Measuring Node Contribution to Community Structure With Modularity Vitality
Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for c...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 8; no. 1; pp. 707 - 723 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4697 2334-329X |
DOI | 10.1109/TNSE.2020.3049068 |
Cover
Loading…
Abstract | Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in <inline-formula><tex-math notation="LaTeX">O(M+NC)</tex-math></inline-formula> time, where <inline-formula><tex-math notation="LaTeX">C</tex-math></inline-formula> is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception. |
---|---|
AbstractList | Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in [Formula Omitted] time, where [Formula Omitted] is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception. Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures are a function of a network's structure and a given partition. Previous approaches extend classical centrality measures to account for community structure with little connection to community detection theory. In contrast, we propose cluster-quality vitality measures, i.e., modularity vitality, a community-aware measure which is well-grounded in both centrality and community detection theory. Modularity vitality quantifies positive and negative contributions to community structure, which indicate a node's role as a community bridge or hub. We derive a computationally efficient method of calculating modularity vitality for all nodes in <inline-formula><tex-math notation="LaTeX">O(M+NC)</tex-math></inline-formula> time, where <inline-formula><tex-math notation="LaTeX">C</tex-math></inline-formula> is the number of communities. We systematically fragment networks by removing central nodes, and find that modularity vitality consistently outperforms existing community-aware centrality measures. We show measures well-grounded in community theory are over 8 times more effective on a million-node infrastructure network. This result does not generalize to social media communication networks, which exhibit extreme robustness to all community-aware centrality attacks. This robustness suggests that user-based interventions to mitigate misinformation diffusion will be ineffective. Finally, we demonstrate that modularity vitality provides a new approach to community-deception. |
Author | M. Carley, Kathleen Magelinski, Thomas Bartulovic, Mihovil |
Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0002-6369-0753 surname: Magelinski fullname: Magelinski, Thomas email: tmagelin@andrew.cmu.edu organization: Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Mihovil surname: Bartulovic fullname: Bartulovic, Mihovil email: mbartulo@andrew.cmu.edu organization: Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: Kathleen orcidid: 0000-0002-6356-0238 surname: M. Carley fullname: M. Carley, Kathleen email: kathleen.carley@cs.cmu.edu organization: Carnegie Mellon University, Pittsburgh, PA, USA |
BookMark | eNp9kE1PwzAMhiM0JMbYD0BcKnHecD7aNEc0jQ-xjcPGx61KkxQydc1Ik8P-Pa2GOHDgZFv269d-ztGgcY1B6BLDFGMQN5vVej4lQGBKgQnI8hM0JJSyCSXifdDnhE9YJvgZGrftFgAwyTNK6RA9LY1so7fNR7Jy2iQz1wRvyxisa5Lgunq3i40Nh2QdfFQhepO82fCZLJ2OtfR959UGWXfJBTqtZN2a8U8coZe7-Wb2MFk83z_ObhcTRQQN3SGloFoBBiXSlHFOhNR5DlKDBNC6YqXhPCdKViBIKbE2GVZMlxnWgleMjtD1ce_eu69o2lBsXfRNZ1mQFGgKwAV0U_g4pbxrW2-qYu_tTvpDgaHosRU9tqLHVvxg6zT8j0Z1v_Usgpe2_ld5dVRaY8yvk6CYEcboN7tnfN8 |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1007_s11135_022_01416_7 crossref_primary_10_1109_ACCESS_2024_3434546 crossref_primary_10_1007_s13278_023_01122_8 crossref_primary_10_1109_TCSS_2022_3213722 crossref_primary_10_1007_s13278_024_01318_6 crossref_primary_10_1007_s41109_022_00477_9 crossref_primary_10_3390_app14010077 crossref_primary_10_1007_s00607_022_01121_1 crossref_primary_10_1016_j_chaos_2023_113310 crossref_primary_10_1038_s41598_024_59071_x crossref_primary_10_1007_s13278_023_01040_9 crossref_primary_10_1016_j_cogsys_2024_101241 crossref_primary_10_1016_j_jnca_2025_104107 crossref_primary_10_1007_s41109_021_00388_1 crossref_primary_10_1007_s41109_021_00426_y crossref_primary_10_1016_j_inffus_2022_08_031 crossref_primary_10_1007_s13278_022_00896_7 crossref_primary_10_1007_s40864_024_00213_9 crossref_primary_10_1007_s11235_024_01240_4 crossref_primary_10_1016_j_ins_2023_01_097 crossref_primary_10_1109_TNET_2023_3265002 crossref_primary_10_1007_s41109_021_00421_3 crossref_primary_10_1142_S0218001423500131 crossref_primary_10_3390_sym16101272 crossref_primary_10_1016_j_chaos_2022_112627 crossref_primary_10_1038_s41598_023_30308_5 crossref_primary_10_3390_biology10070667 crossref_primary_10_3390_sym13050902 crossref_primary_10_1007_s41109_024_00676_6 crossref_primary_10_1016_j_physa_2024_130256 crossref_primary_10_1109_TNSE_2023_3311762 crossref_primary_10_1109_TNSE_2023_3274173 crossref_primary_10_1371_journal_pone_0306561 crossref_primary_10_1016_j_epsr_2024_110493 crossref_primary_10_1109_TCSS_2022_3226178 crossref_primary_10_1371_journal_pone_0273610 crossref_primary_10_3390_app122010337 crossref_primary_10_1109_TCSS_2023_3306787 crossref_primary_10_1016_j_chaos_2024_115720 crossref_primary_10_3390_brainsci12091159 crossref_primary_10_1016_j_compenvurbsys_2024_102217 crossref_primary_10_1109_TETCI_2022_3230930 crossref_primary_10_1016_j_iot_2024_101214 |
Cites_doi | 10.1016/j.physa.2016.01.066 10.1016/j.socnet.2005.05.001 10.1007/s10588-006-7084-x 10.1038/s41598-019-46507-y 10.1007/s10588-009-9063-5 10.1038/s41562-017-0290-3 10.1103/PhysRevE.70.066111 10.1126/science.aao2998 10.1038/nature02115 10.1016/j.chb.2018.02.008 10.1126/sciadv.1602548 10.1371/journal.pone.0142824 10.1073/pnas.0601602103 10.1016/j.jtrangeo.2005.10.003 10.1145/1772690.1772755 10.1103/PhysRevE.74.036104 10.1140/epjds/s13688-019-0195-7 10.1038/s41598-019-41695-z 10.1080/0022250X.2001.9990249 10.1007/978-3-642-14527-8_15 10.1109/TKDE.2017.2776133 10.1007/s41109-019-0238-9 10.1073/pnas.122653799 10.1103/PhysRevLett.100.058701 10.1088/1742-5468/2008/10/P10008 10.1109/TKDE.2007.190689 10.1109/TCSS.2019.2912801 10.1103/PhysRevLett.85.5468 10.1016/j.socnet.2010.06.004 10.1007/978-3-319-93372-6_42 10.1080/15427951.2009.10129177 10.1103/PhysRevE.65.056109 10.1016/j.socnet.2004.11.008 10.1038/35011540 10.1007/s13278-019-0591-9 10.1038/nature03607 10.1088/1367-2630/11/12/123018 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2020.3049068 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 723 |
ExternalDocumentID | 10_1109_TNSE_2020_3049068 9314244 |
Genre | orig-research |
GrantInformation_xml | – fundername: Office of Naval Research grantid: N000141512797; N000141712675 funderid: 10.13039/100000006 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-46b93dc010c95547729ad880ad0a00ddf4be7782caf092ba1de61c4db61d97f43 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 09:51:22 EDT 2025 Tue Jul 01 03:10:42 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:47:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-46b93dc010c95547729ad880ad0a00ddf4be7782caf092ba1de61c4db61d97f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6356-0238 0000-0002-6369-0753 |
PQID | 2503500790 |
PQPubID | 2040409 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1109_TNSE_2020_3049068 proquest_journals_2503500790 crossref_citationtrail_10_1109_TNSE_2020_3049068 ieee_primary_9314244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Jan.-March-1 2021-1-1 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan.-March-1 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref33 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 ref18 (ref21) 2019 ref24 shu (ref23) 2019 ref26 ref25 cunha (ref19) 2015; 10 ref20 ref42 ref41 ref22 koschützki (ref11) 2005 cunha (ref31) 2015; 10 ref27 kermack (ref28) 1927; 115 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref8 doi: 10.1016/j.physa.2016.01.066 – ident: ref39 doi: 10.1016/j.socnet.2005.05.001 – ident: ref12 doi: 10.1007/s10588-006-7084-x – ident: ref27 doi: 10.1038/s41598-019-46507-y – ident: ref40 doi: 10.1007/s10588-009-9063-5 – ident: ref37 doi: 10.1038/s41562-017-0290-3 – ident: ref15 doi: 10.1103/PhysRevE.70.066111 – ident: ref22 doi: 10.1126/science.aao2998 – ident: ref4 doi: 10.1038/nature02115 – ident: ref24 doi: 10.1016/j.chb.2018.02.008 – ident: ref5 doi: 10.1126/sciadv.1602548 – start-page: 16 year: 2005 ident: ref11 article-title: Centrality indices," in Proc. Netw. Anal – year: 2019 ident: ref21 article-title: Decadal Survey of the Social and Behavioral Sciences: A. Research Agenda for Advancing Intelligence Analysis. Washington DC: The National Academies Press – volume: 10 start-page: e0 142824 year: 2015 ident: ref31 article-title: Fast fragmentation of networks using module-based attacks publication-title: PLoS ONE doi: 10.1371/journal.pone.0142824 – ident: ref14 doi: 10.1073/pnas.0601602103 – ident: ref30 doi: 10.1016/j.jtrangeo.2005.10.003 – ident: ref13 doi: 10.1145/1772690.1772755 – volume: 115 start-page: 700 year: 1927 ident: ref28 article-title: Containing papers of a mathematical and physical character publication-title: Contributions to the mathematical theory of epidemics – ident: ref10 doi: 10.1103/PhysRevE.74.036104 – ident: ref6 doi: 10.1140/epjds/s13688-019-0195-7 – ident: ref18 doi: 10.1038/s41598-019-41695-z – ident: ref34 doi: 10.1080/0022250X.2001.9990249 – start-page: 43 year: 2019 ident: ref23 article-title: Studying fake news via network analysis: Detection and Mitigation," in Proc. Emerg. Res. Challenges Opportunities Comput. Soc. Netw. Anal. Mining – ident: ref38 doi: 10.1007/978-3-642-14527-8_15 – ident: ref35 doi: 10.1109/TKDE.2017.2776133 – ident: ref9 doi: 10.1007/s41109-019-0238-9 – ident: ref1 doi: 10.1073/pnas.122653799 – ident: ref26 doi: 10.1103/PhysRevLett.100.058701 – ident: ref16 doi: 10.1088/1742-5468/2008/10/P10008 – ident: ref17 doi: 10.1109/TKDE.2007.190689 – ident: ref36 doi: 10.1109/TCSS.2019.2912801 – ident: ref29 doi: 10.1103/PhysRevLett.85.5468 – ident: ref41 doi: 10.1016/j.socnet.2010.06.004 – ident: ref20 doi: 10.1007/978-3-319-93372-6_42 – ident: ref42 doi: 10.1080/15427951.2009.10129177 – ident: ref33 doi: 10.1103/PhysRevE.65.056109 – ident: ref32 doi: 10.1016/j.socnet.2004.11.008 – volume: 10 start-page: 142824 year: 2015 ident: ref19 article-title: Fast fragmentation of networks using module-based attacks publication-title: PLoS ONE – ident: ref2 doi: 10.1038/35011540 – ident: ref7 doi: 10.1007/s13278-019-0591-9 – ident: ref3 doi: 10.1038/nature03607 – ident: ref25 doi: 10.1088/1367-2630/11/12/123018 |
SSID | ssj0001286333 |
Score | 2.4072351 |
Snippet | Community-aware centrality is an emerging research area in network science concerned with the importance of nodes in relation to community structure. Measures... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 707 |
SubjectTerms | Blogs Clustering algorithms Communication networks Community deception community structure Digital media Eigenvalues and eigenfunctions Modularity network centrality network robustness network vitality Nodes Roads Robustness Social networking (online) Testing |
Title | Measuring Node Contribution to Community Structure With Modularity Vitality |
URI | https://ieeexplore.ieee.org/document/9314244 https://www.proquest.com/docview/2503500790 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJz34QiOKpgdPxoXug4UejYEQDVwA5bbpa6PRsEaXg_56Z7oLIWqMtybbZrsz7Xa-6cw3ABdaaoQJAvd3ILUXRQhQejFPPYTMqdQ2SKMOJTiPxvFwFt3OO_MKXK1zYay1LvjMtqjp7vJNppfkKmuL0OVlVaGKwK3I1drwp_TiMAzLi0ufi_Z0POkjAAwQl9L1FpGpbhw9rpbKjx-wO1UGuzBazacIJnluLXPV0p_fqBr_O-E92CnNS3ZdrId9qNjFAWxvkA7W4W7k3ILYZuPMWEb8VKuqVyzPWJkykn-wieOWXb5Z9vCUP7JRZihmlZ7cU6kRbBzCbNCf3gy9sqSCp_Fcz70oViI0GkGYFmhIkGktDW5habjk3Jg0UraLRoOWKReBkr6xsa8jo2LfiG4ahUdQW2QLewxMWyksfp5vFKmYK8FNT2rTtcqE-JYG8JW0E13yjVPZi5fE4Q4uElJQQgpKSgU14HI95LUg2_irc50Evu5YyroBzZVKk3I7vido54UdTmvy5PdRp7AVULCK8600oYbytWdobeTq3C2zL_Y80wY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADr4EYzxw4ITrSx7rliNDQYHQXNtityqsCgVYE3QF-PXbWTRMgxC1SEzW1k8afY38GONFSI0wQuL8Dqb0oQoDSinnmIWTOpLZBFjUowTnpxZ1BdDNsDCtwNsuFsda64DNbp6a7yze5HpOr7FyELi9rAZYalIw7ydaa86i04jAMy6tLn4vzfu-ujRAwQGRKF1xEpzp3-LhqKj9-we5cuVqHZDqjSTjJc31cqLr-_EbW-N8pb8BaaWCyi8mK2ISKHW3B6hztYBW6iXMMYpv1cmMZMVRN616xImdl0kjxwe4cu-z4zbKHp-KRJbmhqFV6ck_FRrCxDYOrdv-y45VFFTyNJ3vhRbESodEIw7RAU4KMa2lwE0vDJefGZJGyTTQbtMy4CJT0jY19HRkV-0Y0syjcgcVRPrK7wLSVwuLn-UaRkrkS3LSkNk2rTIhvqQGfSjvVJeM4Fb54SR3y4CIlBaWkoLRUUA1OZ0NeJ3Qbf3WuksBnHUtZ1-BgqtK03JDvKVp6YYPTqtz7fdQxLHf6yW16e93r7sNKQKErztNyAIsoa3uItkehjtyS-wIeg9ZO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+Node+Contribution+to+Community+Structure+With+Modularity+Vitality&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Magelinski%2C+Thomas&rft.au=Bartulovic%2C+Mihovil&rft.au=M.+Carley%2C+Kathleen&rft.date=2021-01-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=8&rft.issue=1&rft.spage=707&rft.epage=723&rft_id=info:doi/10.1109%2FTNSE.2020.3049068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2020_3049068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |