10.1364/OE.25.008777
10.1016/S0925-4005(00)00728-0
10.1016/j.snb.2017.03.155
10.3390/s17030577
10.1364/OE.23.022826
10.1109/JLT.2018.2807789
10.1109/JSEN.2019.2891523
10.1364/OL.44.004773
10.1016/j.snb.2013.09.080
10.1016/j.snb.2012.04.066
10.1016/j.snb.2014.03.048
10.1021/ac0494883
10.1109/LPT.2004.829760
10.1109/JSEN.2019.2942599
10.1016/j.snb.2011.01.033
10.1021/acsami.5b01858
10.1364/OME.8.001493
10.1016/j.snb.2011.04.070
10.1016/j.snb.2018.05.060
10.1016/j.snb.2017.02.084
10.1016/j.snb.2011.05.008
10.1364/OE.16.016854
10.1016/j.optcom.2017.12.012
10.1016/j.snb.2014.09.093
10.1016/j.yofte.2012.09.006
10.1016/j.yofte.2019.101979
10.1109/LPT.2009.2030685
10.1016/S0925-4005(03)00211-9
10.1016/j.snb.2017.11.180
10.1039/C8NR03751E
10.1016/j.ijhydene.2019.08.143
10.1364/OE.19.006141
10.1016/j.snb.2005.01.009
10.1063/1.95060
10.1109/LPT.2015.2466614
10.1364/OPEX.13.005087
10.1364/AO.57.008011
10.1016/S0925-4005(99)00240-3
10.1364/OL.389433
10.1364/OE.21.000382
10.1364/OE.19.0A1175
10.1016/j.snb.2012.07.018
10.1016/j.snb.2018.08.019
10.1016/j.snb.2017.01.004
10.1016/j.snb.2012.07.120
10.1016/j.optlaseng.2009.04.002
10.1109/JSEN.2017.2735193
10.1016/j.snb.2013.04.072
10.1039/C9NR04274A
10.1016/j.snb.2006.09.058
10.1002/anie.201406911
10.1016/j.snb.2014.02.069
10.1109/JLT.2017.2713038
10.1016/j.ijhydene.2010.04.176
10.1063/1.3571302
10.1016/S0925-4005(00)00391-9
10.1063/1.341414
10.1364/JOSAB.36.003471
10.1016/j.snb.2017.09.124
10.1109/LPT.2006.888973
10.1016/j.snb.2004.11.100
10.1016/j.snb.2007.09.032
10.1364/OL.41.001594
10.1117/12.970177
10.1016/S0925-4005(00)00407-X
10.1016/j.snb.2004.11.068
10.1149/1.2086073
10.1103/PhysRevLett.93.197404
10.1016/j.snb.2013.08.083
10.1016/j.snb.2020.127813
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3029519
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 12718
ExternalDocumentID 10_1109_JSEN_2020_3029519
9217442
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61515751
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-5f7e1ad25203ae6dd1b00c91dbafb59f5af70559cd17b6a8c1f12315d3a2b4523
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:24:22 EDT 2025
Tue Jul 01 03:36:58 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Wed Aug 27 02:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-5f7e1ad25203ae6dd1b00c91dbafb59f5af70559cd17b6a8c1f12315d3a2b4523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7423-385X
PQID 2533491284
PQPubID 75733
PageCount 13
ParticipantIDs proquest_journals_2533491284
ieee_primary_9217442
crossref_citationtrail_10_1109_JSEN_2020_3029519
crossref_primary_10_1109_JSEN_2020_3029519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref80
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref38
  doi: 10.1016/S0925-4005(00)00330-0
– ident: ref21
  doi: 10.1016/j.optcom.2015.09.041
– ident: ref51
  doi: 10.1021/acssensors.9b01074
– ident: ref27
  doi: 10.1109/LEOS.1994.586465
– ident: ref68
  doi: 10.1109/JSEN.2019.2950505
– ident: ref10
  doi: 10.1063/1.1927690
– ident: ref79
  doi: 10.1109/LPT.2017.2701840
– ident: ref44
  doi: 10.1109/JSEN.2019.2957838
– ident: ref23
  doi: 10.1016/j.snb.2008.12.019
– ident: ref6
  doi: 10.1016/j.ijhydene.2014.05.042
– ident: ref74
  doi: 10.1364/OE.25.008777
– ident: ref45
  doi: 10.1016/S0925-4005(00)00728-0
– ident: ref29
  doi: 10.1016/j.snb.2017.03.155
– ident: ref55
  doi: 10.3390/s17030577
– ident: ref20
  doi: 10.1364/OE.23.022826
– ident: ref73
  doi: 10.1109/JLT.2018.2807789
– ident: ref70
  doi: 10.1109/JSEN.2019.2891523
– ident: ref50
  doi: 10.1364/OL.44.004773
– ident: ref13
  doi: 10.1016/j.snb.2013.09.080
– ident: ref24
  doi: 10.1016/j.snb.2012.04.066
– ident: ref16
  doi: 10.1016/j.snb.2014.03.048
– ident: ref9
  doi: 10.1021/ac0494883
– ident: ref76
  doi: 10.1109/LPT.2004.829760
– ident: ref47
  doi: 10.1109/JSEN.2019.2942599
– ident: ref34
  doi: 10.1016/j.snb.2011.01.033
– ident: ref1
  doi: 10.1021/acsami.5b01858
– ident: ref61
  doi: 10.1364/OME.8.001493
– ident: ref4
  doi: 10.1016/j.snb.2011.04.070
– ident: ref62
  doi: 10.1016/j.snb.2018.05.060
– ident: ref43
  doi: 10.1016/j.snb.2017.02.084
– ident: ref18
  doi: 10.1016/j.snb.2011.05.008
– ident: ref53
  doi: 10.1364/OE.16.016854
– ident: ref67
  doi: 10.1016/j.optcom.2017.12.012
– ident: ref35
  doi: 10.1016/j.snb.2014.09.093
– ident: ref60
  doi: 10.1016/j.yofte.2012.09.006
– ident: ref80
  doi: 10.1016/j.yofte.2019.101979
– ident: ref78
  doi: 10.1109/LPT.2009.2030685
– ident: ref39
  doi: 10.1016/S0925-4005(03)00211-9
– ident: ref71
  doi: 10.1016/j.snb.2017.11.180
– ident: ref69
  doi: 10.1039/C8NR03751E
– ident: ref12
  doi: 10.1016/j.ijhydene.2019.08.143
– ident: ref58
  doi: 10.1364/OE.19.006141
– ident: ref41
  doi: 10.1016/j.snb.2005.01.009
– ident: ref25
  doi: 10.1063/1.95060
– ident: ref22
  doi: 10.1109/LPT.2015.2466614
– ident: ref40
  doi: 10.1364/OPEX.13.005087
– ident: ref75
  doi: 10.1364/AO.57.008011
– ident: ref52
  doi: 10.1016/S0925-4005(99)00240-3
– ident: ref64
  doi: 10.1364/OL.389433
– ident: ref49
  doi: 10.1364/OE.21.000382
– ident: ref48
  doi: 10.1364/OE.19.0A1175
– ident: ref59
  doi: 10.1016/j.snb.2012.07.018
– ident: ref63
  doi: 10.1016/j.snb.2018.08.019
– ident: ref2
  doi: 10.1016/j.snb.2017.01.004
– ident: ref19
  doi: 10.1016/j.snb.2012.07.120
– ident: ref11
  doi: 10.1016/j.optlaseng.2009.04.002
– ident: ref5
  doi: 10.1109/JSEN.2017.2735193
– ident: ref46
  doi: 10.1016/j.snb.2013.04.072
– ident: ref65
  doi: 10.1039/C9NR04274A
– ident: ref33
  doi: 10.1016/j.snb.2006.09.058
– ident: ref15
  doi: 10.1002/anie.201406911
– ident: ref57
  doi: 10.1016/j.snb.2014.02.069
– ident: ref72
  doi: 10.1109/JLT.2017.2713038
– ident: ref7
  doi: 10.1016/j.ijhydene.2010.04.176
– ident: ref17
  doi: 10.1063/1.3571302
– ident: ref37
  doi: 10.1016/S0925-4005(00)00391-9
– ident: ref26
  doi: 10.1063/1.341414
– ident: ref36
  doi: 10.1364/JOSAB.36.003471
– ident: ref66
  doi: 10.1016/j.snb.2017.09.124
– ident: ref77
  doi: 10.1109/LPT.2006.888973
– ident: ref8
  doi: 10.1016/j.snb.2004.11.100
– ident: ref32
  doi: 10.1016/j.snb.2007.09.032
– ident: ref28
  doi: 10.1364/OL.41.001594
– ident: ref56
  doi: 10.1117/12.970177
– ident: ref31
  doi: 10.1016/S0925-4005(00)00407-X
– ident: ref42
  doi: 10.1016/j.snb.2004.11.068
– ident: ref30
  doi: 10.1149/1.2086073
– ident: ref14
  doi: 10.1103/PhysRevLett.93.197404
– ident: ref54
  doi: 10.1016/j.snb.2013.08.083
– ident: ref3
  doi: 10.1016/j.snb.2020.127813
SSID ssj0019757
Score 2.5235248
SecondaryResourceType review_article
Snippet Optical fiber hydrogen sensor has become a research hotspot once proposed, since its unique properties of intrinsic safety. In the past three decades,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12706
SubjectTerms Bragg gratings
Chemical sensors
Fiber optics
Hydrogen
Metals
microstructure
nanostructures
Optical fiber polarization
Optical fiber sensors
Optical fibers
Optical interferometry
palladium alloys
Sensors
Temperature sensors
tungsten trioxide
Title Fiber-Optic Hydrogen Sensors: A Review
URI https://ieeexplore.ieee.org/document/9217442
https://www.proquest.com/docview/2533491284
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qL-rBR6tYrbIH8SCmTbKvxluRllJoPdRCb8tuHghKV_o41F_vZHe7-EK85ZBAyCQz82VmvgG4Fq5gkruCBKYTEEuoRIQKGDGxRGXohZJTW5w8GgeDqTec-bMK3JW1MFrrLPlMt-wwi-WrVK7tV1lbWP_ZQ4W7g8Atr9UqIwYizFg98QFT4rnhrIhgMiraw0lvjEiQI0ClHD0K8cUGZU1VfmjizLz0D2G03VieVfLSWq-Slnz_xtn4350fwUHhZzrd_GIcQ0XPa7D_iX2wBrtFA_TnTR1u-jZzhDyiApHOYKMWKV4sZ4IYN10s752uk8cQTmDa7z09DEjRQoFItOMr4ptQs1hxn1M31oFSDJ-ZFEwlsUl8YfzYWDodIRULkyDuSGbQlDFfuTFPPASpp1Cdp3N9Bo6rkw6N3U5ic_8RpAhXBuh-hcZQ7fuhbADdHmokC35x2-biNcpwBhWRlUNk5RAVcmjAbbnkLSfX-Gty3Z5rObE40gY0t5KLiue3jLgtMBbW9J7_vuoC9rhNTsm-U5pQXS3W-hK9i1VylV2rD71_x2Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBVxWrVfcgHsS0SXaz23gTaamP1kNb6G3ZzQNBaaWPQ_31Tna3xRfiLYcEwkzmlZn5BuBc-pIp7ksS2npIHKASkTpkxCYKlWEQKU5dc3K7E7b6wf1ADFbgatkLY4zJis9M1S2zXL4eqZn7KqtJ5z8HqHDX0O4LlndrLXMGMspwPVGEKQn8aFDkMBmVtftuo4OxIMcQlXL0KeQXK5SNVfmhizMD09yG9uJqeV3JS3U2Tavq_Rtq43_vvgNbhafp3eRPYxdWzHAPNj_hD-7BejEC_Xlegoumqx0hT6hClNea6_EIn5bXxSh3NJ5cezdenkXYh36z0bttkWKIAlFoyadE2MiwRHPBqZ-YUGuGgqYk02liUyGtSKwD1JFKsygNk7piFo0ZE9pPeBpgmHoAq8PR0ByC55u0ThO_nrrqfwxTpK9CZERkLTVCRKoMdEHUWBUI427QxWucRRpUxo4PseNDXPChDJfLI285vMZfm0uOrsuNBUnLUFlwLi4EcBJz12IsnfE9-v3UGay3eu3H-PGu83AMG9yVqmSfKxVYnY5n5gR9jWl6mj2xD1Uvyq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber-Optic+Hydrogen+Sensors%3A+A+Review&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Gaopeng&rft.au=Dai%2C+Jixiang&rft.au=Yang%2C+Minghong&rft.date=2021-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=11&rft.spage=12706&rft_id=info:doi/10.1109%2FJSEN.2020.3029519&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon