Optimal Estimation of Low-Rank Factors via Feature Level Data Fusion of Multiplex Signal Systems
The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the obj...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 34; no. 6; pp. 2860 - 2871 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the objective is to find an estimate of the latent signal eigenspace. The concentration result for the inner product of features from different matrix samples is developed, utilizing the random matrix theory. Based on of the theoretical results, we proposed an efficient algorithm, EigFuse , to solve the constrained data-driven optimization problem with different level of noises. Our method is of high efficiency by comparing it with state-of-the-art baseline approaches with multiple noise levels. Comprehensive experiments on several synthetic as well as real-life networks demonstrate our method's superior performance. |
---|---|
AbstractList | The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the objective is to find an estimate of the latent signal eigenspace. The concentration result for the inner product of features from different matrix samples is developed, utilizing the random matrix theory. Based on of the theoretical results, we proposed an efficient algorithm, EigFuse , to solve the constrained data-driven optimization problem with different level of noises. Our method is of high efficiency by comparing it with state-of-the-art baseline approaches with multiple noise levels. Comprehensive experiments on several synthetic as well as real-life networks demonstrate our method’s superior performance. |
Author | Cao, Jie Li, Hui-Jia Shi, Yong Wang, Zhen Pei, Jian |
Author_xml | – sequence: 1 givenname: Hui-Jia orcidid: 0000-0003-1000-717X surname: Li fullname: Li, Hui-Jia email: hjli@amss.ac.cn organization: School of Science, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Zhen orcidid: 0000-0002-8182-2852 surname: Wang fullname: Wang, Zhen email: zhenwang0@gmail.com organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 3 givenname: Jie orcidid: 0000-0002-9942-3243 surname: Cao fullname: Cao, Jie email: caojie690929@163.com organization: Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China – sequence: 4 givenname: Jian surname: Pei fullname: Pei, Jian email: jianpei@gmail.com organization: Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China – sequence: 5 givenname: Yong surname: Shi fullname: Shi, Yong email: yshi@gmail.com organization: Fictitious Economics and Data Technology Research Centre, Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kMlOwzAQQC1UJNrCByAuljineIlj54i6AKKoEi1n46Q2SknjYDuF_j0JrThw4DSj0bxZ3gD0KltpAC4xGmGM0pvV42Q6IoigEUWYpTg-AX3MmIgITnGvzVGMo5jG_AwMvN8ghAQXuA9eF3UotqqEU9_FUNgKWgPn9jN6VtU7nKk8WOfhrlBwplVonIZzvdMlnKjQlhp_JJ6aMhR1qb_gsnir2oHLvQ9668_BqVGl1xfHOAQvs-lqfB_NF3cP49t5lJOUhogxhRSjucqoQUwgQ7XihIks5sgIYdKYCqKZJkisDcZUmZxSkSfZOsmowIQOwfVhbu3sR6N9kBvbuPYQL0nCEsHTmCdtFz505c5677SRtWvfdnuJkexEyk6k7ETKo8iW4X-YvAg_poJTRfkveXUgC63176YUJwlnnH4DbpqBwA |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_3389_fphy_2021_731972 crossref_primary_10_1016_j_knosys_2020_106693 crossref_primary_10_1016_j_chaos_2022_112107 crossref_primary_10_1109_JPHOT_2024_3426929 crossref_primary_10_1109_ACCESS_2022_3162215 crossref_primary_10_3389_fphy_2020_589963 crossref_primary_10_1016_j_physa_2022_128105 crossref_primary_10_1109_ACCESS_2020_3039263 crossref_primary_10_1109_ACCESS_2020_3036491 crossref_primary_10_1109_TNSE_2021_3085818 crossref_primary_10_1016_j_eswa_2022_119295 crossref_primary_10_1109_TNSE_2022_3162789 crossref_primary_10_1057_s41599_022_01278_2 crossref_primary_10_3389_fnagi_2022_834331 crossref_primary_10_1088_1674_1056_ac43b4 crossref_primary_10_1016_j_ins_2022_01_074 crossref_primary_10_3390_ijerph18084007 crossref_primary_10_32604_cmes_2023_023544 crossref_primary_10_3389_fphy_2020_579652 crossref_primary_10_1016_j_eswa_2022_117816 crossref_primary_10_1109_TCDS_2022_3193576 crossref_primary_10_1109_TIE_2023_3301551 crossref_primary_10_3389_fphy_2021_702064 crossref_primary_10_1109_TKDE_2023_3237630 crossref_primary_10_1109_TCSS_2021_3114419 crossref_primary_10_1109_TNNLS_2021_3117403 crossref_primary_10_1109_ACCESS_2021_3084044 crossref_primary_10_1145_3502736 crossref_primary_10_1016_j_eswa_2021_115038 crossref_primary_10_1109_TKDE_2023_3278721 crossref_primary_10_1016_j_physa_2022_127628 crossref_primary_10_1007_s11042_024_20102_4 crossref_primary_10_1016_j_knosys_2022_108542 crossref_primary_10_1109_TKDE_2023_3342907 crossref_primary_10_1109_ACCESS_2020_3048187 crossref_primary_10_1109_ACCESS_2020_3045532 crossref_primary_10_1109_ACCESS_2022_3151155 crossref_primary_10_3390_s21165258 crossref_primary_10_1016_j_chaos_2022_112916 crossref_primary_10_1155_2021_6890024 crossref_primary_10_1016_j_chaos_2021_111229 |
Cites_doi | 10.1007/s00530-010-0182-0 10.1109/TMM.2012.2234731 10.1117/12.606093 10.5220/0001082801450151 10.1073/pnas.0601602103 10.1109/ICDM.2009.125 10.1109/JPROC.2015.2460697 10.1016/j.inffus.2015.09.002 10.1016/j.inffus.2015.07.004 10.1016/j.aim.2011.02.007 10.1016/j.inffus.2017.01.003 10.1016/j.inffus.2015.06.007 10.1162/neco.1994.6.6.1289 10.1007/bf02289464 10.1145/1060745.1060803 10.1109/LGRS.2017.2704625 10.1016/j.patcog.2005.08.014 10.1016/j.inffus.2018.04.003 10.1016/j.neuroimage.2004.03.039 10.1016/j.inffus.2018.06.004 10.1016/j.patrec.2011.11.002 10.1109/34.868688 10.1137/1.9781611972757.25 10.1016/j.jcss.2004.10.016 10.1109/TMM.2018.2825883 10.1214/ejp.v16-929 10.1016/j.automatica.2017.12.038 10.1007/bf00058655 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B 10.1093/nar/gks725 10.1214/aos/1016218223 10.1109/TIFS.2011.2166545 10.1016/j.inffus.2018.06.002 10.1109/ICCV.1999.790354 10.1109/TIP.2006.888340 10.1007/11503415_46 10.1007/BF02310791 10.1016/j.eswa.2013.07.108 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TKDE.2020.3015914 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 2871 |
ExternalDocumentID | 10_1109_TKDE_2020_3015914 9166757 |
Genre | orig-research |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation grantid: 9182015; 1202020 funderid: 10.13039/501100004826 – fundername: National Natural Science Foundation of China grantid: 71871233 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2020XD-A01-1 funderid: 10.13039/501100012226 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB 1OL 5VS 9M8 AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RIG RNI RZB TAF VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-55a0a53cab3f0580f3ea7258b470f88f94382e5e208df113afc338c6bd6b38123 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Mon Jun 30 04:38:31 EDT 2025 Tue Jul 01 01:19:37 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Fri Jul 18 03:48:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-55a0a53cab3f0580f3ea7258b470f88f94382e5e208df113afc338c6bd6b38123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1000-717X 0000-0002-9942-3243 0000-0002-8182-2852 |
PQID | 2656879476 |
PQPubID | 85438 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2656879476 crossref_primary_10_1109_TKDE_2020_3015914 ieee_primary_9166757 crossref_citationtrail_10_1109_TKDE_2020_3015914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref38 ref18 Miller (ref16) ref24 ref23 ref26 ref25 ref20 ref22 ref21 Tang (ref41) 2010 Harshman (ref19) 1970; 16 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref8 doi: 10.1007/s00530-010-0182-0 – ident: ref9 doi: 10.1109/TMM.2012.2234731 – ident: ref24 doi: 10.1117/12.606093 – ident: ref30 doi: 10.5220/0001082801450151 – ident: ref31 doi: 10.1073/pnas.0601602103 – ident: ref40 doi: 10.1109/ICDM.2009.125 – year: 2010 ident: ref41 article-title: Community detection in multi-dimensional networks – ident: ref12 doi: 10.1109/JPROC.2015.2460697 – ident: ref7 doi: 10.1016/j.inffus.2015.09.002 – ident: ref22 doi: 10.1016/j.inffus.2015.07.004 – ident: ref33 doi: 10.1016/j.aim.2011.02.007 – ident: ref10 doi: 10.1016/j.inffus.2017.01.003 – ident: ref28 doi: 10.1016/j.inffus.2015.06.007 – ident: ref14 doi: 10.1162/neco.1994.6.6.1289 – ident: ref17 doi: 10.1007/bf02289464 – ident: ref11 doi: 10.1145/1060745.1060803 – ident: ref36 doi: 10.1109/LGRS.2017.2704625 – ident: ref25 doi: 10.1016/j.patcog.2005.08.014 – ident: ref1 doi: 10.1016/j.inffus.2018.04.003 – ident: ref21 doi: 10.1016/j.neuroimage.2004.03.039 – ident: ref23 doi: 10.1016/j.inffus.2018.06.004 – start-page: 571 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref16 article-title: A mixture of experts classifier with learning based on both labelled and unlabelled data – ident: ref26 doi: 10.1016/j.patrec.2011.11.002 – ident: ref6 doi: 10.1109/34.868688 – ident: ref5 doi: 10.1137/1.9781611972757.25 – ident: ref39 doi: 10.1016/j.jcss.2004.10.016 – ident: ref2 doi: 10.1109/TMM.2018.2825883 – ident: ref37 doi: 10.1214/ejp.v16-929 – ident: ref3 doi: 10.1016/j.automatica.2017.12.038 – ident: ref13 doi: 10.1007/bf00058655 – ident: ref20 doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B – volume: 16 start-page: 1 year: 1970 ident: ref19 article-title: Foundations of the parafac procedure: Models and conditions for an ‘explanatory’ multimodal factor analysis publication-title: UCLA Work. Papers Phonetics – ident: ref34 doi: 10.1093/nar/gks725 – ident: ref15 doi: 10.1214/aos/1016218223 – ident: ref29 doi: 10.1109/TIFS.2011.2166545 – ident: ref4 doi: 10.1016/j.inffus.2018.06.002 – ident: ref32 doi: 10.1109/ICCV.1999.790354 – ident: ref35 doi: 10.1109/TIP.2006.888340 – ident: ref38 doi: 10.1007/11503415_46 – ident: ref18 doi: 10.1007/BF02310791 – ident: ref27 doi: 10.1016/j.eswa.2013.07.108 |
SSID | ssj0008781 |
Score | 2.5848086 |
Snippet | The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2860 |
SubjectTerms | Algorithms Data integration Eigenvectors Engines Feature extraction feature level Information fusion Mathematical analysis Matrix theory Multiplexing Noise levels Optimization parameter estimation Pattern recognition random matrix theory Sensors signal matrices Signal to noise ratio |
Title | Optimal Estimation of Low-Rank Factors via Feature Level Data Fusion of Multiplex Signal Systems |
URI | https://ieeexplore.ieee.org/document/9166757 https://www.proquest.com/docview/2656879476 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3IoLRR1gVY-9FSRxYnjxDlWsKtVyxaJLhK3YE_sCtFuKjZpEb-eceJdtRRVPSWKPJGl54_3POMZgHco0PG8SiNtMIlSYkSRQo6RSWOvFZ3J0AvF6edscpF-vJSXa3C4ugtjre2Cz-zQv3a-_KrG1h-VHRGVIX6br8M6Cbf-rtZq1VV5V5CU1AVpIpHmwYMZ8-Jo9ulkREowIYFKm18Rp3_sQV1Rlb9W4m57GW_BdNmxPqrkZtg2Zoj3j3I2_m_PX8DzwDPZh35gvIQ1O9-GrWUNBxam9DZs_paQcAeuzmgF-U52o4V_etBY7dhp_Ss61_MbNu6r87Cf15p58tjeWnbqw47YiW7oU7sIFtMQp3jHvlx_9R0JmdFfwcV4NDueRKEGQ4REBJpISs21FKiNcFwq7oTVeSKVSXPulHKFdyRaaROuKhfHQjsk0YuZqTJDZCARu7Axr-f2NbBYIGYqzqRMqrTw7su8qITUBf3EZYgD4EtUSgwJyn2djG9lJ1R4UXogSw9kGYAcwPuVyY8-O8e_Gu94YFYNAyYDOFhCX4b5uygTormKlqo823vaah-eJf4iRHcecwAbzW1r3xA9aczbblw-AANx38I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1RT9swED4h9rDtYQzYRDcGfoCXSSmOEyfOwx4QbVXWlklbkXgLtmNPiK2daDI2fgt_hf_GOXErNqa9IfGUKPJFifPl7j7f-Q5gR0fa0rSIA6k0C2L0iAKhqQ5UHDquaFWiHVEcHSX94_jjCT9ZguvFXhhjTJ18ZtrutI7lF1NduaWyPXRl0L9NfQrlwPy-RII2-3DYwa-5y1ivOz7oB76HQKDRkJUB55JKHmmpIku5oDYyMmVcqDilVgibuUCY4YZRUdgwjKTVSNp0oopEoTFzZQ1QwT9BP4OzZnfYQs-LtG6BinwGWVgUpz5mGtJsbzzodJF7MqTEaG6zMP7D6tVtXO7p_tqg9VbgZj4VTR7LebsqVVtf_VUl8rHO1Ut44T1pst9AfxWWzGQNVuZdKohXWmvw_E7JxXU4_YQ68jvKdWfu6GBJppYMp5fBZzk5J72m_xD5eSaJc4-rC0OGLrGKdGSJl6qZlxj5TMxf5MvZV_cgvvb7Kzh-kLd-DcuT6cRsAAkjrRMRJoiVIs5cgDbNiojLDG9iE61bQOcoyLUvwe46gXzLaypGs9wBJ3fAyT1wWvB-IfKjqT_yv8HrDgiLgR4DLdicQy33GmqWM3TkBSrjNHnzb6lteNofj4b58PBo8BaeMbfto1592oTl8qIy79AZK9VW_U8QOH1oYN0CDZQ8Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Estimation+of+Low-Rank+Factors+via+Feature+Level+Data+Fusion+of+Multiplex+Signal+Systems&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Hui-Jia&rft.au=Wang%2C+Zhen&rft.au=Cao%2C+Jie&rft.au=Pei%2C+Jian&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=6&rft.spage=2860&rft.epage=2871&rft_id=info:doi/10.1109%2FTKDE.2020.3015914&rft.externalDocID=9166757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |