A Finite-Sampling, Operational Domain Specific, and Provably Unbiased Connected and Automated Vehicle Safety Metric

A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the natur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 6; pp. 6650 - 6662
Main Authors Weng, Bowen, Capito, Linda, Ozguner, Umit, Redmill, Keith
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-shape and the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms).
AbstractList A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the [Formula Omitted]-shape and the [Formula Omitted]-almost robustly forward invariant set to characterize the SV’s almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms).
A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed multi-modal traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics is able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-shape and the <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms).
Author Ozguner, Umit
Redmill, Keith
Capito, Linda
Weng, Bowen
Author_xml – sequence: 1
  givenname: Bowen
  orcidid: 0000-0002-7868-9747
  surname: Weng
  fullname: Weng, Bowen
  email: weng.172@osu.edu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 2
  givenname: Linda
  orcidid: 0000-0002-9871-1243
  surname: Capito
  fullname: Capito, Linda
  email: capitoruiz.1@osu.edu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 3
  givenname: Umit
  orcidid: 0000-0003-2241-7547
  surname: Ozguner
  fullname: Ozguner, Umit
  email: ozguner.1@osu.edu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
– sequence: 4
  givenname: Keith
  orcidid: 0000-0003-1332-1332
  surname: Redmill
  fullname: Redmill, Keith
  email: redmill.1@osu.edu
  organization: Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA
BookMark eNp9kEtLAzEUhYMo2Ko_QNwE3HZqntPJslSrglKhrdshTW80ZZoZk1Tov3fGigsXru7rfAfu6aNjX3tA6JKSIaVE3SweF_MhI4wNOc0Fl8UR6lEpi4wQmh93PROZIpKcon6Mm3YrJKU9FMd46rxLkM31tqmcfxvgWQNBJ1d7XeHbequdx_MGjLPODLD2a_wS6k-9qvZ46VdOR1jjSe09mNR23X28Sy3WTa_w7kwFeK4tpD1-hhScOUcnVlcRLn7qGVpO7xaTh-xpdv84GT9lhimeMlFYC1oQsLlWzBLBDIxMwWhRKKCSG6W0yI2WlubKWmkFZ_mai8IYsqJc8TN0ffBtQv2xg5jKTb0L7VexZK0NGVFBilY1OqhMqGMMYEvj0vf7KWhXlZSUXcJll3DZJVz-JNyS9A_ZBLfVYf8vc3VgHAD86tVI5ooq_gU72IkI
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2024_3397849
crossref_primary_10_1109_TITS_2023_3290261
crossref_primary_10_1109_TRO_2023_3267020
crossref_primary_10_1109_TMC_2024_3389987
Cites_doi 10.1007/978-3-319-63387-9_22
10.1093/biomet/52.3-4.627
10.1109/LRA.2021.3122517
10.4271/2020-01-1206
10.1109/TITS.2020.2972211
10.1016/j.aap.2021.106157
10.1016/j.tra.2016.09.010
10.1109/ITSC.2018.8569938
10.1109/ICRA.2019.8794364
10.1109/ITSC.2018.8569326
10.1109/CDC.2008.4739371
10.1068/p050437
10.4271/2021-01-0175
10.1109/ITSC48978.2021.9565013
10.1109/IV47402.2020.9304636
10.1109/IVS.2019.8813853
10.1007/978-3-642-32460-4
10.1109/CVPR42600.2020.00252
10.1109/IV47402.2020.9304603
10.7249/RR2662
10.1109/ITSC.2018.8569552
10.1109/IV47402.2020.9304635
10.1016/j.aap.2017.11.001
10.1109/ITSC48978.2021.9564529
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3164358
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 6662
ExternalDocumentID 10_1109_TITS_2022_3164358
9756919
Genre orig-research
GrantInformation_xml – fundername: U.S. Department of Transportation (USDOT) through the Center for Automated Vehicles Research with Multimodal Assured Navigation (CARMEN) University Transportation Center (UTC)
  grantid: 69A3552047138
  funderid: 10.13039/100000140
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-48ffea40ef6a92f042ce7c821889e153c99a46ca5f169ff5f4326d348cc0b1393
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Sun Jun 29 16:56:54 EDT 2025
Tue Jul 01 04:29:09 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Wed Aug 27 02:14:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-48ffea40ef6a92f042ce7c821889e153c99a46ca5f169ff5f4326d348cc0b1393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2241-7547
0000-0003-1332-1332
0000-0002-7868-9747
0000-0002-9871-1243
PQID 2821071408
PQPubID 75735
PageCount 13
ParticipantIDs ieee_primary_9756919
crossref_primary_10_1109_TITS_2022_3164358
proquest_journals_2821071408
crossref_citationtrail_10_1109_TITS_2022_3164358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref14
ref36
ref31
dosovitskiy (ref37) 2017
ref30
ref11
ref33
ref10
van ratingen (ref38) 0
ref2
ref1
ref16
ref19
ref18
every (ref13) 2017
ref23
weng (ref7) 2020
shalev-shwartz (ref12) 2017
ref26
yan (ref27) 2021
ref25
ding (ref17) 2011
ref20
ken (ref29) 2019
fischer (ref28) 2011
capito (ref32) 2021
ref8
ref9
ref4
ref3
akkiraju (ref21) 1995; 63
ref5
weng (ref22) 2021
schwall (ref6) 2020
arief (ref24) 2021
References_xml – year: 2011
  ident: ref17
  article-title: Toward reachability-based controller design
  publication-title: IEEE Robot Autom Mag
– ident: ref25
  doi: 10.1007/978-3-319-63387-9_22
– ident: ref30
  doi: 10.1093/biomet/52.3-4.627
– volume: 63
  start-page: 66
  year: 1995
  ident: ref21
  article-title: Alpha shapes: Definition and software
  publication-title: Proc 1st Int Comput Geometry Softw Workshop
– ident: ref23
  doi: 10.1109/LRA.2021.3122517
– ident: ref11
  doi: 10.4271/2020-01-1206
– ident: ref1
  doi: 10.1109/TITS.2020.2972211
– ident: ref9
  doi: 10.1016/j.aap.2021.106157
– start-page: 1
  year: 2021
  ident: ref32
  article-title: Model-based decomposition and backtracking framework for probabilistic risk assessment in automated vehicle systems
  publication-title: Proc Int Topical Meeting Probabilistic Saf Assessment Anal
– ident: ref16
  doi: 10.1016/j.tra.2016.09.010
– start-page: 11
  year: 0
  ident: ref38
  article-title: The EURO NCAP safety rating
  publication-title: Karosseriebautage Hamburg
– ident: ref35
  doi: 10.1109/ITSC.2018.8569938
– ident: ref4
  doi: 10.1109/ICRA.2019.8794364
– ident: ref14
  doi: 10.1109/ITSC.2018.8569326
– year: 2011
  ident: ref28
  publication-title: Introduction to alpha shapes
– year: 2020
  ident: ref6
  article-title: Waymo public road safety performance data
  publication-title: arXiv 2011 00038
– ident: ref31
  doi: 10.1109/CDC.2008.4739371
– year: 2020
  ident: ref7
  article-title: Modeled exploration of proposed safety assessment metrics for ADS
  publication-title: Proc SAE Government Ind Meeting
– ident: ref10
  doi: 10.1068/p050437
– ident: ref2
  doi: 10.4271/2021-01-0175
– ident: ref8
  doi: 10.1109/ITSC48978.2021.9565013
– ident: ref26
  doi: 10.1109/IV47402.2020.9304636
– year: 2021
  ident: ref22
  article-title: Towards guaranteed safety assurance of automated driving systems with scenario sampling: An invariant set perspective
  publication-title: IEEE Trans Intell Veh
– ident: ref18
  doi: 10.1109/IVS.2019.8813853
– start-page: 1
  year: 2017
  ident: ref13
  article-title: A novel method to evaluate the safety of highly automated vehicles
  publication-title: Proc 25th Int Tech Conf Enhanced Saf Veh (ESV)
– year: 2021
  ident: ref27
  article-title: Distributionally consistent simulation of naturalistic driving environment for autonomous vehicle testing
  publication-title: arXiv 2101 02828
– ident: ref36
  doi: 10.1007/978-3-642-32460-4
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00252
– start-page: 595
  year: 2021
  ident: ref24
  article-title: Deep probabilistic accelerated evaluation: A robust certifiable rare-event simulation methodology for black-box safety-critical systems
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref20
  doi: 10.1109/IV47402.2020.9304603
– ident: ref3
  doi: 10.7249/RR2662
– ident: ref33
  doi: 10.1109/ITSC.2018.8569552
– ident: ref15
  doi: 10.1109/IV47402.2020.9304635
– year: 2017
  ident: ref12
  article-title: On a formal model of safe and scalable self-driving cars
  publication-title: arXiv 1708 06374
– ident: ref5
  doi: 10.1016/j.aap.2017.11.001
– ident: ref19
  doi: 10.1109/ITSC48978.2021.9564529
– year: 2019
  ident: ref29
  publication-title: Alphashape
– start-page: 1
  year: 2017
  ident: ref37
  article-title: CARLA: An open urban driving simulator
  publication-title: Proc Conf Robot Learn
SSID ssj0014511
Score 2.4212646
Snippet A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6650
SubjectTerms Algorithms
Automation
connected and automated vehicle
Empirical analysis
invariant set
Lead
Measurement
operational design domain
Roads
Safety
Safety metric
Shape
Simulator fidelity
Simulators
Testing
Traffic safety
Vehicle dynamics
Vehicle safety
Title A Finite-Sampling, Operational Domain Specific, and Provably Unbiased Connected and Automated Vehicle Safety Metric
URI https://ieeexplore.ieee.org/document/9756919
https://www.proquest.com/docview/2821071408
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA3akx78qmK1Sg6epFvTbfYjx6IWFapCW-ltSbKJFnUrdSvor3cmuy2iIt522YQNvCTzJpl5Q8iRaqGKVZR6gQV3ldtYeAIMGRC5KBW-AQKuMBu5dx1eDPnVKBgtkcYiF8YY44LPTBMf3V1-OtEzPCo7EVEQCtT4XAbHrcjVWtwYoM6W00b1uSdYML_BbDFxMrgc9MET9H1wUMEAY3X3LzbIFVX5sRM789JdJ735wIqoksfmLFdN_fFNs_G_I98gayXPpJ1iYmySJZNtkdUv6oNV8tqh3TFSTq8vMa48u2_QmxczLY8H6dnkWY4z6irU27FuUJml9HY6eZPq6Z0OMzUGC5hSFyqjgbi6751ZDt3w7c484K9pX1qTv9Melu7S22TYPR-cXnhlDQZPAxHIPR5bayRnxoZS-BaWuDaRjoEYxMLAbqmFkDzUMrCtUFgbWA58MG3zWGumgF22d0glm2Rml1ATwnzhNuBRpHnIYilDxaQKYi0j2OvSGmFzVBJdCpRjnYynxDkqTCQIZIJAJiWQNXK86PJSqHP81biKwCwalpjUSH0OfVKu39cEHNEWpnaxeO_3XvtkBQvPF0FjdVLJpzNzAPQkV4duXn4Cqhfgyg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N42HwAIyB1jHADzyhpnMyO4kfK6DqfnQgtUV7i2zH3iq2dOpSpPHXc-ek1cQmxFui2Iqlz_Z9Z999B_DRxKRilZWR9OiuCp-rSKEhQyKXlSpxSMANZSOPztLhVByfy_MN6K5zYZxzIfjM9egx3OWXc7uko7IDlclUkcbnE7T7Mm6ytdZ3BqS0FdRRExEpLld3mDFXB5OjyRh9wSRBFxVNMNV3v2eFQlmVB3txMDCDFzBaDa2JK_nZW9amZ3__pdr4v2N_Cc9bpsn6zdTYhg1XvYJn9_QHd-C2zwYzIp3RWFNkeXXRZd9u3KI9IGRf5td6VrFQo97PbJfpqmTfF_Nf2lzdsWllZmgDSxaCZSxS1_C9v6yxG739cJf0azbW3tV3bETFu-xrmA6-Tj4Po7YKQ2SRCtSRyL13WnDnU60Sj4vcuszmSA1y5XC_tEppkVotfZwq76UXyAjLQ5Fbyw3yy8M3sFnNK7cLzKU4Y4SXIsusSHmudWq4NjK3OsPdruwAX6FS2FainCplXBXBVeGqICALArJogezAp3WXm0af41-NdwiYdcMWkw7sr6Av2hV8W6ArGlNyF8_3Hu_1AbaGk9FpcXp0dvIWnlIZ-iaEbB8268XSvUOyUpv3YY7-AYrh5BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Finite-Sampling%2C+Operational+Domain+Specific%2C+and+Provably+Unbiased+Connected+and+Automated+Vehicle+Safety+Metric&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Weng%2C+Bowen&rft.au=Capito%2C+Linda&rft.au=%C3%96zg%C3%BCner%2C+%C3%9Cmit&rft.au=Redmill%2C+Keith&rft.date=2023-06-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=6&rft.spage=6650&rft.epage=6662&rft_id=info:doi/10.1109%2FTITS.2022.3164358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3164358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon