Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing

With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 12; pp. 4767 - 4782
Main Authors Qiao, Dewen, Guo, Songtao, Liu, Defang, Long, Saiqin, Zhou, Pengzhan, Li, Zhetao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.
AbstractList With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.
With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users’ privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4[Formula Omitted] and 6.84[Formula Omitted], and save resources up to 47.4[Formula Omitted] and 35.6[Formula Omitted], respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.
Author Long, Saiqin
Guo, Songtao
Qiao, Dewen
Zhou, Pengzhan
Li, Zhetao
Liu, Defang
Author_xml – sequence: 1
  givenname: Dewen
  surname: Qiao
  fullname: Qiao, Dewen
  email: dwqiao@qq.com
  organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China
– sequence: 2
  givenname: Songtao
  orcidid: 0000-0001-6741-4871
  surname: Guo
  fullname: Guo, Songtao
  email: guosongtao@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Defang
  surname: Liu
  fullname: Liu, Defang
  email: liudf@cqu.edu.cn
  organization: Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Saiqin
  orcidid: 0000-0001-7119-8673
  surname: Long
  fullname: Long, Saiqin
  email: xxgcxyxtu@sina.com
  organization: National & Local Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Provincial Key Laboratory of Data Security and Privacy Protection College of Information Science and Technology, Jinan University, Guangzhou, China
– sequence: 5
  givenname: Pengzhan
  orcidid: 0000-0002-8796-5969
  surname: Zhou
  fullname: Zhou, Pengzhan
  email: pzzhou@cqu.edu.cn
  organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China
– sequence: 6
  givenname: Zhetao
  orcidid: 0000-0002-7804-0286
  surname: Li
  fullname: Li, Zhetao
  email: liztchina@hotmail.com
  organization: National & Local Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Provincial Key Laboratory of Data Security and Privacy Protection College of Information Science and Technology, Jinan University, Guangzhou, China
BookMark eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2Z3jyVtVShYtF4Nm2RSt7SbuNkKfnsTWzx48DTDm_ebYd4IDVztAKFrgieEYH23Xs1eJhRTOmEUE63YGRoSIVRMiWKDrsdcxJoSfYFGbbvFmHCB-RC9TUvTBPsJ0QJK8CZAGc0AmugZrKtqX8AeXIiWYLyzbhN1UrTytSl-mLR2oR-npnjvp9ZF83LT6_vmEDrlEp1XZtfC1amO0etivk4f4uXT_WM6XcYF1SzEPDdaG0kxFgykkbnAKim5VJqanJdSK54nlYZcQEUI6FxIrjUvMMsrMAlhY3R73Nv4-uMAbci29cG77mRGJeFKs4TKziWPrsLXbeuhygobTLDdF97YXUZw1oeZ9WFmfZjZKcyOJH_Ixtu98V__MjdHxgLAr1-rRBHC2TcAgIGf
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_JIOT_2023_3327495
crossref_primary_10_1007_s11227_025_07058_4
crossref_primary_10_1016_j_phycom_2024_102581
crossref_primary_10_1109_TPDS_2025_3543368
crossref_primary_10_1109_JIOT_2024_3376548
crossref_primary_10_1109_JSAC_2023_3310046
crossref_primary_10_1109_TPDS_2023_3334398
crossref_primary_10_3390_app14072720
crossref_primary_10_1109_TSC_2024_3433579
crossref_primary_10_3390_electronics12112362
crossref_primary_10_1145_3706630
crossref_primary_10_1109_TMC_2024_3361083
crossref_primary_10_1109_TMC_2024_3363143
crossref_primary_10_1007_s42486_023_00141_w
crossref_primary_10_1109_TPDS_2024_3406027
crossref_primary_10_1109_TMC_2023_3340733
crossref_primary_10_1109_ACCESS_2023_3298704
crossref_primary_10_1109_JSTSP_2022_3221271
crossref_primary_10_1109_TWC_2024_3489578
crossref_primary_10_1016_j_energy_2023_128641
crossref_primary_10_1016_j_comnet_2025_111062
crossref_primary_10_1109_TETCI_2024_3372381
crossref_primary_10_1109_JIOT_2023_3349255
crossref_primary_10_1016_j_asoc_2024_111795
crossref_primary_10_1109_TMC_2024_3510135
crossref_primary_10_1007_s00607_024_01396_6
crossref_primary_10_1016_j_comcom_2024_107964
crossref_primary_10_1109_TPAMI_2023_3322785
crossref_primary_10_1109_JIOT_2023_3263359
Cites_doi 10.1109/TPDS.2020.3010521
10.1109/TWC.2020.3037554
10.1109/TCOMM.2020.2984759
10.1109/JSAC.2020.3036946
10.1109/CCECE.2008.4564577
10.1109/INFCOM.2003.1208695
10.1109/JIOT.2021.3110412
10.1109/TVT.2020.3017689
10.1109/TMC.2017.2780834
10.1109/TITS.2020.2976572
10.1109/JSAC.2018.2844985
10.1109/TWC.2020.3024629
10.1109/JSAC.2019.2904348
10.1109/TPDS.2020.3040887
10.1109/JSAC.2020.3000415
10.1109/WCNC45663.2020.9120586
10.1109/COMST.2022.3189962
10.1109/TII.2022.3140878
10.1109/TC.2021.3099723
10.1145/2827872
10.1109/GLOCOM.2018.8647616
10.1109/JIOT.2020.2986803
10.1109/TWC.2016.2636139
10.1109/TWC.2021.3066458
10.1109/TVT.2019.2944742
10.1109/TBC.2020.2996087
10.1109/TPDS.2015.2425398
10.1109/ICCAIS48893.2020.9096733
10.1109/TVT.2018.2869144
10.1109/INFOCOM41043.2020.9155494
10.1109/TWC.2020.3030973
10.1109/TITS.2020.3017474
10.1109/TCOMM.2019.2955490
10.1109/JIOT.2021.3081480
10.1109/TITS.2013.2270282
10.1109/JIOT.2020.3007662
10.1109/TMM.2019.2939753
10.1109/TNET.2020.2968424
10.1109/JSAC.2018.2844658
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2022.3201983
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 4782
ExternalDocumentID 10_1109_TPDS_2022_3201983
9868114
Genre orig-research
GrantInformation_xml – fundername: Hunan Science and Technology Planning Project
  grantid: 2019RS3019
– fundername: Natural Science Key Foundation of Chongqing
  grantid: cstc2020jcyj-zdxmX0026
– fundername: National Key Research and Development Program of China
  grantid: 2021YFB3101200
– fundername: Natural Science Foundation of Hunan
  grantid: 2021JJ40544
– fundername: National Natural Science Foundation of China
  grantid: 62032020; 62172350
  funderid: 10.13039/501100001809
– fundername: Hunan Province Department of Education
  grantid: 21B0120
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 06:14:31 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Wed Aug 27 02:18:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6741-4871
0000-0002-8796-5969
0000-0002-7804-0286
0000-0001-7119-8673
PQID 2714893627
PQPubID 85437
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TPDS_2022_3201983
proquest_journals_2714893627
ieee_primary_9868114
crossref_primary_10_1109_TPDS_2022_3201983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref39
ref38
ref18
Zhao (ref17) 2018
Lin (ref15)
ref50
Cho (ref19) 2020
McMahan (ref14)
ref24
ref46
ref23
ref26
Mcmahan (ref16)
ref25
ref20
ref42
Konečnỳ (ref12)
ref41
ref22
ref44
ref21
ref28
ref27
ref49
ref29
ref8
ref7
Jolliffe (ref43) 2002; 87
ref9
ref4
ref3
ref6
ref5
Pandey (ref47) 2011
ref40
Agrawal (ref48) 2011; 23
References_xml – ident: ref5
  doi: 10.1109/TPDS.2020.3010521
– ident: ref42
  doi: 10.1109/TWC.2020.3037554
– ident: ref11
  doi: 10.1109/TCOMM.2020.2984759
– ident: ref24
  doi: 10.1109/JSAC.2020.3036946
– ident: ref26
  doi: 10.1109/CCECE.2008.4564577
– ident: ref7
  doi: 10.1109/INFCOM.2003.1208695
– ident: ref28
  doi: 10.1109/JIOT.2021.3110412
– ident: ref32
  doi: 10.1109/TVT.2020.3017689
– ident: ref34
  doi: 10.1109/TMC.2017.2780834
– year: 2018
  ident: ref17
  article-title: Federated learning with non-iid data
– ident: ref40
  doi: 10.1109/TITS.2020.2976572
– ident: ref10
  doi: 10.1109/JSAC.2018.2844985
– ident: ref49
  doi: 10.1109/TWC.2020.3024629
– ident: ref27
  doi: 10.1109/JSAC.2019.2904348
– ident: ref20
  doi: 10.1109/TPDS.2020.3040887
– volume: 87
  issue: 4
  year: 2002
  ident: ref43
  article-title: Principal component analysis
  publication-title: J. Marketing Res.
– start-page: 1
  volume-title: Proc. Artif. Intell. Statist. Conf.
  ident: ref14
  article-title: Federated learning of deep networks using model averaging
– ident: ref35
  doi: 10.1109/JSAC.2020.3000415
– ident: ref46
  doi: 10.1109/WCNC45663.2020.9120586
– ident: ref2
  doi: 10.1109/COMST.2022.3189962
– ident: ref29
  doi: 10.1109/TII.2022.3140878
– ident: ref41
  doi: 10.1109/TC.2021.3099723
– ident: ref44
  doi: 10.1145/2827872
– ident: ref21
  doi: 10.1109/GLOCOM.2018.8647616
– ident: ref23
  doi: 10.1109/JIOT.2020.2986803
– ident: ref50
  doi: 10.1109/TWC.2016.2636139
– ident: ref36
  doi: 10.1109/TWC.2021.3066458
– year: 2020
  ident: ref19
  article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies
– ident: ref3
  doi: 10.1109/TVT.2019.2944742
– ident: ref37
  doi: 10.1109/TBC.2020.2996087
– ident: ref9
  doi: 10.1109/TPDS.2015.2425398
– ident: ref8
  doi: 10.1109/ICCAIS48893.2020.9096733
– ident: ref33
  doi: 10.1109/TVT.2018.2869144
– start-page: 1
  volume-title: Proc. NIPS Workshop Private Multi-Party Mach. Learn.
  ident: ref12
  article-title: Federated learning: Strategies for improving communication efficiency
– year: 2011
  ident: ref47
  article-title: Multi-armed bandit
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref15
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref16
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref18
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: ref39
  doi: 10.1109/TWC.2020.3030973
– ident: ref22
  doi: 10.1109/TITS.2020.3017474
– ident: ref38
  doi: 10.1109/TCOMM.2019.2955490
– ident: ref25
  doi: 10.1109/JIOT.2021.3081480
– ident: ref6
  doi: 10.1109/TITS.2013.2270282
– ident: ref13
  doi: 10.1109/JIOT.2020.3007662
– ident: ref4
  doi: 10.1109/TMM.2019.2939753
– ident: ref30
  doi: 10.1109/TNET.2020.2968424
– ident: ref31
  doi: 10.1109/JSAC.2018.2844658
– volume: 23
  start-page: 357
  issue: 4
  year: 2011
  ident: ref48
  article-title: Analysis of thompson sampling for the multi-armed bandit problem
  publication-title: J. Mach. Learn. Res.
SSID ssj0014504
Score 2.5755079
Snippet With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4767
SubjectTerms Adaptation models
Adaptive algorithms
Caching
Cloud computing
Content caching
Data models
Deep learning
deep reinforcement learning
Delays
Edge computing
Efficiency
Feature extraction
federated learning
Internet of Things
Iterative methods
Machine learning
Optimization
Reinforcement learning
resource constraint
Servers
Training
Title Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing
URI https://ieeexplore.ieee.org/document/9868114
https://www.proquest.com/docview/2714893627
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx5cdRXXFzl4Erv2kTbNUdRFBEV0F_ZkSZqpiNJddPfirzeTZhdfiLeSJm1g8vjm9Q3AIeaxRoxNYHipA16JJFC5LIMwEYgyI8WZcoevb7LLAb8apsMFOJ7nwiCiCz7DLj06X74ZlVMylZ3IPMsjqlq9aBW3Jldr7jHgqSsVaLWLNJB2G3oPZhTKk_7t-b3VBOO4m9jrTubJlzvIFVX5cRK766XXguvZxJqokufudKK75fs3zsb_znwNVj3OZKfNwliHBaw3oDWr4cD8lt6AlU-EhG14ODVqTAcg6xHJhMWhhp0jjtkdOobV0hkTmSdlfWS2id1STpYb45iu7OuzJkCTPdXswjxSO_3VtmzCoHfRP7sMfAWGoLQwYBJwraRUgixPCQoltIVzmeEil7HS3AiZc51VEnWKVRSh1KmwGhQvw0RXqCxS2IKlelTjNjBpcR65c7ThnIuwyqtKZTJShhPjXRZ2IJzJpCg9PTlVyXgpnJoSyoLEWJAYCy_GDhzNh4wbbo6_OrdJLPOOXiId2JsJvvC7962IRUScPFksdn4ftQvL9O0mrGUPliavU9y34GSiD9yq_AAUUN93
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBt1ifOXgSt-4ju9kcRS31URGt4Mkl2cyKKLVoe_HXm8mmxRfibckmJPAlmZnMzDcAu5jHGjE2geGlDnglkkDlsgzCRCDKjAxnyh3uXGbtW352l95NwP44FwYRXfAZNunT-fLNSzmkp7IDmWd5RFWrp6zcT-M6W2vsM-CpKxZo7Ys0kPYgeh9mFMqD7tXxjbUF47iZWIEn8-SLFHJlVX7cxU7AtOahM1paHVfy1BwOdLN8_8ba-N-1L8Cc1zTZYb01FmECe0swP6riwPyhXoLZT5SEy3B_aFSfrkDWIpoJq4kadozYZ9foOFZL95zIPC3rA7NN7IqystwYx3Vlfx_VIZrsscdOzAO106y2ZQVuWyfdo3bgazAEpVUEBgHXSkol6O0pQaGEtgpdZrjIZaw0N0LmXGeVRJ1iFUUodSqsDcXLMNEVKqsrrMJk76WHa8Ck1fTIoaMN51yEVV5VKpORMpw477KwAeEIk6L0BOVUJ-O5cIZKKAuCsSAYCw9jA_bGQ_o1O8dfnZcJlnFHj0gDNkfAF_78vhWxiIiVJ4vF-u-jdmC63e1cFBenl-cbMEPz1EEumzA5eB3illVVBnrb7dAP6VLiwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Federated+Deep+Reinforcement+Learning+for+Proactive+Content+Caching+in+Edge+Computing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Qiao%2C+Dewen&rft.au=Guo%2C+Songtao&rft.au=Liu%2C+Defang&rft.au=Long%2C+Saiqin&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=12&rft.spage=4767&rft_id=info:doi/10.1109%2FTPDS.2022.3201983&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon