Local Differential Private Data Aggregation for Discrete Distribution Estimation
For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and locations. Such data facilitates mining statistical knowledge of users, but threatens users’ privacy as it may reveal sensitive information (e.g.,...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 30; no. 9; pp. 2046 - 2059 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1045-9219 1558-2183 |
DOI | 10.1109/TPDS.2019.2899097 |
Cover
Loading…
Abstract | For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and locations. Such data facilitates mining statistical knowledge of users, but threatens users’ privacy as it may reveal sensitive information (e.g., identities and activities) about individuals. This work considers distribution estimation over user-contributed data meanwhile providing rigid protection of their data with local \epsilonε-differential privacy (\epsilonε-LDP), which sanitizes each user's data on the client's side (e.g, on the user's mobile device). Our privacy protection covers both qualitative data (e.g., categorical data) and discrete quantitative data (e.g., location data). Specifically, for categorical data, we derive an optimal \epsilonε-LDP mechanism (termed as kk-subset mechanism) from mutual information perspective, and further show its optimality over existing approaches within the context of discrete distribution estimation; for discrete quantitative data that have arbitrary distance metric, we provide an efficient extension of kk-subset mechanism by proposing a variant of the popular Exponential Mechanism (EM) to tackle the asymmetry issue on the data domain. Experiments on real-world datasets and simulated scenarios show that our mechanism is highly efficient and reduces nearly a fraction of \exp (-\frac{\epsilon }{2})exp(-ε2) error for distribution estimation when compared to existing approaches. |
---|---|
AbstractList | For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and locations. Such data facilitates mining statistical knowledge of users, but threatens users’ privacy as it may reveal sensitive information (e.g., identities and activities) about individuals. This work considers distribution estimation over user-contributed data meanwhile providing rigid protection of their data with local \epsilonε-differential privacy (\epsilonε-LDP), which sanitizes each user's data on the client's side (e.g, on the user's mobile device). Our privacy protection covers both qualitative data (e.g., categorical data) and discrete quantitative data (e.g., location data). Specifically, for categorical data, we derive an optimal \epsilonε-LDP mechanism (termed as kk-subset mechanism) from mutual information perspective, and further show its optimality over existing approaches within the context of discrete distribution estimation; for discrete quantitative data that have arbitrary distance metric, we provide an efficient extension of kk-subset mechanism by proposing a variant of the popular Exponential Mechanism (EM) to tackle the asymmetry issue on the data domain. Experiments on real-world datasets and simulated scenarios show that our mechanism is highly efficient and reduces nearly a fraction of \exp (-\frac{\epsilon }{2})exp(-ε2) error for distribution estimation when compared to existing approaches. For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and locations. Such data facilitates mining statistical knowledge of users, but threatens users’ privacy as it may reveal sensitive information (e.g., identities and activities) about individuals. This work considers distribution estimation over user-contributed data meanwhile providing rigid protection of their data with local $\epsilon$ε-differential privacy ($\epsilon$ε-LDP), which sanitizes each user's data on the client's side (e.g, on the user's mobile device). Our privacy protection covers both qualitative data (e.g., categorical data) and discrete quantitative data (e.g., location data). Specifically, for categorical data, we derive an optimal $\epsilon$ε-LDP mechanism (termed as $k$k-subset mechanism) from mutual information perspective, and further show its optimality over existing approaches within the context of discrete distribution estimation; for discrete quantitative data that have arbitrary distance metric, we provide an efficient extension of $k$k-subset mechanism by proposing a variant of the popular Exponential Mechanism (EM) to tackle the asymmetry issue on the data domain. Experiments on real-world datasets and simulated scenarios show that our mechanism is highly efficient and reduces nearly a fraction of $\exp (-\frac{\epsilon }{2})$exp(-ε2) error for distribution estimation when compared to existing approaches. |
Author | Huang, Liusheng Zhang, Xinyuan Xu, Hongli Wang, Shaowei Wang, Pengzhan Nie, Yiwen Yang, Wei |
Author_xml | – sequence: 1 givenname: Shaowei orcidid: 0000-0003-1577-1193 surname: Wang fullname: Wang, Shaowei email: wangsw@mail.ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 2 givenname: Liusheng surname: Huang fullname: Huang, Liusheng email: lshuang@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 3 givenname: Yiwen orcidid: 0000-0002-7146-6057 surname: Nie fullname: Nie, Yiwen email: nyw2016@mail.ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 4 givenname: Xinyuan surname: Zhang fullname: Zhang, Xinyuan email: dwz@mail.ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 5 givenname: Pengzhan orcidid: 0000-0002-3759-6413 surname: Wang fullname: Wang, Pengzhan email: pzwang@mail.ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 6 givenname: Hongli orcidid: 0000-0003-3831-4577 surname: Xu fullname: Xu, Hongli email: xuhongli@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China – sequence: 7 givenname: Wei orcidid: 0000-0003-0332-2649 surname: Yang fullname: Yang, Wei email: qubit@ustc.edu.cn organization: School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4Hlrkt1kk2Np6wcULFjPIZudlJS6W5NU8N-bbYsHD55mhnne-XhHaNB2LSB0S_CEECwf1qv524RiIidUSIlldYGGhDGRUyKKQcpxyXJJibxCoxC2GJOS4XKIVsvO6F02d9aChza6VKy8-9IRsrmOOptuNh42OrquzWznExmMh77rQvSuPhw7ixDdxxG6RpdW7wLcnOMYvT8u1rPnfPn69DKbLnNDZRFzxgwHAwxXutE1ZYUWRWEFw0aXlDRMVpTzBjPT8BoMo9JyzgQjsqyhtpgXY3R_mrv33ecBQlTb7uDbtFJRWmEiKCEyUdWJMr4LwYNVxsXjndFrt1MEq94-1dunevvU2b6kJH-Ue59e9N__au5OGgcAv7zgJU7PFD--bX1c |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_JIOT_2022_3165596 crossref_primary_10_1109_TIFS_2024_3515814 crossref_primary_10_3390_s24165142 crossref_primary_10_1007_s00779_019_01249_6 crossref_primary_10_1145_3549550 crossref_primary_10_1155_2021_8967819 crossref_primary_10_1109_TPDS_2023_3247541 crossref_primary_10_1109_TTS_2022_3191515 crossref_primary_10_3390_rs16091640 crossref_primary_10_1109_TMC_2022_3198550 crossref_primary_10_1109_LSP_2024_3490379 crossref_primary_10_1109_TII_2023_3280318 crossref_primary_10_1109_JSAC_2024_3414580 crossref_primary_10_1016_j_procs_2022_11_340 crossref_primary_10_3233_WEB_200435 crossref_primary_10_1016_j_jisa_2025_104043 crossref_primary_10_1109_TMC_2024_3364496 crossref_primary_10_1007_s11277_022_09809_5 crossref_primary_10_1016_j_neucom_2020_09_073 crossref_primary_10_3390_app14135361 crossref_primary_10_4236_jis_2023_142008 crossref_primary_10_1109_JIOT_2023_3303010 crossref_primary_10_1109_TIFS_2023_3324726 crossref_primary_10_1145_3651153 crossref_primary_10_1016_j_cose_2021_102464 crossref_primary_10_1109_TETC_2020_3048671 crossref_primary_10_1109_JIOT_2019_2954380 crossref_primary_10_1109_TIFS_2022_3152409 crossref_primary_10_1109_JSAC_2021_3126052 crossref_primary_10_14778_3659437_3659444 crossref_primary_10_1016_j_dcan_2022_01_004 crossref_primary_10_1109_TIFS_2020_2988575 crossref_primary_10_1109_TETCI_2023_3341299 crossref_primary_10_1016_j_comnet_2024_110830 crossref_primary_10_1145_3440249 crossref_primary_10_1109_TIFS_2022_3174394 crossref_primary_10_3390_s20247030 crossref_primary_10_1016_j_csi_2023_103827 crossref_primary_10_1109_TMC_2021_3056991 crossref_primary_10_3390_e24030430 crossref_primary_10_1007_s10776_019_00441_y |
Cites_doi | 10.1109/TIT.2018.2809790 10.1145/3147.3165 10.1145/2660267.2660348 10.1109/JSTSP.2015.2425831 10.1145/2746539.2746632 10.1080/01621459.1965.10480775 10.1109/FOCS.2007.66 10.1109/TSG.2014.2343997 10.1145/1639714.1639785 10.1145/2508859.2516735 10.1109/ISSNIP.2014.6827652 10.1109/INFOCOM.2017.8056977 10.1109/SP.2008.33 10.1007/978-3-642-39077-7_5 10.1145/1525856.1525858 10.1145/1536414.1536464 10.1145/1932681.1863568 10.1007/s10707-013-0193-z 10.1137/1.9781611972757.9 10.1109/FOCS.2008.27 10.1515/popets-2015-0024 10.1109/CSF.2014.35 10.1007/978-3-642-03356-8_8 10.1145/2020408.2020579 10.1007/978-3-642-32946-3_15 10.1109/5.192069 10.1145/1993636.1993743 10.1007/11681878_14 10.1111/j.2517-6161.1996.tb02080.x 10.1145/2660267.2660345 10.1145/1066157.1066187 10.1109/ISIT.2016.7541788 10.1109/ICDE.2016.7498248 10.1109/INFOCOM.2014.6848230 10.1109/FOCS.2010.14 10.1007/11787006_1 10.1145/2660267.2660270 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2019.2899097 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 2059 |
ExternalDocumentID | 10_1109_TPDS_2019_2899097 8640266 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1709217; 61822210; 61472383; 61728207; 61472385 funderid: 10.13039/501100001809 – fundername: Anhui Initiative in Quantum Information Technologies grantid: AHY150300 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-55c6ece507adab253a833f850ca421d597266d05cd6bec529f66585194bebf063 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 07:14:33 EDT 2025 Tue Jul 01 03:58:38 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Aug 27 02:54:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-55c6ece507adab253a833f850ca421d597266d05cd6bec529f66585194bebf063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7146-6057 0000-0003-3831-4577 0000-0003-0332-2649 0000-0003-1577-1193 0000-0002-3759-6413 |
PQID | 2270182119 |
PQPubID | 85437 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2019_2899097 ieee_primary_8640266 proquest_journals_2270182119 crossref_primary_10_1109_TPDS_2019_2899097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref32 wang (ref41) 2015 ref2 ref1 ref17 ref38 ref19 kairouz (ref16) 2016 ref18 wang (ref45) 2013 ye (ref39) 0 kairouz (ref34) 2014 ref24 ref23 ref26 ref47 ref25 thakurta (ref13) 2017 ref20 ref42 ref22 ref44 ref21 ref43 diakonikolas (ref28) 2015 ref27 wang (ref40) 2017 ref8 ref7 ref9 ref4 ref3 ref6 ref5 dwork (ref29) 2006 lichman (ref46) 2013 duchi (ref15) 2013 chan (ref10) 2012 |
References_xml | – year: 2013 ident: ref46 article-title: UCI machine learning repository – start-page: 1 year: 2015 ident: ref41 article-title: Privacy preserving big histogram aggregation for spatial crowdsensing publication-title: Proc IEEE 34th Int Perform Comput Commun Conf – ident: ref38 doi: 10.1109/TIT.2018.2809790 – start-page: 2436 year: 2016 ident: ref16 article-title: Discrete distribution estimation under local privacy publication-title: Proc 33rd Int Conf Mach Learn – ident: ref43 doi: 10.1145/3147.3165 – ident: ref12 doi: 10.1145/2660267.2660348 – ident: ref31 doi: 10.1109/JSTSP.2015.2425831 – ident: ref36 doi: 10.1145/2746539.2746632 – ident: ref14 doi: 10.1080/01621459.1965.10480775 – ident: ref32 doi: 10.1109/FOCS.2007.66 – ident: ref4 doi: 10.1109/TSG.2014.2343997 – start-page: 729 year: 2017 ident: ref40 article-title: Locally differentially private protocols for frequency estimation publication-title: Proc 26th USENIX Security Symp – ident: ref2 doi: 10.1145/1639714.1639785 – ident: ref17 doi: 10.1145/2508859.2516735 – ident: ref3 doi: 10.1109/ISSNIP.2014.6827652 – ident: ref1 doi: 10.1109/INFOCOM.2017.8056977 – year: 2017 ident: ref13 article-title: Emoji frequency detection and deep link frequency – ident: ref6 doi: 10.1109/SP.2008.33 – year: 2013 ident: ref45 article-title: Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application publication-title: arXiv preprint arXiv 1309 1541 – ident: ref18 doi: 10.1007/978-3-642-39077-7_5 – ident: ref8 doi: 10.1145/1525856.1525858 – ident: ref30 doi: 10.1145/1536414.1536464 – ident: ref25 doi: 10.1145/1932681.1863568 – ident: ref19 doi: 10.1007/s10707-013-0193-z – ident: ref7 doi: 10.1137/1.9781611972757.9 – ident: ref23 doi: 10.1109/FOCS.2008.27 – start-page: 2566 year: 2015 ident: ref28 article-title: Differentially private learning of structured discrete distributions publication-title: Proc 28th Int Conf Neural Inf Process Syst – ident: ref22 doi: 10.1515/popets-2015-0024 – ident: ref24 doi: 10.1109/CSF.2014.35 – ident: ref11 doi: 10.1007/978-3-642-03356-8_8 – ident: ref47 doi: 10.1145/2020408.2020579 – start-page: 200 year: 2012 ident: ref10 article-title: Privacy-preserving stream aggregation with fault tolerance publication-title: Proc Int Conf Financial Cryptograph Data Secur doi: 10.1007/978-3-642-32946-3_15 – ident: ref5 doi: 10.1109/5.192069 – ident: ref27 doi: 10.1145/1993636.1993743 – start-page: 265 year: 2006 ident: ref29 article-title: Calibrating noise to sensitivity in private data analysis publication-title: Proc Conf Theory of Cryptography doi: 10.1007/11681878_14 – ident: ref44 doi: 10.1111/j.2517-6161.1996.tb02080.x – start-page: 2879 year: 2014 ident: ref34 article-title: Extremal mechanisms for local differential privacy publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref20 doi: 10.1145/2660267.2660345 – year: 0 ident: ref39 article-title: Asymptotically optimal private estimation under mean square loss publication-title: arXiv preprint arXiv 1708 09721 – ident: ref33 doi: 10.1145/1066157.1066187 – ident: ref35 doi: 10.1109/ISIT.2016.7541788 – start-page: 429 year: 2013 ident: ref15 article-title: Local privacy and statistical minimax rates publication-title: Proc Annu IEEE Symp Foundations Comput Sci – ident: ref37 doi: 10.1109/ICDE.2016.7498248 – ident: ref9 doi: 10.1109/INFOCOM.2014.6848230 – ident: ref42 doi: 10.1109/FOCS.2010.14 – ident: ref26 doi: 10.1007/11787006_1 – ident: ref21 doi: 10.1145/2660267.2660270 |
SSID | ssj0014504 |
Score | 2.5205052 |
Snippet | For the purpose of improving the quality of services, softwares or online services are collecting various of user data, such as personal information and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2046 |
SubjectTerms | crowdsourcing data aggregation Data management Data models Data privacy Differential privacy distribution estimation Estimation Mobile communication systems Mutual information Optimization Privacy Qualitative analysis Servers |
Title | Local Differential Private Data Aggregation for Discrete Distribution Estimation |
URI | https://ieeexplore.ieee.org/document/8640266 https://www.proquest.com/docview/2270182119 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH6oJz34W5xOycGT2JmmSdocxW2IqAx0sFtJ03QHZRPtLv71vqRZERXxVuhLafnykvf1vbwP4Az5WcE0M5HIZBW57iZRpiiPGE9tVkpZVV7r8P5B3oz57URMVuCiPQtjrfXFZ7bnLn0uv5ybhftVdplJZDtSrsIqErfmrFabMeDCSwUiuxCRQjcMGcyYqsunUf_RFXGpnmMXvr_Tlz3Ii6r8WIn99jLcgvvlizVVJc-9RV30zMe3no3_ffNt2AxxJrlqJsYOrNjZLmwtNRxIcOld2PjSkHAPRnduayP9oJqC3v9CRm9OAM2Svq41uZoiP596NAmGu2iJy451d10D3qCdRQa4bjRHIvdhPBw8Xd9EQXMhMrjx15EQRlpjMUrUpS6YSHSWJFUmqNGcxSXSD_yMkgpTSkRfMFVJ6TKLihe2qDDeOYC12XxmD4GkDI2oQsOKc-TgWplCx0yaNC0QpaQDdIlCbkJDcqeL8ZJ7YkJV7oDLHXB5AK4D5-2Q16Ybx1_Gew6I1jBg0IHuEuo8-Ot7zlhKkWnFsTr6fdQxrLtnN9VlXVir3xb2BMORujj18_AT2X_bAw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV2xTsMwED1BGYCBQgFRKOCBCZGSuLYTjxUFFWhRJVqJLXIchwFUEKQLX8_ZcSsECLFFyllJ9Hy-e_H5HsAJ8rOMKqoDnogisN1NgkSGLKAsNkkuRFE4rcPhnehP2M0Df1iCs8VZGGOMKz4zbXvp9vLzFz2zv8rOE4FsR4hlWMG4z2R1WmuxZ8C4EwtEfsEDiY7o9zCjUJ6PR717W8Yl25ZfuA5PX6KQk1X5sRa7AHNVh-H81aq6kqf2rMza-uNb18b_vvsmbPhMk3SrqbEFS2bagPpcxYF4p27A-peWhNswGtjgRnpeNwX9_5mM3qwEmiE9VSrSfUSG_ujwJJjwoiUuPMbetS14vXoWucSVozoUuQOTq8vxRT_wqguBxtBfBpxrYbTBPFHlKqO8o5JOp0h4qBWjUY4EBD8jD7nOBeLPqSyEsHuLkmUmKzDj2YXa9GVq9oDEFI1CiYYFY8jCldSZiqjQcZwhSp0mhHMUUu1bkltljOfUUZNQpha41AKXeuCacLoY8lr14_jLeNsCsTD0GDShNYc69R77nlIah8i1okju_z7qGFb74-EgHVzf3R7Amn1OVWvWglr5NjOHmJyU2ZGbk5-Bb95T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Differential+Private+Data+Aggregation+for+Discrete+Distribution+Estimation&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Wang%2C+Shaowei&rft.au=Huang%2C+Liusheng&rft.au=Nie%2C+Yiwen&rft.au=Zhang%2C+Xinyuan&rft.date=2019-09-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=30&rft.issue=9&rft.spage=2046&rft.epage=2059&rft_id=info:doi/10.1109%2FTPDS.2019.2899097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2019_2899097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |