Distributed Formation and Reconfiguration Control of VTOL UAVs
In this brief, a novel distributed cascade robust feedback control approach is proposed for formation and reconfiguration control of a team of vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). This approach is based on dynamic communication network. It guarantees intervehicle collisi...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 25; no. 1; pp. 270 - 277 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2016.2547952 |
Cover
Loading…
Abstract | In this brief, a novel distributed cascade robust feedback control approach is proposed for formation and reconfiguration control of a team of vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). This approach is based on dynamic communication network. It guarantees intervehicle collision avoidance and considers dynamic constraints of UAVs. In the outer loop of the cascade formation control, a potential field approach is used to generate a desired velocity for each UAV, which ensures that the team of UAVs can perform formation flying, formation rotating and reconfiguration, avoid intervehicle collision, as well as track a specified virtual leader. In the inner loop of the cascade formation control, the velocity of each UAV is designed to track its desired velocity generated by the outer loop, subject to dynamic constraints. The proposed approach is demonstrated via both simulation and flight test. |
---|---|
AbstractList | In this brief, a novel distributed cascade robust feedback control approach is proposed for formation and reconfiguration control of a team of vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). This approach is based on dynamic communication network. It guarantees intervehicle collision avoidance and considers dynamic constraints of UAVs. In the outer loop of the cascade formation control, a potential field approach is used to generate a desired velocity for each UAV, which ensures that the team of UAVs can perform formation flying, formation rotating and reconfiguration, avoid intervehicle collision, as well as track a specified virtual leader. In the inner loop of the cascade formation control, the velocity of each UAV is designed to track its desired velocity generated by the outer loop, subject to dynamic constraints. The proposed approach is demonstrated via both simulation and flight test. |
Author | Jian Liang Wang Teo, Rodney Feng Lin Kemao Peng Fang Liao Xiangxu Dong |
Author_xml | – sequence: 1 surname: Fang Liao fullname: Fang Liao email: tsllf@nus.edu.sg organization: Temasek Labs., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 2 givenname: Rodney surname: Teo fullname: Teo, Rodney email: tsltshr@nus.edu.sg organization: Temasek Labs., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 3 surname: Jian Liang Wang fullname: Jian Liang Wang email: ejlwang@ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 4 surname: Xiangxu Dong fullname: Xiangxu Dong email: tsldngx@nus.edu.sg organization: Temasek Labs., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 5 surname: Feng Lin fullname: Feng Lin email: linfeng@nus.edu.sg organization: Temasek Labs., Nat. Univ. of Singapore, Singapore, Singapore – sequence: 6 surname: Kemao Peng fullname: Kemao Peng email: kmpeng@nus.edu.sg organization: Temasek Labs., Nat. Univ. of Singapore, Singapore, Singapore |
BookMark | eNp9kMtKAzEUhoNUsK0-gLgZcD01l8ltI5TRqlAo6LTbMJdEUtpJTTIL375Tp7hw4SqHnP875_BNwKh1rQbgFsEZQlA-FPlHMcMQsRmmGZcUX4AxolSkUDA66mvISMooYVdgEsIWQpRRzMfg8cmG6G3VRd0kC-f3ZbSuTcq2Sd517VpjPzs__OWujd7tEmeSTbFaJuv5JlyDS1Pugr45v1OwXjwX-Wu6XL285fNlWmNJYkq14FI0nDSaI5FVSDNDpZalqQ0mRIgMa2EkNazWCEsKad8ojeAVrwyrDJmC-2HuwbuvToeotq7zbb9SIUEhJohL3qf4kKq9C8Fro2obf46PvrQ7haA6yVInWeokS51l9ST6Qx683Zf--1_mbmCs1vo3z3uvlENyBHgCdsg |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1109_TAES_2019_2906437 crossref_primary_10_1109_ACCESS_2019_2954408 crossref_primary_10_1007_s41403_021_00305_z crossref_primary_10_1177_10775463211037146 crossref_primary_10_1016_j_cja_2019_05_012 crossref_primary_10_1007_s10514_023_10126_4 crossref_primary_10_1093_nsr_nwad040 crossref_primary_10_1109_ACCESS_2019_2944160 crossref_primary_10_1155_2021_8886945 crossref_primary_10_1016_j_jfranklin_2018_11_051 crossref_primary_10_1080_00207721_2024_2427848 crossref_primary_10_1080_00207721_2022_2067911 crossref_primary_10_1109_TCYB_2023_3290726 crossref_primary_10_1109_TVT_2021_3128038 crossref_primary_10_1002_asjc_2806 crossref_primary_10_1155_2018_8124861 crossref_primary_10_1016_j_cnsns_2023_107672 crossref_primary_10_1109_TSMC_2022_3143158 crossref_primary_10_1109_TCNS_2021_3061941 crossref_primary_10_2514_1_I010870 crossref_primary_10_1016_j_isatra_2021_05_033 crossref_primary_10_1007_s10846_021_01342_0 crossref_primary_10_1109_TVT_2020_3003356 crossref_primary_10_1016_j_jfranklin_2024_106945 crossref_primary_10_1049_iet_cta_2018_6262 crossref_primary_10_1109_TSMC_2024_3358345 crossref_primary_10_1109_TMECH_2020_2990582 crossref_primary_10_1109_ACCESS_2023_3290306 crossref_primary_10_1007_s11071_024_10024_z crossref_primary_10_1016_j_automatica_2019_03_024 crossref_primary_10_1109_TASE_2024_3391942 crossref_primary_10_1109_TCYB_2020_2967844 crossref_primary_10_1109_TFUZZ_2019_2919484 crossref_primary_10_1109_TIE_2024_3417975 crossref_primary_10_1109_TSMC_2019_2944521 crossref_primary_10_3390_drones8090475 crossref_primary_10_3390_s20113094 crossref_primary_10_1007_s10846_018_0862_0 crossref_primary_10_1109_JSEN_2022_3175715 crossref_primary_10_59782_iam_v1i1_236 crossref_primary_10_1109_TASE_2022_3144672 crossref_primary_10_1007_s12555_022_0774_4 crossref_primary_10_1007_s40313_020_00615_7 crossref_primary_10_1109_TSMC_2022_3166779 crossref_primary_10_1109_TMECH_2021_3056099 crossref_primary_10_1115_1_4053359 crossref_primary_10_1016_j_jfranklin_2017_11_026 crossref_primary_10_3390_drones6050099 crossref_primary_10_3390_jmse11122331 crossref_primary_10_1109_TCST_2018_2868038 crossref_primary_10_1016_j_cja_2024_03_019 crossref_primary_10_1109_TAES_2020_3024427 crossref_primary_10_1109_TMECH_2020_3036829 crossref_primary_10_1109_TSMC_2019_2931482 crossref_primary_10_1016_j_ast_2021_106673 crossref_primary_10_1109_TCSI_2021_3083831 crossref_primary_10_1109_TCYB_2020_3014240 crossref_primary_10_1007_s11432_020_3107_7 crossref_primary_10_1109_TMECH_2018_2844306 crossref_primary_10_1109_ACCESS_2019_2952173 crossref_primary_10_1016_j_neucom_2020_02_032 crossref_primary_10_1109_TII_2024_3367039 crossref_primary_10_1016_j_jfranklin_2020_09_008 crossref_primary_10_1109_TAES_2021_3117368 crossref_primary_10_1109_TAES_2022_3206271 crossref_primary_10_1016_j_nahs_2023_101458 crossref_primary_10_1360_SST_2021_0379 crossref_primary_10_1631_FITEE_1800569 crossref_primary_10_1016_j_ijleo_2020_165213 crossref_primary_10_3390_aerospace10100845 crossref_primary_10_1007_s11432_018_9887_5 crossref_primary_10_23919_JSEE_2023_000153 crossref_primary_10_1016_j_cja_2020_10_029 crossref_primary_10_1016_j_jfranklin_2020_01_011 crossref_primary_10_1007_s11424_020_8366_y crossref_primary_10_1109_TCYB_2022_3165007 crossref_primary_10_3390_app13137385 crossref_primary_10_1002_rnc_4513 crossref_primary_10_1109_TCYB_2021_3057335 crossref_primary_10_1109_TRO_2020_2998766 crossref_primary_10_3390_aerospace9020094 crossref_primary_10_1109_TCYB_2023_3324752 crossref_primary_10_1109_TNNLS_2019_2927887 crossref_primary_10_1631_FITEE_1800557 crossref_primary_10_1016_j_isatra_2022_12_014 crossref_primary_10_1109_JSYST_2023_3264297 crossref_primary_10_1016_j_jfranklin_2019_05_003 crossref_primary_10_1109_TCYB_2021_3057328 crossref_primary_10_1002_rnc_4361 crossref_primary_10_1109_TCYB_2020_3009404 crossref_primary_10_1109_TAES_2021_3103583 crossref_primary_10_1177_0959651820979088 crossref_primary_10_1109_TCST_2019_2942277 crossref_primary_10_1177_0142331219853075 crossref_primary_10_1088_1742_6596_2002_1_012070 crossref_primary_10_1007_s11071_018_4618_y crossref_primary_10_1109_TITS_2024_3516839 crossref_primary_10_1109_TCSII_2022_3181442 crossref_primary_10_1109_ACCESS_2019_2929540 crossref_primary_10_1109_TITS_2023_3283513 crossref_primary_10_1109_TNNLS_2020_3023711 crossref_primary_10_1109_TCSII_2021_3103447 crossref_primary_10_1049_iet_cta_2018_5317 crossref_primary_10_1049_iet_cta_2018_6241 crossref_primary_10_1109_TIE_2020_3000120 crossref_primary_10_1186_s13662_022_03711_x crossref_primary_10_1016_j_automatica_2018_10_011 crossref_primary_10_1109_TAES_2021_3123161 crossref_primary_10_1007_s12555_020_0347_3 crossref_primary_10_1109_ACCESS_2022_3158345 crossref_primary_10_1109_ACCESS_2023_3272038 crossref_primary_10_1109_TII_2020_3004600 crossref_primary_10_3390_app10227986 crossref_primary_10_1109_ACCESS_2018_2857503 crossref_primary_10_1109_JSYST_2019_2917786 crossref_primary_10_1109_JSYST_2017_2778063 crossref_primary_10_1109_TCYB_2019_2939732 crossref_primary_10_1002_rnc_7898 crossref_primary_10_1007_s11432_022_3735_5 crossref_primary_10_1109_JIOT_2024_3453964 crossref_primary_10_1016_j_ast_2020_106061 crossref_primary_10_1109_ACCESS_2019_2961632 crossref_primary_10_1109_TSMC_2020_3042823 |
Cites_doi | 10.1109/TCST.2012.2218815 10.1109/TAC.2007.902733 10.1016/j.conengprac.2013.04.004 10.1109/TAC.2014.2309031 10.1007/s10514-010-9198-8 10.1109/70.736776 10.1002/rnc.1147 10.1016/j.automatica.2012.11.031 10.1137/060678993 10.1007/s10846-006-9050-8 10.1016/j.sysconle.2005.02.004 10.1109/TAC.2004.834113 10.1109/TAC.2008.925852 10.1007/978-3-642-22427-0_7 10.1109/TAC.2007.895860 10.1109/TAC.2004.832203 10.1109/ISIC.2010.5612920 10.2514/1.9287 10.1109/TCST.2006.880203 10.1109/TAC.2003.812781 10.1109/ACC.2009.5160238 10.1080/00207179.2011.627686 10.1109/TAC.2007.892382 10.1049/iet-cta.2009.0574 10.1177/0278364913519149 10.1109/TCST.2013.2259168 10.1016/j.automatica.2007.09.019 10.1109/TRO.2009.2032975 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2016.2547952 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 277 |
ExternalDocumentID | 10_1109_TCST_2016_2547952 7452570 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c293t-5e8798d73de7184b1e6f59e9afcf2338842e8f95f6ce129505fcfaf87b7bf6bf3 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Mon Jun 30 05:34:54 EDT 2025 Tue Jul 01 02:35:57 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Wed Aug 27 02:53:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-5e8798d73de7184b1e6f59e9afcf2338842e8f95f6ce129505fcfaf87b7bf6bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1850231797 |
PQPubID | 85425 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_TCST_2016_2547952 proquest_journals_1850231797 crossref_primary_10_1109_TCST_2016_2547952 ieee_primary_7452570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Jan. 2017-1-00 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-Jan. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref30 scharf (ref27) 2004 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref26 liao (ref16) 2014 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1109/TCST.2012.2218815 – year: 2014 ident: ref16 article-title: Formation and synchronized flight control of multiple UAVs – ident: ref2 doi: 10.1109/TAC.2007.902733 – ident: ref9 doi: 10.1016/j.conengprac.2013.04.004 – ident: ref17 doi: 10.1109/TAC.2014.2309031 – ident: ref20 doi: 10.1007/s10514-010-9198-8 – ident: ref3 doi: 10.1109/70.736776 – ident: ref25 doi: 10.1002/rnc.1147 – ident: ref18 doi: 10.1016/j.automatica.2012.11.031 – ident: ref8 doi: 10.1137/060678993 – ident: ref14 doi: 10.1007/s10846-006-9050-8 – ident: ref15 doi: 10.1016/j.sysconle.2005.02.004 – ident: ref23 doi: 10.1109/TAC.2004.834113 – ident: ref7 doi: 10.1109/TAC.2008.925852 – ident: ref13 doi: 10.1007/978-3-642-22427-0_7 – ident: ref11 doi: 10.1109/TAC.2007.895860 – ident: ref22 doi: 10.1109/TAC.2004.832203 – ident: ref21 doi: 10.1109/ISIC.2010.5612920 – ident: ref24 doi: 10.2514/1.9287 – ident: ref10 doi: 10.1109/TCST.2006.880203 – ident: ref12 doi: 10.1109/TAC.2003.812781 – ident: ref5 doi: 10.1109/ACC.2009.5160238 – ident: ref26 doi: 10.1080/00207179.2011.627686 – ident: ref6 doi: 10.1109/TAC.2007.892382 – ident: ref29 doi: 10.1049/iet-cta.2009.0574 – ident: ref1 doi: 10.1177/0278364913519149 – start-page: 2976 year: 2004 ident: ref27 article-title: A survey of spacecraft formation flying guidance and control. Part II: Control publication-title: Proc Amer Control Conf – ident: ref30 doi: 10.1109/TCST.2013.2259168 – ident: ref4 doi: 10.1016/j.automatica.2007.09.019 – ident: ref19 doi: 10.1109/TRO.2009.2032975 |
SSID | ssj0014527 |
Score | 2.5578783 |
Snippet | In this brief, a novel distributed cascade robust feedback control approach is proposed for formation and reconfiguration control of a team of vertical takeoff... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 270 |
SubjectTerms | Collision avoidance Collision dynamics Convergence Distributed control Feedback control formation control Formation flying multi-agent system networked control Nickel Potential fields Reconfiguration Robust control Robustness Unmanned aerial vehicles unmanned air vehicles (UAV) Vehicle dynamics Vertical takeoff aircraft |
Title | Distributed Formation and Reconfiguration Control of VTOL UAVs |
URI | https://ieeexplore.ieee.org/document/7452570 https://www.proquest.com/docview/1850231797 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayAGA-XACdGta5umvSBNg2lCDA5s025VkjoIgTrEugu_niRtJ15C3Co1kSLbif0l9meAM-lzL5ScO64nqAYoFJ3IQ-540kd0Q8EC1xQKj-_C0TS4mdN5DS7WtTCIaJPPsGM-7Vt-upArc1XWZYFtulaHugZuRa3W-sUgKNqzaoTjO6F9kmyVfJrdyeBhYpK4wo5GQyym3hcfZJuq_DiJrXsZbsO4WliRVfLcWeWiI9-_cTb-d-U7sFXGmaRfGMYu1DDbg81P7INNuLwypLmm3xWmZFgVMRKepcSA0kw9Pa4K-yCDIqGdLBSZTe5vybQ_W-7DdHg9GYycsp2CI7VPzx2KEYujlPkpaocUiB6GisYYcyWVp5FqFHgYqZiqUKKOAnRopH9wFTHBhAqF8g-gkS0yPASiox6p97J0ZY8HTLqR9COW-jT2hUwppy1wKwEnsuQaNy0vXhKLOdw4MTpJjE6SUictOF9PeS2INv4a3DQyXg8sxduCdqXFpNyKy0QHJIbjjsXs6PdZx7DhGV9t71Xa0MjfVniiI41cnFoT-wBD7M6K |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYDMiBE6Kja5umvSBNg2nANg50E7cqSR2EQB2C7cKvJ0m7iZcQt0pNpMh2Yjuxvw_gWPrcCyXnjusJqhMUik7kIXc86SO6oWCBaxqF-4OwOwyu7-l9BU7nvTCIaIvPsGE-7Vt-NpZTc1V2xgJLurYAS9rv02bRrTV_MwgKglad4_hOaB8layWi5lnSvktMGVfY0PkQi6n3xQtZWpUfZ7F1MJ116M-WVtSVPDWmE9GQ799QG_-79g1YKyNN0ipMYxMqmG_B6if8wSqcXxjYXMN4hRnpzNoYCc8zYtLSXD0-TAsLIe2ipJ2MFRkltz0ybI3etmHYuUzaXackVHCk9uoTh2LE4ihjfobaJQWiiaGiMcZcSeXpXDUKPIxUTFUoUccBOjjSP7iKmGBChUL5O7CYj3PcBaLjHql3s3RlkwdMupH0I5b5NPaFzCinNXBnAk5liTZuSC-eU5t1uHFqdJIanaSlTmpwMp_yUkBt_DW4amQ8H1iKtwb1mRbTcjO-pTokMSh3LGZ7v886guVu0u-lvavBzT6seMZz21uWOixOXqd4oOOOiTi05vYBN7zR0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Formation+and+Reconfiguration+Control+of+VTOL+UAVs&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Liao%2C+Fang&rft.au=Teo%2C+Rodney&rft.au=Wang%2C+Jian+Liang&rft.au=Dong%2C+Xiangxu&rft.date=2017-01-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=25&rft.issue=1&rft.spage=270&rft.epage=277&rft_id=info:doi/10.1109%2FTCST.2016.2547952&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2016_2547952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |