Self-Sensing Digital Predistortion of RF Power Amplifiers for 6G Intelligent Radio
The future intelligent communication systems will dynamically adjust the transmitted signal according to the radio environment and human behavior, which will lead to the rapid change of the characteristics of power amplifier (PA) and bring new challenges for digital predistortion (DPD). In this lett...
Saved in:
Published in | IEEE microwave and wireless components letters Vol. 32; no. 5; pp. 475 - 478 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The future intelligent communication systems will dynamically adjust the transmitted signal according to the radio environment and human behavior, which will lead to the rapid change of the characteristics of power amplifier (PA) and bring new challenges for digital predistortion (DPD). In this letter, a novel self-sensing DPD (SS-DPD) technique is proposed to linearize PA driven by fast time-varied signals. By automatically sensing the features of input signal and integrating them into the neural network, the proposed model is capable of linearizing the PA operated in such time-varied scenarios without updating DPD coefficients. Furthermore, the polynomial basis functions are embedded into neural network to reduce the complexity. Experimental results on a Doherty PA driven by the fast time-varied signal show that the proposed method can achieve good performance constantly with low complexity. |
---|---|
AbstractList | The future intelligent communication systems will dynamically adjust the transmitted signal according to the radio environment and human behavior, which will lead to the rapid change of the characteristics of power amplifier (PA) and bring new challenges for digital predistortion (DPD). In this letter, a novel self-sensing DPD (SS-DPD) technique is proposed to linearize PA driven by fast time-varied signals. By automatically sensing the features of input signal and integrating them into the neural network, the proposed model is capable of linearizing the PA operated in such time-varied scenarios without updating DPD coefficients. Furthermore, the polynomial basis functions are embedded into neural network to reduce the complexity. Experimental results on a Doherty PA driven by the fast time-varied signal show that the proposed method can achieve good performance constantly with low complexity. |
Author | Cai, Jialin Yu, Chao Zhu, Xiao-Wei Yu, Yucheng Chen, Peng |
Author_xml | – sequence: 1 givenname: Yucheng orcidid: 0000-0003-4314-8024 surname: Yu fullname: Yu, Yucheng organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China – sequence: 2 givenname: Jialin orcidid: 0000-0001-8621-1105 surname: Cai fullname: Cai, Jialin organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Xiao-Wei orcidid: 0000-0002-3495-9178 surname: Zhu fullname: Zhu, Xiao-Wei organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China – sequence: 4 givenname: Peng orcidid: 0000-0001-7925-5695 surname: Chen fullname: Chen, Peng organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China – sequence: 5 givenname: Chao orcidid: 0000-0002-3710-460X surname: Yu fullname: Yu, Chao email: chao.yu@seu.edu.cn organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China |
BookMark | eNp9kMFKAzEURYNUsFY_QNzkB6bmJTPJZFmqVqFiaRWXQybzUiLTSUkGxL-3Q4sLF67u3Zz3uOeSjLrQISE3wKYATN8tXz7mU844TAUIzaA8I2MoijIDJfPR0AVkIJi-IJcpfTIGeZnDmKw32Lpsg13y3Zbe-63vTUtXERuf-hB7HzoaHF0_0lX4wkhnu33rnceYqAuRygV97npsW7_Frqdr0_hwRc6daRNen3JC3h8f3uZP2fJ18TyfLTPLteizvMHSNoprB0Y1vCgE8lq5HEBKx2pd5qyWTJvC1lZxo5mzCJbZulSy4IaLCYHjXRtDShFdtY9-Z-J3BawapFSDlGqQUp2kHBj1h7GHwcPKPhrf_kveHkmPiL-ftFSKgRQ_ePVxJg |
CODEN | IMWCBJ |
CitedBy_id | crossref_primary_10_1109_LMWT_2023_3344227 crossref_primary_10_1109_LMWT_2023_3335471 crossref_primary_10_1109_LMWT_2022_3233127 crossref_primary_10_1109_TMTT_2022_3210199 crossref_primary_10_1109_TCSI_2024_3439580 crossref_primary_10_1109_TMTT_2022_3224192 crossref_primary_10_1109_LMWT_2024_3433484 crossref_primary_10_1109_TMTT_2023_3341616 crossref_primary_10_1109_TMTT_2023_3319978 crossref_primary_10_1109_TMTT_2024_3418014 crossref_primary_10_1109_TCOMM_2024_3395704 crossref_primary_10_1109_TMTT_2024_3445275 crossref_primary_10_1109_TMTT_2023_3318732 crossref_primary_10_1109_TWC_2022_3221459 crossref_primary_10_1109_TMTT_2022_3205930 crossref_primary_10_1109_TMTT_2023_3241612 crossref_primary_10_1186_s13634_024_01191_7 |
Cites_doi | 10.1109/TCOMM.2003.822188 10.1109/IMS30576.2020.9223873 10.1109/TMTT.2020.3039747 10.1109/NEMO49486.2020.9343625 10.1109/TSP.2006.879264 10.1109/ICMMT.2018.8563891 10.1155/2018/3968308 10.1109/ACCESS.2019.2927875 10.1109/MWC.2016.1500356WC 10.1109/TMTT.2015.2480739 10.1109/TMTT.2010.2047920 10.1109/MCOM.2019.1900271 10.1109/TMTT.2016.2588483 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LMWC.2021.3139018 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-1764 |
EndPage | 478 |
ExternalDocumentID | 10_1109_LMWC_2021_3139018 9677016 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20200065 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China (NSFC) grantid: 62022025; 61971170 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c293t-4de8cd729f1a7d2553e2b7f41166f0b9840b609a5cbc72a90fce1c0cb87652a23 |
IEDL.DBID | RIE |
ISSN | 1531-1309 |
IngestDate | Tue Jul 01 01:00:44 EDT 2025 Thu Apr 24 22:52:32 EDT 2025 Wed Aug 27 02:37:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-4de8cd729f1a7d2553e2b7f41166f0b9840b609a5cbc72a90fce1c0cb87652a23 |
ORCID | 0000-0001-8621-1105 0000-0002-3710-460X 0000-0002-3495-9178 0000-0003-4314-8024 0000-0001-7925-5695 |
PageCount | 4 |
ParticipantIDs | crossref_citationtrail_10_1109_LMWC_2021_3139018 crossref_primary_10_1109_LMWC_2021_3139018 ieee_primary_9677016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE microwave and wireless components letters |
PublicationTitleAbbrev | LMWC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1109/TCOMM.2003.822188 – ident: ref5 doi: 10.1109/IMS30576.2020.9223873 – ident: ref4 doi: 10.1109/TMTT.2020.3039747 – ident: ref8 doi: 10.1109/NEMO49486.2020.9343625 – ident: ref11 doi: 10.1109/TSP.2006.879264 – ident: ref6 doi: 10.1109/ICMMT.2018.8563891 – ident: ref10 doi: 10.1155/2018/3968308 – ident: ref7 doi: 10.1109/ACCESS.2019.2927875 – ident: ref1 doi: 10.1109/MWC.2016.1500356WC – ident: ref3 doi: 10.1109/TMTT.2015.2480739 – ident: ref13 doi: 10.1109/TMTT.2010.2047920 – ident: ref2 doi: 10.1109/MCOM.2019.1900271 – ident: ref12 doi: 10.1109/TMTT.2016.2588483 |
SSID | ssj0014841 |
Score | 2.476904 |
Snippet | The future intelligent communication systems will dynamically adjust the transmitted signal according to the radio environment and human behavior, which will... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 475 |
SubjectTerms | Baseband Complexity theory Digital predistortion (DPD) intelligent radio Mathematical models neural network Neural networks power amplifier (PA) Predistortion Sensors Wireless sensor networks |
Title | Self-Sensing Digital Predistortion of RF Power Amplifiers for 6G Intelligent Radio |
URI | https://ieeexplore.ieee.org/document/9677016 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL1sA0Ef_NgU5xd58EnslnZZ2zyO6ZziZGwO91aaNBnD0crsXvz13nS1TBHxrZQUQk4-zmnOvRfgknki9HToWq5QvsUkLqmwLZkVMmSznCPFl5nb4sntT9jDtD0twXURC6OUysxnqmEes7v8KJEr86usyV3PQ4pShjIKt3WsVnFjwHyW50a1LdyXeX6DaVPefBy8dFEJOjYKVCPx_W9n0EZRlexM6e3B4Ks3ayvJa2OViob8-JGo8b_d3YfdnFySzno2HEBJxVXY2Ug5WIWtzPIp32swGquFtsbGwB7PyM18ZsqHkOHSBOqiEDeAkUSTUY8MTSU10jHec20qZxMkusS9I_dFOs-UjMJonhzCpHf73O1beYUFS-Ixn1osUr6MkF9rO_QiVBct5QhPI06uq6ngqP6ESzmiJ6TnhJxqqWxJpcA9tO2ETusIKnESq2MgjhZtrR1sJXBf8IXva19RGUmloxZTtA70a8wDmacfN1UwFkEmQygPDEyBgSnIYarDVfHJ2zr3xl-NawaBomE--Ce_vz6FbcfEMWTOxTOopMuVOkd2kYqLbFp9AhFLyr4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCAEHlhbEjg-cEGmd1Fl8REBpoa2qLoJbFDs2QlQNKumFr2ecplFBCHGLIkey8hzPe_GbGYAL5ovI15FneUIFFpP4SUWuZFbEkM1yjhRfZm6LjtcYsodn93kJropcGKVUZj5TFXOZneXHiZyaX2VV7vk-UpRlWMW479qzbK3izIAFLK-Oalu4M_P8DNOmvNpqP92gFnRslKhG5AffotBCW5UsqtS3oT2fz8xM8laZpqIiP3-UavzvhHdgK6eX5Hq2HnZhSY1LsLlQdLAEa5npU36UoddXI231jYV9_EJuX19MAxHSnZhUXZTiBjKSaNKrk67ppUaujftcm97ZBKku8e5JsyjomZJeFL8mezCs3w1uGlbeY8GSGOhTi8UqkDEybG1Hfoz6oqYc4WtEyvM0FRz1n_AoR_yE9J2IUy2VLakUuIu6TuTU9mFlnIzVARBHC1drB0cJ3BkCEQQ6UFTGUum4xhQ9BDp_56HMC5CbPhijMBMilIcGptDAFOYwHcJl8cj7rPrGX4PLBoFiYP7yj36_fQ7rjUG7Fbaancdj2HBMVkPmYzyBlXQyVafINVJxli2xL9JEzgc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Sensing+Digital+Predistortion+of+RF+Power+Amplifiers+for+6G+Intelligent+Radio&rft.jtitle=IEEE+microwave+and+wireless+components+letters&rft.au=Yu%2C+Yucheng&rft.au=Cai%2C+Jialin&rft.au=Zhu%2C+Xiao-Wei&rft.au=Chen%2C+Peng&rft.date=2022-05-01&rft.issn=1531-1309&rft.eissn=1558-1764&rft.volume=32&rft.issue=5&rft.spage=475&rft.epage=478&rft_id=info:doi/10.1109%2FLMWC.2021.3139018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LMWC_2021_3139018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-1309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-1309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-1309&client=summon |