Measuring Node Contribution to Community Structure With Modularity Vitality

Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 8; no. 1; pp. 707 - 723
Main Authors Magelinski, Thomas, Bartulovic, Mihovil, M. Carley, Kathleen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
DOI10.1109/TNSE.2020.3049068

Cover

Loading…
Abstract Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in <inline-formula><tex-math notation="LaTeX">O(M+NC)</tex-math></inline-formula> time, where <inline-formula><tex-math notation="LaTeX">C</tex-math></inline-formula> is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception.
AbstractList Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in [Formula Omitted] time, where [Formula Omitted] is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception.
Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in <inline-formula><tex-math notation="LaTeX">O(M+NC)</tex-math></inline-formula> time, where <inline-formula><tex-math notation="LaTeX">C</tex-math></inline-formula> is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception.
Author M. Carley, Kathleen
Magelinski, Thomas
Bartulovic, Mihovil
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0002-6369-0753
  surname: Magelinski
  fullname: Magelinski, Thomas
  email: tmagelin@andrew.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 2
  givenname: Mihovil
  surname: Bartulovic
  fullname: Bartulovic, Mihovil
  email: mbartulo@andrew.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
– sequence: 3
  givenname: Kathleen
  orcidid: 0000-0002-6356-0238
  surname: M. Carley
  fullname: M. Carley, Kathleen
  email: kathleen.carley@cs.cmu.edu
  organization: Carnegie Mellon University, Pittsburgh, PA, USA
BookMark eNp9kE1PwzAMhiM0JMbYD0BcKnHecD7aNEc0jQ-xjcPGx61KkxQydc1Ik8P-Pa2GOHDgZFv269d-ztGgcY1B6BLDFGMQN5vVej4lQGBKgQnI8hM0JJSyCSXifdDnhE9YJvgZGrftFgAwyTNK6RA9LY1so7fNR7Jy2iQz1wRvyxisa5Lgunq3i40Nh2QdfFQhepO82fCZLJ2OtfR959UGWXfJBTqtZN2a8U8coZe7-Wb2MFk83z_ObhcTRQQN3SGloFoBBiXSlHFOhNR5DlKDBNC6YqXhPCdKViBIKbE2GVZMlxnWgleMjtD1ce_eu69o2lBsXfRNZ1mQFGgKwAV0U_g4pbxrW2-qYu_tTvpDgaHosRU9tqLHVvxg6zT8j0Z1v_Usgpe2_ld5dVRaY8yvk6CYEcboN7tnfN8
CODEN ITNSD5
CitedBy_id crossref_primary_10_1007_s11135_022_01416_7
crossref_primary_10_1109_ACCESS_2024_3434546
crossref_primary_10_1007_s13278_023_01122_8
crossref_primary_10_1109_TCSS_2022_3213722
crossref_primary_10_1007_s13278_024_01318_6
crossref_primary_10_1007_s41109_022_00477_9
crossref_primary_10_3390_app14010077
crossref_primary_10_1007_s00607_022_01121_1
crossref_primary_10_1016_j_chaos_2023_113310
crossref_primary_10_1038_s41598_024_59071_x
crossref_primary_10_1007_s13278_023_01040_9
crossref_primary_10_1016_j_cogsys_2024_101241
crossref_primary_10_1016_j_jnca_2025_104107
crossref_primary_10_1007_s41109_021_00388_1
crossref_primary_10_1007_s41109_021_00426_y
crossref_primary_10_1016_j_inffus_2022_08_031
crossref_primary_10_1007_s13278_022_00896_7
crossref_primary_10_1007_s40864_024_00213_9
crossref_primary_10_1007_s11235_024_01240_4
crossref_primary_10_1016_j_ins_2023_01_097
crossref_primary_10_1109_TNET_2023_3265002
crossref_primary_10_1007_s41109_021_00421_3
crossref_primary_10_1142_S0218001423500131
crossref_primary_10_3390_sym16101272
crossref_primary_10_1016_j_chaos_2022_112627
crossref_primary_10_1038_s41598_023_30308_5
crossref_primary_10_3390_biology10070667
crossref_primary_10_3390_sym13050902
crossref_primary_10_1007_s41109_024_00676_6
crossref_primary_10_1016_j_physa_2024_130256
crossref_primary_10_1109_TNSE_2023_3311762
crossref_primary_10_1109_TNSE_2023_3274173
crossref_primary_10_1371_journal_pone_0306561
crossref_primary_10_1016_j_epsr_2024_110493
crossref_primary_10_1109_TCSS_2022_3226178
crossref_primary_10_1371_journal_pone_0273610
crossref_primary_10_3390_app122010337
crossref_primary_10_1109_TCSS_2023_3306787
crossref_primary_10_1016_j_chaos_2024_115720
crossref_primary_10_3390_brainsci12091159
crossref_primary_10_1016_j_compenvurbsys_2024_102217
crossref_primary_10_1109_TETCI_2022_3230930
crossref_primary_10_1016_j_iot_2024_101214
Cites_doi 10.1016/j.physa.2016.01.066
10.1016/j.socnet.2005.05.001
10.1007/s10588-006-7084-x
10.1038/s41598-019-46507-y
10.1007/s10588-009-9063-5
10.1038/s41562-017-0290-3
10.1103/PhysRevE.70.066111
10.1126/science.aao2998
10.1038/nature02115
10.1016/j.chb.2018.02.008
10.1126/sciadv.1602548
10.1371/journal.pone.0142824
10.1073/pnas.0601602103
10.1016/j.jtrangeo.2005.10.003
10.1145/1772690.1772755
10.1103/PhysRevE.74.036104
10.1140/epjds/s13688-019-0195-7
10.1038/s41598-019-41695-z
10.1080/0022250X.2001.9990249
10.1007/978-3-642-14527-8_15
10.1109/TKDE.2017.2776133
10.1007/s41109-019-0238-9
10.1073/pnas.122653799
10.1103/PhysRevLett.100.058701
10.1088/1742-5468/2008/10/P10008
10.1109/TKDE.2007.190689
10.1109/TCSS.2019.2912801
10.1103/PhysRevLett.85.5468
10.1016/j.socnet.2010.06.004
10.1007/978-3-319-93372-6_42
10.1080/15427951.2009.10129177
10.1103/PhysRevE.65.056109
10.1016/j.socnet.2004.11.008
10.1038/35011540
10.1007/s13278-019-0591-9
10.1038/nature03607
10.1088/1367-2630/11/12/123018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2020.3049068
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 723
ExternalDocumentID 10_1109_TNSE_2020_3049068
9314244
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N000141512797; N000141712675
  funderid: 10.13039/100000006
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-46b93dc010c95547729ad880ad0a00ddf4be7782caf092ba1de61c4db61d97f43
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:51:22 EDT 2025
Tue Jul 01 03:10:42 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:47:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-46b93dc010c95547729ad880ad0a00ddf4be7782caf092ba1de61c4db61d97f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6356-0238
0000-0002-6369-0753
PQID 2503500790
PQPubID 2040409
PageCount 17
ParticipantIDs crossref_primary_10_1109_TNSE_2020_3049068
proquest_journals_2503500790
crossref_citationtrail_10_1109_TNSE_2020_3049068
ieee_primary_9314244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.-March-1
2021-1-1
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref33
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref18
(ref21) 2019
ref24
shu (ref23) 2019
ref26
ref25
cunha (ref19) 2015; 10
ref20
ref42
ref41
ref22
koschützki (ref11) 2005
cunha (ref31) 2015; 10
ref27
kermack (ref28) 1927; 115
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.1016/j.physa.2016.01.066
– ident: ref39
  doi: 10.1016/j.socnet.2005.05.001
– ident: ref12
  doi: 10.1007/s10588-006-7084-x
– ident: ref27
  doi: 10.1038/s41598-019-46507-y
– ident: ref40
  doi: 10.1007/s10588-009-9063-5
– ident: ref37
  doi: 10.1038/s41562-017-0290-3
– ident: ref15
  doi: 10.1103/PhysRevE.70.066111
– ident: ref22
  doi: 10.1126/science.aao2998
– ident: ref4
  doi: 10.1038/nature02115
– ident: ref24
  doi: 10.1016/j.chb.2018.02.008
– ident: ref5
  doi: 10.1126/sciadv.1602548
– start-page: 16
  year: 2005
  ident: ref11
  article-title: Centrality indices," in Proc. Netw. Anal
– year: 2019
  ident: ref21
  article-title: Decadal Survey of the Social and Behavioral Sciences: A. Research Agenda for Advancing Intelligence Analysis. Washington DC: The National Academies Press
– volume: 10
  start-page: e0 142824
  year: 2015
  ident: ref31
  article-title: Fast fragmentation of networks using module-based attacks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0142824
– ident: ref14
  doi: 10.1073/pnas.0601602103
– ident: ref30
  doi: 10.1016/j.jtrangeo.2005.10.003
– ident: ref13
  doi: 10.1145/1772690.1772755
– volume: 115
  start-page: 700
  year: 1927
  ident: ref28
  article-title: Containing papers of a mathematical and physical character
  publication-title: Contributions to the mathematical theory of epidemics
– ident: ref10
  doi: 10.1103/PhysRevE.74.036104
– ident: ref6
  doi: 10.1140/epjds/s13688-019-0195-7
– ident: ref18
  doi: 10.1038/s41598-019-41695-z
– ident: ref34
  doi: 10.1080/0022250X.2001.9990249
– start-page: 43
  year: 2019
  ident: ref23
  article-title: Studying fake news via network analysis: Detection and Mitigation," in Proc. Emerg. Res. Challenges Opportunities Comput. Soc. Netw. Anal. Mining
– ident: ref38
  doi: 10.1007/978-3-642-14527-8_15
– ident: ref35
  doi: 10.1109/TKDE.2017.2776133
– ident: ref9
  doi: 10.1007/s41109-019-0238-9
– ident: ref1
  doi: 10.1073/pnas.122653799
– ident: ref26
  doi: 10.1103/PhysRevLett.100.058701
– ident: ref16
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref17
  doi: 10.1109/TKDE.2007.190689
– ident: ref36
  doi: 10.1109/TCSS.2019.2912801
– ident: ref29
  doi: 10.1103/PhysRevLett.85.5468
– ident: ref41
  doi: 10.1016/j.socnet.2010.06.004
– ident: ref20
  doi: 10.1007/978-3-319-93372-6_42
– ident: ref42
  doi: 10.1080/15427951.2009.10129177
– ident: ref33
  doi: 10.1103/PhysRevE.65.056109
– ident: ref32
  doi: 10.1016/j.socnet.2004.11.008
– volume: 10
  start-page: 142824
  year: 2015
  ident: ref19
  article-title: Fast fragmentation of networks using module-based attacks
  publication-title: PLoS ONE
– ident: ref2
  doi: 10.1038/35011540
– ident: ref7
  doi: 10.1007/s13278-019-0591-9
– ident: ref3
  doi: 10.1038/nature03607
– ident: ref25
  doi: 10.1088/1367-2630/11/12/123018
SSID ssj0001286333
Score 2.4072351
Snippet Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 707
SubjectTerms Blogs
Clustering algorithms
Communication networks
Community deception
community structure
Digital media
Eigenvalues and eigenfunctions
Modularity
network centrality
network robustness
network vitality
Nodes
Roads
Robustness
Social networking (online)
Testing
Title Measuring Node Contribution to Community Structure With Modularity Vitality
URI https://ieeexplore.ieee.org/document/9314244
https://www.proquest.com/docview/2503500790
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxoXug4UejYEQDVwA5bbpa6PRsEaXg_56Z7oLIWqMtybbZrsz7Xa-6cw3ABdaaoQJAvd3ILUXRQhQejFPPYTMqdQ2SKMOJTiPxvFwFt3OO_MKXK1zYay1LvjMtqjp7vJNppfkKmuL0OVlVaGKwK3I1drwp_TiMAzLi0ufi_Z0POkjAAwQl9L1FpGpbhw9rpbKjx-wO1UGuzBazacIJnluLXPV0p_fqBr_O-E92CnNS3ZdrId9qNjFAWxvkA7W4W7k3ILYZuPMWEb8VKuqVyzPWJkykn-wieOWXb5Z9vCUP7JRZihmlZ7cU6kRbBzCbNCf3gy9sqSCp_Fcz70oViI0GkGYFmhIkGktDW5habjk3Jg0UraLRoOWKReBkr6xsa8jo2LfiG4ahUdQW2QLewxMWyksfp5vFKmYK8FNT2rTtcqE-JYG8JW0E13yjVPZi5fE4Q4uElJQQgpKSgU14HI95LUg2_irc50Evu5YyroBzZVKk3I7vido54UdTmvy5PdRp7AVULCK8600oYbytWdobeTq3C2zL_Y80wY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzxw4ITrSx7rliNDQYHQXNtityqsCgVYE3QF-PXbWTRMgxC1SEzW1k8afY38GONFSI0wQuL8Dqb0oQoDSinnmIWTOpLZBFjUowTnpxZ1BdDNsDCtwNsuFsda64DNbp6a7yze5HpOr7FyELi9rAZYalIw7ydaa86i04jAMy6tLn4vzfu-ujRAwQGRKF1xEpzp3-LhqKj9-we5cuVqHZDqjSTjJc31cqLr-_EbW-N8pb8BaaWCyi8mK2ISKHW3B6hztYBW6iXMMYpv1cmMZMVRN616xImdl0kjxwe4cu-z4zbKHp-KRJbmhqFV6ck_FRrCxDYOrdv-y45VFFTyNJ3vhRbESodEIw7RAU4KMa2lwE0vDJefGZJGyTTQbtMy4CJT0jY19HRkV-0Y0syjcgcVRPrK7wLSVwuLn-UaRkrkS3LSkNk2rTIhvqQGfSjvVJeM4Fb54SR3y4CIlBaWkoLRUUA1OZ0NeJ3Qbf3WuksBnHUtZ1-BgqtK03JDvKVp6YYPTqtz7fdQxLHf6yW16e93r7sNKQKErztNyAIsoa3uItkehjtyS-wIeg9ZO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Node+Contribution+to+Community+Structure+With+Modularity+Vitality&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Magelinski%2C+Thomas&rft.au=Bartulovic%2C+Mihovil&rft.au=M.+Carley%2C+Kathleen&rft.date=2021-01-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=8&rft.issue=1&rft.spage=707&rft.epage=723&rft_id=info:doi/10.1109%2FTNSE.2020.3049068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2020_3049068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon