FMCW Radar-Based Hand Gesture Recognition Using Spatiotemporal Deformable and Context-Aware Convolutional 5-D Feature Representation
Recently, frequency-modulated continuous-wave (FMCW) radar-based hand gesture recognition (HGR) using deep learning has achieved favorable performance. However, many existing methods use extracted features separately, i.e., using one of the range, Doppler, azimuth, or elevation angle information, or...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, frequency-modulated continuous-wave (FMCW) radar-based hand gesture recognition (HGR) using deep learning has achieved favorable performance. However, many existing methods use extracted features separately, i.e., using one of the range, Doppler, azimuth, or elevation angle information, or a combination of any two, to train convolutional neural networks (CNNs), which ignore the interrelation among the 5-D time-varying-range-Doppler-azimuth-elevation feature space. Although there have been methods using the 5-D information, their mining of the interrelation among the 5-D feature space is not sufficient, and there is still room for improvements. This article proposes a new processing scheme of HGR based on 5-D feature cubes that are jointly encoded by a 3-D fast Fourier transform (3-D-FFT)-based method. Then, a CNN is proposed by building two novel blocks, i.e., the spatiotemporal deformable convolution (STDC) block and the adaptive spatiotemporal context-aware convolution (ASTCAC) block. Concretely, STDC is designed to cope with hand gestures' large spatiotemporal geometric transformations in the 5-D feature space. Moreover, ASTCAC is designed for modeling long-distance global relationships, e.g., relationships between pixels of the feature at the upper left corner and lower right corner, and exploring the global spatiotemporal context, in order to enhance the target feature representation and suppress interference. Finally, our presented method is verified on a large radar dataset, including 19 760 sets of 16 common hand gestures, collected by 19 subjects. Our method obtains a recognition rate of 99.53% on the validation dataset and that of 97.22% on the test dataset, which is significantly better than state-of-the-art methods. |
---|---|
AbstractList | Recently, frequency-modulated continuous-wave (FMCW) radar-based hand gesture recognition (HGR) using deep learning has achieved favorable performance. However, many existing methods use extracted features separately, i.e., using one of the range, Doppler, azimuth, or elevation angle information, or a combination of any two, to train convolutional neural networks (CNNs), which ignore the interrelation among the 5-D time-varying-range-Doppler-azimuth-elevation feature space. Although there have been methods using the 5-D information, their mining of the interrelation among the 5-D feature space is not sufficient, and there is still room for improvements. This article proposes a new processing scheme of HGR based on 5-D feature cubes that are jointly encoded by a 3-D fast Fourier transform (3-D-FFT)-based method. Then, a CNN is proposed by building two novel blocks, i.e., the spatiotemporal deformable convolution (STDC) block and the adaptive spatiotemporal context-aware convolution (ASTCAC) block. Concretely, STDC is designed to cope with hand gestures’ large spatiotemporal geometric transformations in the 5-D feature space. Moreover, ASTCAC is designed for modeling long-distance global relationships, e.g., relationships between pixels of the feature at the upper left corner and lower right corner, and exploring the global spatiotemporal context, in order to enhance the target feature representation and suppress interference. Finally, our presented method is verified on a large radar dataset, including 19 760 sets of 16 common hand gestures, collected by 19 subjects. Our method obtains a recognition rate of 99.53% on the validation dataset and that of 97.22% on the test dataset, which is significantly better than state-of-the-art methods. |
Author | Dong, Xichao Zeng, Tao Sui, Yi Wang, Jianping Wang, Yupei Zhao, Zewei |
Author_xml | – sequence: 1 givenname: Xichao orcidid: 0000-0001-8624-8872 surname: Dong fullname: Dong, Xichao organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Zewei orcidid: 0000-0003-4893-020X surname: Zhao fullname: Zhao, Zewei organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Yupei orcidid: 0000-0002-9771-6229 surname: Wang fullname: Wang, Yupei email: wangyupei2019@outlook.com organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Tao orcidid: 0000-0002-2513-6014 surname: Zeng fullname: Zeng, Tao organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Jianping orcidid: 0000-0001-9450-8961 surname: Wang fullname: Wang, Jianping organization: Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands – sequence: 6 givenname: Yi orcidid: 0000-0002-3174-0015 surname: Sui fullname: Sui, Yi organization: School of Information and Electronics, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kEtPwzAQhC0EEuXxAxAXS5xTvHYcx0cotEUCIRUQx8iNNygotYOd8rjzw0nUigMHTquV5pvdmQOy67xDQk6AjQGYPn-cLR7GnHEYC-BcCL5DRiBlnrAsTXfJiIHOEp5rvk8OYnxlDFIJakS-p3eTZ7ow1oTk0kS0dG6cpTOM3TogXWDpX1zd1d7Rp1i7F_rQmn7rcNX6YBp6hZUPK7NskA7cxLsOP7vk4sP0dL-9-2Y90L1UJld0imbr2waM6LrBzB2Rvco0EY-385A8Ta8fJ_Pk9n52M7m4TUquRZfIFC0gWJtrVjEtLJepxZIvMVU5Y8uMKVVVBriqSqMhLzOtMsU1twYBZCYOydnGtw3-bd1HLF79OvS_xYJnXOUiByF7FWxUZfAxBqyKNtQrE74KYMVQdjGUXQxlF9uye0b9Ycp6k60Lpm7-JU83ZI2Iv5e0zFPNpfgBQnmPbw |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_OJCOMS_2024_3411529 crossref_primary_10_1109_TIM_2024_3412196 crossref_primary_10_1145_3631433 crossref_primary_10_3390_s23177478 crossref_primary_10_1109_LGRS_2022_3217390 crossref_primary_10_1109_JSEN_2022_3216604 crossref_primary_10_1109_TIM_2023_3253906 crossref_primary_10_3390_electronics11010156 crossref_primary_10_1109_ACCESS_2023_3311265 crossref_primary_10_1109_TGRS_2022_3213748 crossref_primary_10_1109_TGRS_2023_3276023 crossref_primary_10_1109_TAP_2024_3373054 crossref_primary_10_1109_TMC_2024_3402356 crossref_primary_10_1109_JSEN_2024_3432972 crossref_primary_10_1109_JSEN_2022_3169231 crossref_primary_10_1109_JSEN_2024_3505145 crossref_primary_10_1109_JSEN_2024_3355395 |
Cites_doi | 10.1109/CVPR.2018.00054 10.1109/VTC2020-Spring48590.2020.9128573 10.1109/JSEN.2020.2994292 10.1109/JSEN.2018.2808688 10.1109/TAP.1986.1143830 10.1109/TIP.2017.2785279 10.23919/APMC.2018.8617375 10.1109/LSP.2020.3013518 10.1109/CVPR.2014.223 10.1109/34.735811 10.1145/2897824.2925953 10.1109/GlobalSIP.2016.7905995 10.1007/978-3-030-01267-0_19 10.1007/978-3-030-01258-8_21 10.1109/CVPR42600.2020.00342 10.1109/CVPR.2018.00685 10.1109/JSEN.2020.3046991 10.1109/TSMCA.2011.2116004 10.23919/EURAD.2017.8249172 10.1007/978-3-319-46493-038 10.1109/TPAMI.2012.59 10.1109/TMTT.2020.3031619 10.1109/CVPR.2017.502 10.1109/ICASSP.2019.8682277 10.3390/s17040833 10.1049/cp.2017.0482 10.1109/CVPR.2018.00745 10.1109/ICCV.2017.89 10.1109/JSEN.2019.2892073 10.1109/EuCAP.2012.6206605 10.1016/j.patcog.2020.107416 10.1109/CVPR.2017.195 10.1109/ACCESS.2019.2897060 10.1109/TGRS.2020.3010880 10.1109/TMM.2017.2759504 10.1109/ACCESS.2019.2942305 10.1109/EMBC.2014.6945096 10.1109/MSP.2018.2890128 10.1162/neco.1997.9.8.1735 10.1109/MSP.2019.2903715 10.1109/RADAR42522.2020.9114664 10.1007/978-3-030-58595-2_46 10.1109/ICCV.2015.510 10.1109/IIH-MSP.2009.96 10.1109/LSENS.2018.2866371 10.1109/TIP.2020.3042059 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3122332 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 11 |
ExternalDocumentID | 10_1109_TGRS_2021_3122332 9584925 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61960206009 funderid: 10.13039/501100001809 – fundername: Special Fund for Research on National Major Research Instruments (NSFC) grantid: 61827901; 31727901 – fundername: China Postdoctoral Science Foundation grantid: 2020M670162 funderid: 10.13039/501100002858 – fundername: Distinguished Young Scholars of Chongqing grantid: cstc2020jcyj-jqX0008 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-54ed1e1dd890f093d254dec2be47800b6077ffa127fca918c69767292dae11563 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:18:03 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 01:34:32 EDT 2025 Wed Aug 27 02:49:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-54ed1e1dd890f093d254dec2be47800b6077ffa127fca918c69767292dae11563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3174-0015 0000-0002-9771-6229 0000-0001-8624-8872 0000-0003-4893-020X 0000-0001-9450-8961 0000-0002-2513-6014 |
PQID | 2627838135 |
PQPubID | 85465 |
PageCount | 11 |
ParticipantIDs | ieee_primary_9584925 proquest_journals_2627838135 crossref_primary_10_1109_TGRS_2021_3122332 crossref_citationtrail_10_1109_TGRS_2021_3122332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 (ref49) 2017 ref52 ref11 ref10 Wang (ref20) 2019; 41 Kuehne (ref51) ref17 ref16 ref19 ref18 ref50 ref45 ref47 ref42 ref41 ref44 ref43 ref8 Jankiraman (ref48) 2018 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 Ming (ref7) 2019; 10 ref29 Brabandere (ref46) |
References_xml | – ident: ref30 doi: 10.1109/CVPR.2018.00054 – start-page: 667 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref46 article-title: Dynamic filter networks – ident: ref15 doi: 10.1109/VTC2020-Spring48590.2020.9128573 – volume-title: FMCW Radar Design year: 2018 ident: ref48 – ident: ref23 doi: 10.1109/JSEN.2020.2994292 – ident: ref11 doi: 10.1109/JSEN.2018.2808688 – ident: ref31 doi: 10.1109/TAP.1986.1143830 – ident: ref28 doi: 10.1109/TIP.2017.2785279 – ident: ref14 doi: 10.23919/APMC.2018.8617375 – ident: ref42 doi: 10.1109/LSP.2020.3013518 – ident: ref50 doi: 10.1109/CVPR.2014.223 – ident: ref4 doi: 10.1109/34.735811 – ident: ref10 doi: 10.1145/2897824.2925953 – ident: ref25 doi: 10.1109/GlobalSIP.2016.7905995 – ident: ref38 doi: 10.1007/978-3-030-01267-0_19 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: ref7 article-title: A review of hand gesture and sign language recognition techniques publication-title: Int. J. Mach. Learn. Cybern. – ident: ref40 doi: 10.1007/978-3-030-01258-8_21 – ident: ref41 doi: 10.1109/CVPR42600.2020.00342 – ident: ref36 doi: 10.1109/CVPR.2018.00685 – ident: ref18 doi: 10.1109/JSEN.2020.3046991 – ident: ref9 doi: 10.1109/TSMCA.2011.2116004 – ident: ref13 doi: 10.23919/EURAD.2017.8249172 – ident: ref37 doi: 10.1007/978-3-319-46493-038 – ident: ref33 doi: 10.1109/TPAMI.2012.59 – ident: ref2 doi: 10.1109/TMTT.2020.3031619 – ident: ref34 doi: 10.1109/CVPR.2017.502 – ident: ref21 doi: 10.1109/ICASSP.2019.8682277 – ident: ref6 doi: 10.3390/s17040833 – ident: ref12 doi: 10.1049/cp.2017.0482 – ident: ref45 doi: 10.1109/CVPR.2018.00745 – ident: ref29 doi: 10.1109/ICCV.2017.89 – ident: ref16 doi: 10.1109/JSEN.2019.2892073 – ident: ref32 doi: 10.1109/EuCAP.2012.6206605 – ident: ref44 doi: 10.1016/j.patcog.2020.107416 – volume: 41 start-page: 822 issue: 4 year: 2019 ident: ref20 article-title: Gesture recognition with multi-dimensional parameter using FMCW radar publication-title: J. Electron. Inf. Technol. – ident: ref52 doi: 10.1109/CVPR.2017.195 – ident: ref19 doi: 10.1109/ACCESS.2019.2897060 – ident: ref8 doi: 10.1109/TGRS.2020.3010880 – ident: ref39 doi: 10.1109/TMM.2017.2759504 – ident: ref24 doi: 10.1109/ACCESS.2019.2942305 – ident: ref5 doi: 10.1109/EMBC.2014.6945096 – ident: ref1 doi: 10.1109/MSP.2018.2890128 – ident: ref27 doi: 10.1162/neco.1997.9.8.1735 – ident: ref3 doi: 10.1109/MSP.2019.2903715 – ident: ref22 doi: 10.1109/RADAR42522.2020.9114664 – ident: ref47 doi: 10.1007/978-3-030-58595-2_46 – ident: ref35 doi: 10.1109/ICCV.2015.510 – volume-title: Robust Traffic and Intersection Monitoring Using Millimeter Wave Sensors year: 2017 ident: ref49 – ident: ref26 doi: 10.1109/IIH-MSP.2009.96 – ident: ref17 doi: 10.1109/LSENS.2018.2866371 – ident: ref43 doi: 10.1109/TIP.2020.3042059 – start-page: 571 volume-title: Proc. HLRS ident: ref51 article-title: HMDB: A large video database for human motion recognition |
SSID | ssj0014517 |
Score | 2.5056732 |
Snippet | Recently, frequency-modulated continuous-wave (FMCW) radar-based hand gesture recognition (HGR) using deep learning has achieved favorable performance.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Azimuth Concrete blocks Context Continuous radiation Convolution Cubes Datasets Deep learning Deformation Doppler effect Doppler sonar Elevation angle Estimation Fast Fourier transformations Feature extraction Formability Fourier transforms Frequency dependence Frequency-modulated continuous-wave (FMCW) radar Geometric transformation Gesture recognition hand gesture recognition (HGR) Machine learning Methods Neural networks Radar Representations spatiotemporal context modeling spatiotemporal deformable convolution (STDC) Spatiotemporal phenomena Three-dimensional displays |
Title | FMCW Radar-Based Hand Gesture Recognition Using Spatiotemporal Deformable and Context-Aware Convolutional 5-D Feature Representation |
URI | https://ieeexplore.ieee.org/document/9584925 https://www.proquest.com/docview/2627838135 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH4CJKTtsA3YtDI2-bDThEvsJE58ZLBSIXWHAoJb5Ngvl1UpKu2QOPOH79lxCww07ZZIfpal9-z3ffb7AfBVYGYIVRvekO_mWVMKTqg14Xlqa9pf3kX6BOfRTzW8yE6v8qs12F_lwiBiCD7Dvv8Mb_luahf-quxAk7fUMl-HdSJuXa7W6sUgy0VMjVacSISML5gi0QfnJ-MzYoJSEEElb5jKJz4oNFV5dhIH9zJ4C6Plwrqokl_9xbzu27u_ajb-78rfwZuIM9lhZxhbsIbtNrx-VH1wGzZD9Ke92YH7wejoko2NMzP-ndyaY0PTOnZC61zMkI2XQUbTloUQA3YW4rBjWasJO8YAfesJMi8XKl4RoT68NSRNf7-jfdPQnB8zDzu7ea8fkp_a93Ax-HF-NOSxPQO3hBHmPM_QCRTOlTppEp064poOrawxKwiG1iopiqYxQhaNNVqUVhH0ISwvnUHCoSr9ABvttMWPwFTtnDYocyxkZlVqTKNEiY3WGR1CxvUgWSqssrF2uW-hMakCh0l05XVceR1XUcc9-LYSue4Kd_xr8I7X2WpgVFcP9pZWUcWtfVNJ5ZuTlCLNd1-W-gSvpM-RCPc0e7Axny3wMyGXef0lmOwfvijqBQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB6VIgQceLRFpC3gAyeE07V317s-lpY0QNNDmoreVl579kK0qdIEJM78cMZeJ6WAELddyWNZmrG_b-x5ALwWmBli1YY3hN08a0rBibUmPE9tTfvLQ6RPcB6dqeFF9vEyv9yAt-tcGEQMwWfY95_hLd_N7NJflR1oQkst8ztwl3A_l1221vrNIMtFTI5WnNwIGd8wRaIPJifjc_IFpSAXlfAwlbdQKLRV-eMsDgAzeAyj1dK6uJIv_eWi7tvvv1Vt_N-1P4FHkWmyw840nsIGtlvw8Jf6g1twL8R_2utt-DEYHX1mY-PMnL8jYHNsaFrHTmidyzmy8SrMaNayEGTAzkMkdixsNWXHGMhvPUXm5ULNK3KpD78Zkqa_r9HCaWjOj5knnt28VzfpT-0OXAzeT46GPDZo4JZYwoLnGTqBwrlSJ02iU0fepkMra8wKIqK1SoqiaYyQRWONFqVVRH6IzUtnkJioSp_BZjtr8TkwVTunDcocC5lZlRrTKFFio3VGx5BxPUhWCqtsrF7um2hMq-DFJLryOq68jquo4x68WYtcdaU7_jV42-tsPTCqqwf7K6uo4ua-rqTy7UlKkea7f5d6BfeHk9Fpdfrh7NMePJA-YyLc2uzD5mK-xBfEYxb1y2C-PwEasO1P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FMCW+Radar-Based+Hand+Gesture+Recognition+Using+Spatiotemporal+Deformable+and+Context-Aware+Convolutional+5-D+Feature+Representation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Dong%2C+Xichao&rft.au=Zhao%2C+Zewei&rft.au=Wang%2C+Yupei&rft.au=Zeng%2C+Tao&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1109%2FTGRS.2021.3122332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3122332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |