A Finite-Sampling, Operational Domain Specific, and Provably Unbiased Connected and Automated Vehicle Safety Metric
A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the natur...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 6; pp. 6650 - 6662 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-shape and the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms). |
---|---|
AbstractList | A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the [Formula Omitted]-shape and the [Formula Omitted]-almost robustly forward invariant set to characterize the SV’s almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms). A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-shape and the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms). |
Author | Ozguner, Umit Redmill, Keith Capito, Linda Weng, Bowen |
Author_xml | – sequence: 1 givenname: Bowen orcidid: 0000-0002-7868-9747 surname: Weng fullname: Weng, Bowen email: weng.172@osu.edu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA – sequence: 2 givenname: Linda orcidid: 0000-0002-9871-1243 surname: Capito fullname: Capito, Linda email: capitoruiz.1@osu.edu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA – sequence: 3 givenname: Umit orcidid: 0000-0003-2241-7547 surname: Ozguner fullname: Ozguner, Umit email: ozguner.1@osu.edu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA – sequence: 4 givenname: Keith orcidid: 0000-0003-1332-1332 surname: Redmill fullname: Redmill, Keith email: redmill.1@osu.edu organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA |
BookMark | eNp9kEtLAzEUhYMo2Ko_QNwE3HZqntPJslSrglKhrdshTW80ZZoZk1Tov3fGigsXru7rfAfu6aNjX3tA6JKSIaVE3SweF_MhI4wNOc0Fl8UR6lEpi4wQmh93PROZIpKcon6Mm3YrJKU9FMd46rxLkM31tqmcfxvgWQNBJ1d7XeHbequdx_MGjLPODLD2a_wS6k-9qvZ46VdOR1jjSe09mNR23X28Sy3WTa_w7kwFeK4tpD1-hhScOUcnVlcRLn7qGVpO7xaTh-xpdv84GT9lhimeMlFYC1oQsLlWzBLBDIxMwWhRKKCSG6W0yI2WlubKWmkFZ_mai8IYsqJc8TN0ffBtQv2xg5jKTb0L7VexZK0NGVFBilY1OqhMqGMMYEvj0vf7KWhXlZSUXcJll3DZJVz-JNyS9A_ZBLfVYf8vc3VgHAD86tVI5ooq_gU72IkI |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TITS_2024_3397849 crossref_primary_10_1109_TITS_2023_3290261 crossref_primary_10_1109_TRO_2023_3267020 crossref_primary_10_1109_TMC_2024_3389987 |
Cites_doi | 10.1007/978-3-319-63387-9_22 10.1093/biomet/52.3-4.627 10.1109/LRA.2021.3122517 10.4271/2020-01-1206 10.1109/TITS.2020.2972211 10.1016/j.aap.2021.106157 10.1016/j.tra.2016.09.010 10.1109/ITSC.2018.8569938 10.1109/ICRA.2019.8794364 10.1109/ITSC.2018.8569326 10.1109/CDC.2008.4739371 10.1068/p050437 10.4271/2021-01-0175 10.1109/ITSC48978.2021.9565013 10.1109/IV47402.2020.9304636 10.1109/IVS.2019.8813853 10.1007/978-3-642-32460-4 10.1109/CVPR42600.2020.00252 10.1109/IV47402.2020.9304603 10.7249/RR2662 10.1109/ITSC.2018.8569552 10.1109/IV47402.2020.9304635 10.1016/j.aap.2017.11.001 10.1109/ITSC48978.2021.9564529 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3164358 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 6662 |
ExternalDocumentID | 10_1109_TITS_2022_3164358 9756919 |
Genre | orig-research |
GrantInformation_xml | – fundername: U.S. Department of Transportation (USDOT) through the Center for Automated Vehicles Research with Multimodal Assured Navigation (CARMEN) University Transportation Center (UTC) grantid: 69A3552047138 funderid: 10.13039/100000140 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-48ffea40ef6a92f042ce7c821889e153c99a46ca5f169ff5f4326d348cc0b1393 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Sun Jun 29 16:56:54 EDT 2025 Tue Jul 01 04:29:09 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 Wed Aug 27 02:14:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-48ffea40ef6a92f042ce7c821889e153c99a46ca5f169ff5f4326d348cc0b1393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2241-7547 0000-0003-1332-1332 0000-0002-7868-9747 0000-0002-9871-1243 |
PQID | 2821071408 |
PQPubID | 75735 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9756919 crossref_primary_10_1109_TITS_2022_3164358 proquest_journals_2821071408 crossref_citationtrail_10_1109_TITS_2022_3164358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref34 ref15 ref14 ref36 ref31 dosovitskiy (ref37) 2017 ref30 ref11 ref33 ref10 van ratingen (ref38) 0 ref2 ref1 ref16 ref19 ref18 every (ref13) 2017 ref23 weng (ref7) 2020 shalev-shwartz (ref12) 2017 ref26 yan (ref27) 2021 ref25 ding (ref17) 2011 ref20 ken (ref29) 2019 fischer (ref28) 2011 capito (ref32) 2021 ref8 ref9 ref4 ref3 akkiraju (ref21) 1995; 63 ref5 weng (ref22) 2021 schwall (ref6) 2020 arief (ref24) 2021 |
References_xml | – year: 2011 ident: ref17 article-title: Toward reachability-based controller design publication-title: IEEE Robot Autom Mag – ident: ref25 doi: 10.1007/978-3-319-63387-9_22 – ident: ref30 doi: 10.1093/biomet/52.3-4.627 – volume: 63 start-page: 66 year: 1995 ident: ref21 article-title: Alpha shapes: Definition and software publication-title: Proc 1st Int Comput Geometry Softw Workshop – ident: ref23 doi: 10.1109/LRA.2021.3122517 – ident: ref11 doi: 10.4271/2020-01-1206 – ident: ref1 doi: 10.1109/TITS.2020.2972211 – ident: ref9 doi: 10.1016/j.aap.2021.106157 – start-page: 1 year: 2021 ident: ref32 article-title: Model-based decomposition and backtracking framework for probabilistic risk assessment in automated vehicle systems publication-title: Proc Int Topical Meeting Probabilistic Saf Assessment Anal – ident: ref16 doi: 10.1016/j.tra.2016.09.010 – start-page: 11 year: 0 ident: ref38 article-title: The EURO NCAP safety rating publication-title: Karosseriebautage Hamburg – ident: ref35 doi: 10.1109/ITSC.2018.8569938 – ident: ref4 doi: 10.1109/ICRA.2019.8794364 – ident: ref14 doi: 10.1109/ITSC.2018.8569326 – year: 2011 ident: ref28 publication-title: Introduction to alpha shapes – year: 2020 ident: ref6 article-title: Waymo public road safety performance data publication-title: arXiv 2011 00038 – ident: ref31 doi: 10.1109/CDC.2008.4739371 – year: 2020 ident: ref7 article-title: Modeled exploration of proposed safety assessment metrics for ADS publication-title: Proc SAE Government Ind Meeting – ident: ref10 doi: 10.1068/p050437 – ident: ref2 doi: 10.4271/2021-01-0175 – ident: ref8 doi: 10.1109/ITSC48978.2021.9565013 – ident: ref26 doi: 10.1109/IV47402.2020.9304636 – year: 2021 ident: ref22 article-title: Towards guaranteed safety assurance of automated driving systems with scenario sampling: An invariant set perspective publication-title: IEEE Trans Intell Veh – ident: ref18 doi: 10.1109/IVS.2019.8813853 – start-page: 1 year: 2017 ident: ref13 article-title: A novel method to evaluate the safety of highly automated vehicles publication-title: Proc 25th Int Tech Conf Enhanced Saf Veh (ESV) – year: 2021 ident: ref27 article-title: Distributionally consistent simulation of naturalistic driving environment for autonomous vehicle testing publication-title: arXiv 2101 02828 – ident: ref36 doi: 10.1007/978-3-642-32460-4 – ident: ref34 doi: 10.1109/CVPR42600.2020.00252 – start-page: 595 year: 2021 ident: ref24 article-title: Deep probabilistic accelerated evaluation: A robust certifiable rare-event simulation methodology for black-box safety-critical systems publication-title: Proc Int Conf Artif Intell Statist – ident: ref20 doi: 10.1109/IV47402.2020.9304603 – ident: ref3 doi: 10.7249/RR2662 – ident: ref33 doi: 10.1109/ITSC.2018.8569552 – ident: ref15 doi: 10.1109/IV47402.2020.9304635 – year: 2017 ident: ref12 article-title: On a formal model of safe and scalable self-driving cars publication-title: arXiv 1708 06374 – ident: ref5 doi: 10.1016/j.aap.2017.11.001 – ident: ref19 doi: 10.1109/ITSC48978.2021.9564529 – year: 2019 ident: ref29 publication-title: Alphashape – start-page: 1 year: 2017 ident: ref37 article-title: CARLA: An open urban driving simulator publication-title: Proc Conf Robot Learn |
SSID | ssj0014511 |
Score | 2.4212646 |
Snippet | A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6650 |
SubjectTerms | Algorithms Automation connected and automated vehicle Empirical analysis invariant set Lead Measurement operational design domain Roads Safety Safety metric Shape Simulator fidelity Simulators Testing Traffic safety Vehicle dynamics Vehicle safety |
Title | A Finite-Sampling, Operational Domain Specific, and Provably Unbiased Connected and Automated Vehicle Safety Metric |
URI | https://ieeexplore.ieee.org/document/9756919 https://www.proquest.com/docview/2821071408 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA3akx78qmK1Sg6epFvTbfYjx6IWFapCW-ltSbKJFnUrdSvor3cmuy2iIt522YQNvCTzJpl5Q8iRaqGKVZR6gQV3ldtYeAIMGRC5KBW-AQKuMBu5dx1eDPnVKBgtkcYiF8YY44LPTBMf3V1-OtEzPCo7EVEQCtT4XAbHrcjVWtwYoM6W00b1uSdYML_BbDFxMrgc9MET9H1wUMEAY3X3LzbIFVX5sRM789JdJ735wIqoksfmLFdN_fFNs_G_I98gayXPpJ1iYmySJZNtkdUv6oNV8tqh3TFSTq8vMa48u2_QmxczLY8H6dnkWY4z6irU27FuUJml9HY6eZPq6Z0OMzUGC5hSFyqjgbi6751ZDt3w7c484K9pX1qTv9Melu7S22TYPR-cXnhlDQZPAxHIPR5bayRnxoZS-BaWuDaRjoEYxMLAbqmFkDzUMrCtUFgbWA58MG3zWGumgF22d0glm2Rml1ATwnzhNuBRpHnIYilDxaQKYi0j2OvSGmFzVBJdCpRjnYynxDkqTCQIZIJAJiWQNXK86PJSqHP81biKwCwalpjUSH0OfVKu39cEHNEWpnaxeO_3XvtkBQvPF0FjdVLJpzNzAPQkV4duXn4Cqhfgyg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N42HwAIyB1jHADzyhpnMyO4kfK6DqfnQgtUV7i2zH3iq2dOpSpPHXc-ek1cQmxFui2Iqlz_Z9Z999B_DRxKRilZWR9OiuCp-rSKEhQyKXlSpxSMANZSOPztLhVByfy_MN6K5zYZxzIfjM9egx3OWXc7uko7IDlclUkcbnE7T7Mm6ytdZ3BqS0FdRRExEpLld3mDFXB5OjyRh9wSRBFxVNMNV3v2eFQlmVB3txMDCDFzBaDa2JK_nZW9amZ3__pdr4v2N_Cc9bpsn6zdTYhg1XvYJn9_QHd-C2zwYzIp3RWFNkeXXRZd9u3KI9IGRf5td6VrFQo97PbJfpqmTfF_Nf2lzdsWllZmgDSxaCZSxS1_C9v6yxG739cJf0azbW3tV3bETFu-xrmA6-Tj4Po7YKQ2SRCtSRyL13WnDnU60Sj4vcuszmSA1y5XC_tEppkVotfZwq76UXyAjLQ5Fbyw3yy8M3sFnNK7cLzKU4Y4SXIsusSHmudWq4NjK3OsPdruwAX6FS2FainCplXBXBVeGqICALArJogezAp3WXm0af41-NdwiYdcMWkw7sr6Av2hV8W6ArGlNyF8_3Hu_1AbaGk9FpcXp0dvIWnlIZ-iaEbB8268XSvUOyUpv3YY7-AYrh5BM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite-Sampling%2C+Operational+Domain+Specific%2C+and+Provably+Unbiased+Connected+and+Automated+Vehicle+Safety+Metric&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Weng%2C+Bowen&rft.au=Capito%2C+Linda&rft.au=%C3%96zg%C3%BCner%2C+%C3%9Cmit&rft.au=Redmill%2C+Keith&rft.date=2023-06-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=6&rft.spage=6650&rft.epage=6662&rft_id=info:doi/10.1109%2FTITS.2022.3164358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3164358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |