Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing
With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 33; no. 12; pp. 4767 - 4782 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms. |
---|---|
AbstractList | With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms. With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users’ privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4[Formula Omitted] and 6.84[Formula Omitted], and save resources up to 47.4[Formula Omitted] and 35.6[Formula Omitted], respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms. |
Author | Long, Saiqin Guo, Songtao Qiao, Dewen Zhou, Pengzhan Li, Zhetao Liu, Defang |
Author_xml | – sequence: 1 givenname: Dewen surname: Qiao fullname: Qiao, Dewen email: dwqiao@qq.com organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China – sequence: 2 givenname: Songtao orcidid: 0000-0001-6741-4871 surname: Guo fullname: Guo, Songtao email: guosongtao@cqu.edu.cn organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China – sequence: 3 givenname: Defang surname: Liu fullname: Liu, Defang email: liudf@cqu.edu.cn organization: Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China – sequence: 4 givenname: Saiqin orcidid: 0000-0001-7119-8673 surname: Long fullname: Long, Saiqin email: xxgcxyxtu@sina.com organization: National & Local Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Provincial Key Laboratory of Data Security and Privacy Protection College of Information Science and Technology, Jinan University, Guangzhou, China – sequence: 5 givenname: Pengzhan orcidid: 0000-0002-8796-5969 surname: Zhou fullname: Zhou, Pengzhan email: pzzhou@cqu.edu.cn organization: Key Laboratory of Dependable Service Computing in Cyber-Physical-Society (Ministry of Education), College of computer science, Chongqing University, Chongqing, China – sequence: 6 givenname: Zhetao orcidid: 0000-0002-7804-0286 surname: Li fullname: Li, Zhetao email: liztchina@hotmail.com organization: National & Local Joint Engineering Research Center of Network Security Detection and Protection Technology, Guangdong Provincial Key Laboratory of Data Security and Privacy Protection College of Information Science and Technology, Jinan University, Guangzhou, China |
BookMark | eNp9kE9Lw0AQxRepYFv9AOIl4Dl1_2Z3jyVtVShYtF4Nm2RSt7SbuNkKfnsTWzx48DTDm_ebYd4IDVztAKFrgieEYH23Xs1eJhRTOmEUE63YGRoSIVRMiWKDrsdcxJoSfYFGbbvFmHCB-RC9TUvTBPsJ0QJK8CZAGc0AmugZrKtqX8AeXIiWYLyzbhN1UrTytSl-mLR2oR-npnjvp9ZF83LT6_vmEDrlEp1XZtfC1amO0etivk4f4uXT_WM6XcYF1SzEPDdaG0kxFgykkbnAKim5VJqanJdSK54nlYZcQEUI6FxIrjUvMMsrMAlhY3R73Nv4-uMAbci29cG77mRGJeFKs4TKziWPrsLXbeuhygobTLDdF97YXUZw1oeZ9WFmfZjZKcyOJH_Ixtu98V__MjdHxgLAr1-rRBHC2TcAgIGf |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_JIOT_2023_3327495 crossref_primary_10_1007_s11227_025_07058_4 crossref_primary_10_1016_j_phycom_2024_102581 crossref_primary_10_1109_TPDS_2025_3543368 crossref_primary_10_1109_JIOT_2024_3376548 crossref_primary_10_1109_JSAC_2023_3310046 crossref_primary_10_1109_TPDS_2023_3334398 crossref_primary_10_3390_app14072720 crossref_primary_10_1109_TSC_2024_3433579 crossref_primary_10_3390_electronics12112362 crossref_primary_10_1145_3706630 crossref_primary_10_1109_TMC_2024_3361083 crossref_primary_10_1109_TMC_2024_3363143 crossref_primary_10_1007_s42486_023_00141_w crossref_primary_10_1109_TPDS_2024_3406027 crossref_primary_10_1109_TMC_2023_3340733 crossref_primary_10_1109_ACCESS_2023_3298704 crossref_primary_10_1109_JSTSP_2022_3221271 crossref_primary_10_1109_TWC_2024_3489578 crossref_primary_10_1016_j_energy_2023_128641 crossref_primary_10_1016_j_comnet_2025_111062 crossref_primary_10_1109_TETCI_2024_3372381 crossref_primary_10_1109_JIOT_2023_3349255 crossref_primary_10_1016_j_asoc_2024_111795 crossref_primary_10_1109_TMC_2024_3510135 crossref_primary_10_1007_s00607_024_01396_6 crossref_primary_10_1016_j_comcom_2024_107964 crossref_primary_10_1109_TPAMI_2023_3322785 crossref_primary_10_1109_JIOT_2023_3263359 |
Cites_doi | 10.1109/TPDS.2020.3010521 10.1109/TWC.2020.3037554 10.1109/TCOMM.2020.2984759 10.1109/JSAC.2020.3036946 10.1109/CCECE.2008.4564577 10.1109/INFCOM.2003.1208695 10.1109/JIOT.2021.3110412 10.1109/TVT.2020.3017689 10.1109/TMC.2017.2780834 10.1109/TITS.2020.2976572 10.1109/JSAC.2018.2844985 10.1109/TWC.2020.3024629 10.1109/JSAC.2019.2904348 10.1109/TPDS.2020.3040887 10.1109/JSAC.2020.3000415 10.1109/WCNC45663.2020.9120586 10.1109/COMST.2022.3189962 10.1109/TII.2022.3140878 10.1109/TC.2021.3099723 10.1145/2827872 10.1109/GLOCOM.2018.8647616 10.1109/JIOT.2020.2986803 10.1109/TWC.2016.2636139 10.1109/TWC.2021.3066458 10.1109/TVT.2019.2944742 10.1109/TBC.2020.2996087 10.1109/TPDS.2015.2425398 10.1109/ICCAIS48893.2020.9096733 10.1109/TVT.2018.2869144 10.1109/INFOCOM41043.2020.9155494 10.1109/TWC.2020.3030973 10.1109/TITS.2020.3017474 10.1109/TCOMM.2019.2955490 10.1109/JIOT.2021.3081480 10.1109/TITS.2013.2270282 10.1109/JIOT.2020.3007662 10.1109/TMM.2019.2939753 10.1109/TNET.2020.2968424 10.1109/JSAC.2018.2844658 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2022.3201983 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 4782 |
ExternalDocumentID | 10_1109_TPDS_2022_3201983 9868114 |
Genre | orig-research |
GrantInformation_xml | – fundername: Hunan Science and Technology Planning Project grantid: 2019RS3019 – fundername: Natural Science Key Foundation of Chongqing grantid: cstc2020jcyj-zdxmX0026 – fundername: National Key Research and Development Program of China grantid: 2021YFB3101200 – fundername: Natural Science Foundation of Hunan grantid: 2021JJ40544 – fundername: National Natural Science Foundation of China grantid: 62032020; 62172350 funderid: 10.13039/501100001809 – fundername: Hunan Province Department of Education grantid: 21B0120 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 06:14:31 EDT 2025 Tue Jul 01 03:58:40 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Aug 27 02:18:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6741-4871 0000-0002-8796-5969 0000-0002-7804-0286 0000-0001-7119-8673 |
PQID | 2714893627 |
PQPubID | 85437 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1109_TPDS_2022_3201983 proquest_journals_2714893627 ieee_primary_9868114 crossref_primary_10_1109_TPDS_2022_3201983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref39 ref38 ref18 Zhao (ref17) 2018 Lin (ref15) ref50 Cho (ref19) 2020 McMahan (ref14) ref24 ref46 ref23 ref26 Mcmahan (ref16) ref25 ref20 ref42 Konečnỳ (ref12) ref41 ref22 ref44 ref21 ref28 ref27 ref49 ref29 ref8 ref7 Jolliffe (ref43) 2002; 87 ref9 ref4 ref3 ref6 ref5 Pandey (ref47) 2011 ref40 Agrawal (ref48) 2011; 23 |
References_xml | – ident: ref5 doi: 10.1109/TPDS.2020.3010521 – ident: ref42 doi: 10.1109/TWC.2020.3037554 – ident: ref11 doi: 10.1109/TCOMM.2020.2984759 – ident: ref24 doi: 10.1109/JSAC.2020.3036946 – ident: ref26 doi: 10.1109/CCECE.2008.4564577 – ident: ref7 doi: 10.1109/INFCOM.2003.1208695 – ident: ref28 doi: 10.1109/JIOT.2021.3110412 – ident: ref32 doi: 10.1109/TVT.2020.3017689 – ident: ref34 doi: 10.1109/TMC.2017.2780834 – year: 2018 ident: ref17 article-title: Federated learning with non-iid data – ident: ref40 doi: 10.1109/TITS.2020.2976572 – ident: ref10 doi: 10.1109/JSAC.2018.2844985 – ident: ref49 doi: 10.1109/TWC.2020.3024629 – ident: ref27 doi: 10.1109/JSAC.2019.2904348 – ident: ref20 doi: 10.1109/TPDS.2020.3040887 – volume: 87 issue: 4 year: 2002 ident: ref43 article-title: Principal component analysis publication-title: J. Marketing Res. – start-page: 1 volume-title: Proc. Artif. Intell. Statist. Conf. ident: ref14 article-title: Federated learning of deep networks using model averaging – ident: ref35 doi: 10.1109/JSAC.2020.3000415 – ident: ref46 doi: 10.1109/WCNC45663.2020.9120586 – ident: ref2 doi: 10.1109/COMST.2022.3189962 – ident: ref29 doi: 10.1109/TII.2022.3140878 – ident: ref41 doi: 10.1109/TC.2021.3099723 – ident: ref44 doi: 10.1145/2827872 – ident: ref21 doi: 10.1109/GLOCOM.2018.8647616 – ident: ref23 doi: 10.1109/JIOT.2020.2986803 – ident: ref50 doi: 10.1109/TWC.2016.2636139 – ident: ref36 doi: 10.1109/TWC.2021.3066458 – year: 2020 ident: ref19 article-title: Client selection in federated learning: Convergence analysis and power-of-choice selection strategies – ident: ref3 doi: 10.1109/TVT.2019.2944742 – ident: ref37 doi: 10.1109/TBC.2020.2996087 – ident: ref9 doi: 10.1109/TPDS.2015.2425398 – ident: ref8 doi: 10.1109/ICCAIS48893.2020.9096733 – ident: ref33 doi: 10.1109/TVT.2018.2869144 – start-page: 1 volume-title: Proc. NIPS Workshop Private Multi-Party Mach. Learn. ident: ref12 article-title: Federated learning: Strategies for improving communication efficiency – year: 2011 ident: ref47 article-title: Multi-armed bandit – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref15 article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref16 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref18 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref39 doi: 10.1109/TWC.2020.3030973 – ident: ref22 doi: 10.1109/TITS.2020.3017474 – ident: ref38 doi: 10.1109/TCOMM.2019.2955490 – ident: ref25 doi: 10.1109/JIOT.2021.3081480 – ident: ref6 doi: 10.1109/TITS.2013.2270282 – ident: ref13 doi: 10.1109/JIOT.2020.3007662 – ident: ref4 doi: 10.1109/TMM.2019.2939753 – ident: ref30 doi: 10.1109/TNET.2020.2968424 – ident: ref31 doi: 10.1109/JSAC.2018.2844658 – volume: 23 start-page: 357 issue: 4 year: 2011 ident: ref48 article-title: Analysis of thompson sampling for the multi-armed bandit problem publication-title: J. Mach. Learn. Res. |
SSID | ssj0014504 |
Score | 2.5755079 |
Snippet | With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4767 |
SubjectTerms | Adaptation models Adaptive algorithms Caching Cloud computing Content caching Data models Deep learning deep reinforcement learning Delays Edge computing Efficiency Feature extraction federated learning Internet of Things Iterative methods Machine learning Optimization Reinforcement learning resource constraint Servers Training |
Title | Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing |
URI | https://ieeexplore.ieee.org/document/9868114 https://www.proquest.com/docview/2714893627 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx5cdRXXFzl4Erv2kTbNUdRFBEV0F_ZkSZqpiNJddPfirzeTZhdfiLeSJm1g8vjm9Q3AIeaxRoxNYHipA16JJFC5LIMwEYgyI8WZcoevb7LLAb8apsMFOJ7nwiCiCz7DLj06X74ZlVMylZ3IPMsjqlq9aBW3Jldr7jHgqSsVaLWLNJB2G3oPZhTKk_7t-b3VBOO4m9jrTubJlzvIFVX5cRK766XXguvZxJqokufudKK75fs3zsb_znwNVj3OZKfNwliHBaw3oDWr4cD8lt6AlU-EhG14ODVqTAcg6xHJhMWhhp0jjtkdOobV0hkTmSdlfWS2id1STpYb45iu7OuzJkCTPdXswjxSO_3VtmzCoHfRP7sMfAWGoLQwYBJwraRUgixPCQoltIVzmeEil7HS3AiZc51VEnWKVRSh1KmwGhQvw0RXqCxS2IKlelTjNjBpcR65c7ThnIuwyqtKZTJShhPjXRZ2IJzJpCg9PTlVyXgpnJoSyoLEWJAYCy_GDhzNh4wbbo6_OrdJLPOOXiId2JsJvvC7962IRUScPFksdn4ftQvL9O0mrGUPliavU9y34GSiD9yq_AAUUN93 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5ED-rBt1ifOXgSt-4ju9kcRS31URGt4Mkl2cyKKLVoe_HXm8mmxRfibckmJPAlmZnMzDcAu5jHGjE2geGlDnglkkDlsgzCRCDKjAxnyh3uXGbtW352l95NwP44FwYRXfAZNunT-fLNSzmkp7IDmWd5RFWrp6zcT-M6W2vsM-CpKxZo7Ys0kPYgeh9mFMqD7tXxjbUF47iZWIEn8-SLFHJlVX7cxU7AtOahM1paHVfy1BwOdLN8_8ba-N-1L8Cc1zTZYb01FmECe0swP6riwPyhXoLZT5SEy3B_aFSfrkDWIpoJq4kadozYZ9foOFZL95zIPC3rA7NN7IqystwYx3Vlfx_VIZrsscdOzAO106y2ZQVuWyfdo3bgazAEpVUEBgHXSkol6O0pQaGEtgpdZrjIZaw0N0LmXGeVRJ1iFUUodSqsDcXLMNEVKqsrrMJk76WHa8Ck1fTIoaMN51yEVV5VKpORMpw477KwAeEIk6L0BOVUJ-O5cIZKKAuCsSAYCw9jA_bGQ_o1O8dfnZcJlnFHj0gDNkfAF_78vhWxiIiVJ4vF-u-jdmC63e1cFBenl-cbMEPz1EEumzA5eB3illVVBnrb7dAP6VLiwQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Federated+Deep+Reinforcement+Learning+for+Proactive+Content+Caching+in+Edge+Computing&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Qiao%2C+Dewen&rft.au=Guo%2C+Songtao&rft.au=Liu%2C+Defang&rft.au=Long%2C+Saiqin&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=12&rft.spage=4767&rft_id=info:doi/10.1109%2FTPDS.2022.3201983&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |