Optimal Estimation of Low-Rank Factors via Feature Level Data Fusion of Multiplex Signal Systems

The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the obj...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 34; no. 6; pp. 2860 - 2871
Main Authors Li, Hui-Jia, Wang, Zhen, Cao, Jie, Pei, Jian, Shi, Yong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the objective is to find an estimate of the latent signal eigenspace. The concentration result for the inner product of features from different matrix samples is developed, utilizing the random matrix theory. Based on of the theoretical results, we proposed an efficient algorithm, EigFuse , to solve the constrained data-driven optimization problem with different level of noises. Our method is of high efficiency by comparing it with state-of-the-art baseline approaches with multiple noise levels. Comprehensive experiments on several synthetic as well as real-life networks demonstrate our method's superior performance.
AbstractList The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature level for multiple signal matrices with noises, with the features being extremal eigenvectors. When given multiple similarity matrices, the objective is to find an estimate of the latent signal eigenspace. The concentration result for the inner product of features from different matrix samples is developed, utilizing the random matrix theory. Based on of the theoretical results, we proposed an efficient algorithm, EigFuse , to solve the constrained data-driven optimization problem with different level of noises. Our method is of high efficiency by comparing it with state-of-the-art baseline approaches with multiple noise levels. Comprehensive experiments on several synthetic as well as real-life networks demonstrate our method’s superior performance.
Author Cao, Jie
Li, Hui-Jia
Shi, Yong
Wang, Zhen
Pei, Jian
Author_xml – sequence: 1
  givenname: Hui-Jia
  orcidid: 0000-0003-1000-717X
  surname: Li
  fullname: Li, Hui-Jia
  email: hjli@amss.ac.cn
  organization: School of Science, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-8182-2852
  surname: Wang
  fullname: Wang, Zhen
  email: zhenwang0@gmail.com
  organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-9942-3243
  surname: Cao
  fullname: Cao, Jie
  email: caojie690929@163.com
  organization: Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
– sequence: 4
  givenname: Jian
  surname: Pei
  fullname: Pei, Jian
  email: jianpei@gmail.com
  organization: Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
– sequence: 5
  givenname: Yong
  surname: Shi
  fullname: Shi, Yong
  email: yshi@gmail.com
  organization: Fictitious Economics and Data Technology Research Centre, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kMlOwzAQQC1UJNrCByAuljineIlj54i6AKKoEi1n46Q2SknjYDuF_j0JrThw4DSj0bxZ3gD0KltpAC4xGmGM0pvV42Q6IoigEUWYpTg-AX3MmIgITnGvzVGMo5jG_AwMvN8ghAQXuA9eF3UotqqEU9_FUNgKWgPn9jN6VtU7nKk8WOfhrlBwplVonIZzvdMlnKjQlhp_JJ6aMhR1qb_gsnir2oHLvQ9668_BqVGl1xfHOAQvs-lqfB_NF3cP49t5lJOUhogxhRSjucqoQUwgQ7XihIks5sgIYdKYCqKZJkisDcZUmZxSkSfZOsmowIQOwfVhbu3sR6N9kBvbuPYQL0nCEsHTmCdtFz505c5677SRtWvfdnuJkexEyk6k7ETKo8iW4X-YvAg_poJTRfkveXUgC63176YUJwlnnH4DbpqBwA
CODEN ITKEEH
CitedBy_id crossref_primary_10_3389_fphy_2021_731972
crossref_primary_10_1016_j_knosys_2020_106693
crossref_primary_10_1016_j_chaos_2022_112107
crossref_primary_10_1109_JPHOT_2024_3426929
crossref_primary_10_1109_ACCESS_2022_3162215
crossref_primary_10_3389_fphy_2020_589963
crossref_primary_10_1016_j_physa_2022_128105
crossref_primary_10_1109_ACCESS_2020_3039263
crossref_primary_10_1109_ACCESS_2020_3036491
crossref_primary_10_1109_TNSE_2021_3085818
crossref_primary_10_1016_j_eswa_2022_119295
crossref_primary_10_1109_TNSE_2022_3162789
crossref_primary_10_1057_s41599_022_01278_2
crossref_primary_10_3389_fnagi_2022_834331
crossref_primary_10_1088_1674_1056_ac43b4
crossref_primary_10_1016_j_ins_2022_01_074
crossref_primary_10_3390_ijerph18084007
crossref_primary_10_32604_cmes_2023_023544
crossref_primary_10_3389_fphy_2020_579652
crossref_primary_10_1016_j_eswa_2022_117816
crossref_primary_10_1109_TCDS_2022_3193576
crossref_primary_10_1109_TIE_2023_3301551
crossref_primary_10_3389_fphy_2021_702064
crossref_primary_10_1109_TKDE_2023_3237630
crossref_primary_10_1109_TCSS_2021_3114419
crossref_primary_10_1109_TNNLS_2021_3117403
crossref_primary_10_1109_ACCESS_2021_3084044
crossref_primary_10_1145_3502736
crossref_primary_10_1016_j_eswa_2021_115038
crossref_primary_10_1109_TKDE_2023_3278721
crossref_primary_10_1016_j_physa_2022_127628
crossref_primary_10_1007_s11042_024_20102_4
crossref_primary_10_1016_j_knosys_2022_108542
crossref_primary_10_1109_TKDE_2023_3342907
crossref_primary_10_1109_ACCESS_2020_3048187
crossref_primary_10_1109_ACCESS_2020_3045532
crossref_primary_10_1109_ACCESS_2022_3151155
crossref_primary_10_3390_s21165258
crossref_primary_10_1016_j_chaos_2022_112916
crossref_primary_10_1155_2021_6890024
crossref_primary_10_1016_j_chaos_2021_111229
Cites_doi 10.1007/s00530-010-0182-0
10.1109/TMM.2012.2234731
10.1117/12.606093
10.5220/0001082801450151
10.1073/pnas.0601602103
10.1109/ICDM.2009.125
10.1109/JPROC.2015.2460697
10.1016/j.inffus.2015.09.002
10.1016/j.inffus.2015.07.004
10.1016/j.aim.2011.02.007
10.1016/j.inffus.2017.01.003
10.1016/j.inffus.2015.06.007
10.1162/neco.1994.6.6.1289
10.1007/bf02289464
10.1145/1060745.1060803
10.1109/LGRS.2017.2704625
10.1016/j.patcog.2005.08.014
10.1016/j.inffus.2018.04.003
10.1016/j.neuroimage.2004.03.039
10.1016/j.inffus.2018.06.004
10.1016/j.patrec.2011.11.002
10.1109/34.868688
10.1137/1.9781611972757.25
10.1016/j.jcss.2004.10.016
10.1109/TMM.2018.2825883
10.1214/ejp.v16-929
10.1016/j.automatica.2017.12.038
10.1007/bf00058655
10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
10.1093/nar/gks725
10.1214/aos/1016218223
10.1109/TIFS.2011.2166545
10.1016/j.inffus.2018.06.002
10.1109/ICCV.1999.790354
10.1109/TIP.2006.888340
10.1007/11503415_46
10.1007/BF02310791
10.1016/j.eswa.2013.07.108
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2020.3015914
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 2871
ExternalDocumentID 10_1109_TKDE_2020_3015914
9166757
Genre orig-research
GrantInformation_xml – fundername: Beijing Natural Science Foundation
  grantid: 9182015; 1202020
  funderid: 10.13039/501100004826
– fundername: National Natural Science Foundation of China
  grantid: 71871233
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2020XD-A01-1
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
1OL
5VS
9M8
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
RNI
RZB
TAF
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-55a0a53cab3f0580f3ea7258b470f88f94382e5e208df113afc338c6bd6b38123
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 04:38:31 EDT 2025
Tue Jul 01 01:19:37 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Fri Jul 18 03:48:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-55a0a53cab3f0580f3ea7258b470f88f94382e5e208df113afc338c6bd6b38123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1000-717X
0000-0002-9942-3243
0000-0002-8182-2852
PQID 2656879476
PQPubID 85438
PageCount 12
ParticipantIDs proquest_journals_2656879476
crossref_primary_10_1109_TKDE_2020_3015914
ieee_primary_9166757
crossref_citationtrail_10_1109_TKDE_2020_3015914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref38
ref18
Miller (ref16)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Tang (ref41) 2010
Harshman (ref19) 1970; 16
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.1007/s00530-010-0182-0
– ident: ref9
  doi: 10.1109/TMM.2012.2234731
– ident: ref24
  doi: 10.1117/12.606093
– ident: ref30
  doi: 10.5220/0001082801450151
– ident: ref31
  doi: 10.1073/pnas.0601602103
– ident: ref40
  doi: 10.1109/ICDM.2009.125
– year: 2010
  ident: ref41
  article-title: Community detection in multi-dimensional networks
– ident: ref12
  doi: 10.1109/JPROC.2015.2460697
– ident: ref7
  doi: 10.1016/j.inffus.2015.09.002
– ident: ref22
  doi: 10.1016/j.inffus.2015.07.004
– ident: ref33
  doi: 10.1016/j.aim.2011.02.007
– ident: ref10
  doi: 10.1016/j.inffus.2017.01.003
– ident: ref28
  doi: 10.1016/j.inffus.2015.06.007
– ident: ref14
  doi: 10.1162/neco.1994.6.6.1289
– ident: ref17
  doi: 10.1007/bf02289464
– ident: ref11
  doi: 10.1145/1060745.1060803
– ident: ref36
  doi: 10.1109/LGRS.2017.2704625
– ident: ref25
  doi: 10.1016/j.patcog.2005.08.014
– ident: ref1
  doi: 10.1016/j.inffus.2018.04.003
– ident: ref21
  doi: 10.1016/j.neuroimage.2004.03.039
– ident: ref23
  doi: 10.1016/j.inffus.2018.06.004
– start-page: 571
  volume-title: Proc. Advances Neural Inf. Process. Syst.
  ident: ref16
  article-title: A mixture of experts classifier with learning based on both labelled and unlabelled data
– ident: ref26
  doi: 10.1016/j.patrec.2011.11.002
– ident: ref6
  doi: 10.1109/34.868688
– ident: ref5
  doi: 10.1137/1.9781611972757.25
– ident: ref39
  doi: 10.1016/j.jcss.2004.10.016
– ident: ref2
  doi: 10.1109/TMM.2018.2825883
– ident: ref37
  doi: 10.1214/ejp.v16-929
– ident: ref3
  doi: 10.1016/j.automatica.2017.12.038
– ident: ref13
  doi: 10.1007/bf00058655
– ident: ref20
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<275::AID-CEM543>3.0.CO;2-B
– volume: 16
  start-page: 1
  year: 1970
  ident: ref19
  article-title: Foundations of the parafac procedure: Models and conditions for an ‘explanatory’ multimodal factor analysis
  publication-title: UCLA Work. Papers Phonetics
– ident: ref34
  doi: 10.1093/nar/gks725
– ident: ref15
  doi: 10.1214/aos/1016218223
– ident: ref29
  doi: 10.1109/TIFS.2011.2166545
– ident: ref4
  doi: 10.1016/j.inffus.2018.06.002
– ident: ref32
  doi: 10.1109/ICCV.1999.790354
– ident: ref35
  doi: 10.1109/TIP.2006.888340
– ident: ref38
  doi: 10.1007/11503415_46
– ident: ref18
  doi: 10.1007/BF02310791
– ident: ref27
  doi: 10.1016/j.eswa.2013.07.108
SSID ssj0008781
Score 2.5848086
Snippet The design of fusion engines is a subject of great importance in a variety of fields. In this paper, we focus on the problem of linear fusion at the feature...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2860
SubjectTerms Algorithms
Data integration
Eigenvectors
Engines
Feature extraction
feature level
Information fusion
Mathematical analysis
Matrix theory
Multiplexing
Noise levels
Optimization
parameter estimation
Pattern recognition
random matrix theory
Sensors
signal matrices
Signal to noise ratio
Title Optimal Estimation of Low-Rank Factors via Feature Level Data Fusion of Multiplex Signal Systems
URI https://ieeexplore.ieee.org/document/9166757
https://www.proquest.com/docview/2656879476
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3IoLRR1gVY-9FSRxYnjxDlWsKtVyxaJLhK3YE_sCtFuKjZpEb-eceJdtRRVPSWKPJGl54_3POMZgHco0PG8SiNtMIlSYkSRQo6RSWOvFZ3J0AvF6edscpF-vJSXa3C4ugtjre2Cz-zQv3a-_KrG1h-VHRGVIX6br8M6Cbf-rtZq1VV5V5CU1AVpIpHmwYMZ8-Jo9ulkREowIYFKm18Rp3_sQV1Rlb9W4m57GW_BdNmxPqrkZtg2Zoj3j3I2_m_PX8DzwDPZh35gvIQ1O9-GrWUNBxam9DZs_paQcAeuzmgF-U52o4V_etBY7dhp_Ss61_MbNu6r87Cf15p58tjeWnbqw47YiW7oU7sIFtMQp3jHvlx_9R0JmdFfwcV4NDueRKEGQ4REBJpISs21FKiNcFwq7oTVeSKVSXPulHKFdyRaaROuKhfHQjsk0YuZqTJDZCARu7Axr-f2NbBYIGYqzqRMqrTw7su8qITUBf3EZYgD4EtUSgwJyn2djG9lJ1R4UXogSw9kGYAcwPuVyY8-O8e_Gu94YFYNAyYDOFhCX4b5uygTormKlqo823vaah-eJf4iRHcecwAbzW1r3xA9aczbblw-AANx38I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1RT9swED4h9rDtYQzYRDcGfoCXSSmOEyfOwx4QbVXWlklbkXgLtmNPiK2daDI2fgt_hf_GOXErNqa9IfGUKPJFifPl7j7f-Q5gR0fa0rSIA6k0C2L0iAKhqQ5UHDquaFWiHVEcHSX94_jjCT9ZguvFXhhjTJ18ZtrutI7lF1NduaWyPXRl0L9NfQrlwPy-RII2-3DYwa-5y1ivOz7oB76HQKDRkJUB55JKHmmpIku5oDYyMmVcqDilVgibuUCY4YZRUdgwjKTVSNp0oopEoTFzZQ1QwT9BP4OzZnfYQs-LtG6BinwGWVgUpz5mGtJsbzzodJF7MqTEaG6zMP7D6tVtXO7p_tqg9VbgZj4VTR7LebsqVVtf_VUl8rHO1Ut44T1pst9AfxWWzGQNVuZdKohXWmvw_E7JxXU4_YQ68jvKdWfu6GBJppYMp5fBZzk5J72m_xD5eSaJc4-rC0OGLrGKdGSJl6qZlxj5TMxf5MvZV_cgvvb7Kzh-kLd-DcuT6cRsAAkjrRMRJoiVIs5cgDbNiojLDG9iE61bQOcoyLUvwe46gXzLaypGs9wBJ3fAyT1wWvB-IfKjqT_yv8HrDgiLgR4DLdicQy33GmqWM3TkBSrjNHnzb6lteNofj4b58PBo8BaeMbfto1592oTl8qIy79AZK9VW_U8QOH1oYN0CDZQ8Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Estimation+of+Low-Rank+Factors+via+Feature+Level+Data+Fusion+of+Multiplex+Signal+Systems&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Li%2C+Hui-Jia&rft.au=Wang%2C+Zhen&rft.au=Cao%2C+Jie&rft.au=Pei%2C+Jian&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=34&rft.issue=6&rft.spage=2860&rft.epage=2871&rft_id=info:doi/10.1109%2FTKDE.2020.3015914&rft.externalDocID=9166757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon