A Method for Forest Vegetation Height Modeling Based on Aerial Digital Orthophoto Map and Digital Surface Model
The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in co...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in consideration of the forest vegetation height modeling problem. Based on an aerial digital orthophoto map and a digital surface model (DSM), the spectral features and geometric features that are related to forest vegetation height are analyzed and extracted. The nonlinear correlation maximal information coefficient, maximum asymmetry score, and Pearson linear correlation coefficient between feature factors and vegetation height are listed, and the correlations are evaluated as the basis for factors selection. Two kinds of support vector regression algorithms were adopted to establish the machine learning for forest vegetation height model (VHM). Therefore, the DSM can be corrected to DTM. The experimental results show that the accuracy of the forest VHM is better than 1 m. Thus, the proposed method is proved to be feasible and practical. It provides a low-cost and high-efficiency method for the VHM and DTM in forest areas by photogrammetry. |
---|---|
AbstractList | The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in consideration of the forest vegetation height modeling problem. Based on an aerial digital orthophoto map and a digital surface model (DSM), the spectral features and geometric features that are related to forest vegetation height are analyzed and extracted. The nonlinear correlation maximal information coefficient, maximum asymmetry score, and Pearson linear correlation coefficient between feature factors and vegetation height are listed, and the correlations are evaluated as the basis for factors selection. Two kinds of support vector regression algorithms were adopted to establish the machine learning for forest vegetation height model (VHM). Therefore, the DSM can be corrected to DTM. The experimental results show that the accuracy of the forest VHM is better than 1 m. Thus, the proposed method is proved to be feasible and practical. It provides a low-cost and high-efficiency method for the VHM and DTM in forest areas by photogrammetry. |
Author | Wang, Qingyang Deng, Xingsheng Tang, Guo Long, Sichun Luo, Lixia |
Author_xml | – sequence: 1 givenname: Xingsheng orcidid: 0000-0003-0158-9227 surname: Deng fullname: Deng, Xingsheng email: whudxs@163.com organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 2 givenname: Guo orcidid: 0000-0003-0864-5439 surname: Tang fullname: Tang, Guo organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 3 givenname: Qingyang surname: Wang fullname: Wang, Qingyang organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 4 givenname: Lixia surname: Luo fullname: Luo, Lixia organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 5 givenname: Sichun surname: Long fullname: Long, Sichun organization: Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, China |
BookMark | eNo9kM9PwjAUxxuDiYD-AcZLE8_Dvnbd1iOigAmERNDr0nWvYwRX7MbB_94SCKd3-P54730GpNe4Bgl5BDYCYOplM_tcjzjjMBJMCZUmN6QPUmYRS-K4R_oMVBLxTPE7MmjbHWMQS0j7xI3pErutK6l1nk6dx7aj31hhp7vaNXSOdbXt6NKVuK-bir7qFksahDH6Wu_pW13VXZgrH0oOW9c5utQHqpvyKq2P3mqD5457cmv1vsWHyxySr-n7ZjKPFqvZx2S8iAxXooviBHjMYyEKLYwotTapBGsNSMNKblOTFjbjcZaWmTBQWpAooQAZWNgC41QMyfO59-Dd7zE8le_c0TdhZc4TUFIxEBBccHYZ79rWo80Pvv7R_i8Hlp-45ieu-YlrfuEaMk_nTI2IV78KtzCWiH9PIXVr |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1016_j_rsci_2024_04_007 |
Cites_doi | 10.3390/rs8010071 10.1126/science.1205438 10.1007/s11771-020-4348-4 10.1016/j.ecolind.2017.02.045 10.1016/j.isprsjprs.2012.12.002 10.1007/s00190-017-1091-1 10.5194/isprs-archives-xliii-b2-2020-375-2020 10.11834/jrs.20119282 10.3390/rs8060501 10.1016/j.agrformet.2019.107843 10.1016/j.compag.2008.03.009 10.1162/089976602760128081 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2021.3093976 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Forestry |
EISSN | 1558-0644 |
EndPage | 7 |
ExternalDocumentID | 10_1109_TGRS_2021_3093976 9487006 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41877283 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province, China grantid: 2020JJ4601 funderid: 10.13039/501100004735 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c293t-461242433ba3c3daac751ffc15c0d2f7c7bf82487d83c1df15e51b15110fbe473 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 24 14:24:27 EDT 2024 Fri Aug 23 02:58:52 EDT 2024 Wed Jun 26 19:25:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-461242433ba3c3daac751ffc15c0d2f7c7bf82487d83c1df15e51b15110fbe473 |
ORCID | 0000-0003-0864-5439 0000-0003-0158-9227 |
PQID | 2619590131 |
PQPubID | 85465 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2619590131 crossref_primary_10_1109_TGRS_2021_3093976 ieee_primary_9487006 |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Yang (ref11) 2018; 40 Zhu (ref12) 2018; 47 ref14 Li (ref17) 2018 ref30 ref10 Zeng (ref27) 2019 ref19 Xie (ref7) 2015; 44 Shen (ref8) 2017; 46 Wang (ref21) 2017; 40 Deng (ref25) 2008; 33 Xiong (ref16) 2018; 47 ref23 Zhu (ref4) 2014; 43 ref26 ref20 Fan (ref24) 2014; 3 ref22 Xie (ref6) 2020; 49 ref28 Wang (ref9) 2017; 39 Zhao (ref18) 2018; 27 Xing (ref15) 2020 Shi (ref2) 2013 Zhu (ref1) 2018; 43 Wang (ref29) 2015; 31 ref3 ref5 |
References_xml | – ident: ref13 doi: 10.3390/rs8010071 – ident: ref22 doi: 10.1126/science.1205438 – year: 2020 ident: ref15 article-title: Improved filtering algorithm for airborne radar point cloud based on surface and area types contributor: fullname: Xing – volume: 43 start-page: 45 issue: 1 year: 2014 ident: ref4 article-title: Criterion of complex least squares adjustment and its application in tree height inversion with PolInSAR data publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Zhu – volume: 47 start-page: 153 issue: 2 year: 2018 ident: ref12 article-title: Hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Zhu – volume: 43 start-page: 2030 issue: 12 year: 2018 ident: ref1 article-title: Methods and research progress of underlying topography estimation over forest areas by InSAR publication-title: Geomatics Inf. Sci. Wuhan Univ. contributor: fullname: Zhu – ident: ref3 doi: 10.1007/s11771-020-4348-4 – ident: ref10 doi: 10.1016/j.ecolind.2017.02.045 – ident: ref14 doi: 10.1016/j.isprsjprs.2012.12.002 – volume: 27 start-page: 13 issue: 12 year: 2018 ident: ref18 article-title: A study of classification of point clouds generated by oblique imagery based on random forest publication-title: Eng. Surv. Mapping contributor: fullname: Zhao – volume: 40 start-page: 220 issue: 6 year: 2017 ident: ref21 article-title: Application of UAV aerial photogrammetry in topographic map surveying publication-title: Geomatics Spatial Inf. Technol. contributor: fullname: Wang – volume: 47 start-page: 508 issue: 4 year: 2018 ident: ref16 article-title: Random forest method for dimension reduction and point cloud classification based on airborne LiDAR publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Xiong – year: 2013 ident: ref2 article-title: Vegetation height and underlying ground altitude estimation based on multi-baseline PolInSAR data contributor: fullname: Shi – ident: ref5 doi: 10.1007/s00190-017-1091-1 – volume: 33 start-page: 1122 issue: 11 year: 2008 ident: ref25 article-title: Learning algorithm of dynamic least square support vector machine publication-title: Geomatics Inf. Sci. Wuhan Univ. contributor: fullname: Deng – volume: 39 start-page: 25 issue: 12 year: 2017 ident: ref9 article-title: Comparison of filter algorithms and combination analysis for DEM extracting based on airborne laser scanning point clouds publication-title: J. Beijing Forestry Univ. contributor: fullname: Wang – volume: 3 start-page: 1 issue: 1 year: 2014 ident: ref24 article-title: Survey of research process on statistical correlation analysis publication-title: Math. Model. Appl. contributor: fullname: Fan – ident: ref19 doi: 10.5194/isprs-archives-xliii-b2-2020-375-2020 – ident: ref23 doi: 10.11834/jrs.20119282 – volume: 31 start-page: 152 issue: 5 year: 2015 ident: ref29 article-title: Extraction of vegetation information from visible unmanned aerial vehicle images publication-title: Trans. Chin. Soc. Agricult. Eng. contributor: fullname: Wang – volume: 40 start-page: 102 issue: 11 year: 2018 ident: ref11 article-title: Improved octree filtering algorithm of airborne LiDAR data in forest environment publication-title: J. Beijing Forestry Univ. contributor: fullname: Yang – volume: 46 start-page: 1868 issue: 11 year: 2017 ident: ref8 article-title: Vegetation height inversion method with three-layer model by fusing the ascending and descending PolInSAR data publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Shen – ident: ref28 doi: 10.3390/rs8060501 – volume: 49 start-page: 1303 issue: 10 year: 2020 ident: ref6 article-title: A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Xie – year: 2018 ident: ref17 article-title: Research on the application of research on airborne LIDAR point cloud data classification method contributor: fullname: Li – ident: ref20 doi: 10.1016/j.agrformet.2019.107843 – ident: ref30 doi: 10.1016/j.compag.2008.03.009 – ident: ref26 doi: 10.1162/089976602760128081 – year: 2019 ident: ref27 article-title: Extraction of under forest topography and individual tree parameters of southern plantation by oblique photogrammetry contributor: fullname: Zeng – volume: 44 start-page: 686 issue: 6 year: 2015 ident: ref7 article-title: Forest height inversion by combining S-RVOG model with terrain factor and PD coherence optimization publication-title: Acta Geodaetica Cartographica Sinica contributor: fullname: Xie |
SSID | ssj0014517 |
Score | 2.4412491 |
Snippet | The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Aerial photography Algorithms Correlation Correlation coefficient Correlation coefficients Digital mapping Digital terrain model (DTM) Feature extraction Forestry Forests geometric features Height Image color analysis Indexes Learning algorithms Machine learning Microwave integrated circuits Modelling Orthophotography Photogrammetry spectral features Support vector machines Surface topography Terrain models Topographic maps Topographic surveying Topographic surveys Vegetation vegetation height model (VHM) Vegetation mapping |
Title | A Method for Forest Vegetation Height Modeling Based on Aerial Digital Orthophoto Map and Digital Surface Model |
URI | https://ieeexplore.ieee.org/document/9487006 https://www.proquest.com/docview/2619590131 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGP9QQdGDj01xvsjBk9itSZOmPc7nEKqgTnYraZJOEdYxu4t_vUnaFVEP3gpJQ5ovTX7f8wdwSnxBg9DnHhOcelQQbc9B6hllhGFFKVfOFZPch4MhvRux0RKcN7kwWmsXfKa79tH58lUh59ZU1osNunb1tZd5HFe5Wo3HgDJcp0aHnlEiSO3BxH7ce759fDKaIMFd6_aLbXmRb3eQI1X5dRK76-VmC5LFxKqokvfuvMy68vNHzcb_znwbNmucifrVxtiBJT1pwca36oMtWLO0nJbrrQWrLhBUfrSh6KPEkUojg2ZR1QO96HEdlYgGzpSKLIWaTWRHF-YWVMg09N1WRldvY0tDgh5mZpDpa1EWKBFTJCaqaXqaz3IhdTXGLgxvrp8vB15NyuBJgwxKjxpIRAkNgkwEMlBCSM5wnkvMpK9IziXP8oiYz1VRILHKMdMMZwZXYD_PNOXBHqxMioneByRlqHkUSoalpAa4ZiQSoSZRhs0pEivWgbOFmNJpVXsjdTqLH6dWpqmVaVrLtANtu-xNx3rFO3C0EGxa_50fqdUabc5tgA_-fusQ1olNc3CmliNYKWdzfWzAR5mduF33Bauk1B4 |
link.rule.ids | 315,783,787,799,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CILYDSwFRlsEHTmhSYsfOcixrBwhIQ0HcIsd2ACE1VUkv_Hr8nLRCzBy4RbJjOX6O_b31AzhkvuRB6EeekBH3uGQGz0HuWWVEUM15pJ0rJr0New_86kk8zcDvaS6MMcYFn5kOPjpfvi7VGE1lx4lF166-9pxAXFFna019BlzQJjk69KwawRofJvWT4_7l33urCzLaQcdfggVGvtxCjlbln7PYXTAXq5BOplbHlbx1xlXeUR_fqjb-dO5rsNIgTdKtt8Y6zJhBC5a_1B9swQIScyLbWwvmXSioet-AsktSRytNLJ4ldQ_yaJ6buETSc8ZUgiRqmMpOTuw9qIlt6LrNTM5en5GIhNyN7CDDl7IqSSqHRA70tOl-PCqkMvUYm_Bwcd4_7XkNLYOnLDaoPG5BEWc8CHIZqEBLqSJBi0JRoXzNikhFeREz-7k6DhTVBRVG0NwiC-oXueFRsAWzg3JgtoEoFZooDpWgSnELXXMWy9CwOKf2HEm0aMPRREzZsK6-kTmtxU8ylGmGMs0ambZhA5d92rFZ8TbsTQSbNf_ne4Z6I2bdBnTn_28dwGKvn95kN39ur3dhiWHSgzO87MFsNRqbfQtFqvyX24Gf8NrXaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Forest+Vegetation+Height+Modeling+Based+on+Aerial+Digital+Orthophoto+Map+and+Digital+Surface+Model&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Deng%2C+Xingsheng&rft.au=Tang%2C+Guo&rft.au=Wang%2C+Qingyang&rft.au=Luo%2C+Lixia&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FTGRS.2021.3093976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3093976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |