A Method for Forest Vegetation Height Modeling Based on Aerial Digital Orthophoto Map and Digital Surface Model

The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 7
Main Authors Deng, Xingsheng, Tang, Guo, Wang, Qingyang, Luo, Lixia, Long, Sichun
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in consideration of the forest vegetation height modeling problem. Based on an aerial digital orthophoto map and a digital surface model (DSM), the spectral features and geometric features that are related to forest vegetation height are analyzed and extracted. The nonlinear correlation maximal information coefficient, maximum asymmetry score, and Pearson linear correlation coefficient between feature factors and vegetation height are listed, and the correlations are evaluated as the basis for factors selection. Two kinds of support vector regression algorithms were adopted to establish the machine learning for forest vegetation height model (VHM). Therefore, the DSM can be corrected to DTM. The experimental results show that the accuracy of the forest VHM is better than 1 m. Thus, the proposed method is proved to be feasible and practical. It provides a low-cost and high-efficiency method for the VHM and DTM in forest areas by photogrammetry.
AbstractList The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this article is to provide a new technical approach for the digital terrain model (DTM) and forest topographic survey by aerial photogrammetry, in consideration of the forest vegetation height modeling problem. Based on an aerial digital orthophoto map and a digital surface model (DSM), the spectral features and geometric features that are related to forest vegetation height are analyzed and extracted. The nonlinear correlation maximal information coefficient, maximum asymmetry score, and Pearson linear correlation coefficient between feature factors and vegetation height are listed, and the correlations are evaluated as the basis for factors selection. Two kinds of support vector regression algorithms were adopted to establish the machine learning for forest vegetation height model (VHM). Therefore, the DSM can be corrected to DTM. The experimental results show that the accuracy of the forest VHM is better than 1 m. Thus, the proposed method is proved to be feasible and practical. It provides a low-cost and high-efficiency method for the VHM and DTM in forest areas by photogrammetry.
Author Wang, Qingyang
Deng, Xingsheng
Tang, Guo
Long, Sichun
Luo, Lixia
Author_xml – sequence: 1
  givenname: Xingsheng
  orcidid: 0000-0003-0158-9227
  surname: Deng
  fullname: Deng, Xingsheng
  email: whudxs@163.com
  organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 2
  givenname: Guo
  orcidid: 0000-0003-0864-5439
  surname: Tang
  fullname: Tang, Guo
  organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 3
  givenname: Qingyang
  surname: Wang
  fullname: Wang, Qingyang
  organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 4
  givenname: Lixia
  surname: Luo
  fullname: Luo, Lixia
  organization: School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 5
  givenname: Sichun
  surname: Long
  fullname: Long, Sichun
  organization: Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, China
BookMark eNo9kM9PwjAUxxuDiYD-AcZLE8_Dvnbd1iOigAmERNDr0nWvYwRX7MbB_94SCKd3-P54730GpNe4Bgl5BDYCYOplM_tcjzjjMBJMCZUmN6QPUmYRS-K4R_oMVBLxTPE7MmjbHWMQS0j7xI3pErutK6l1nk6dx7aj31hhp7vaNXSOdbXt6NKVuK-bir7qFksahDH6Wu_pW13VXZgrH0oOW9c5utQHqpvyKq2P3mqD5457cmv1vsWHyxySr-n7ZjKPFqvZx2S8iAxXooviBHjMYyEKLYwotTapBGsNSMNKblOTFjbjcZaWmTBQWpAooQAZWNgC41QMyfO59-Dd7zE8le_c0TdhZc4TUFIxEBBccHYZ79rWo80Pvv7R_i8Hlp-45ieu-YlrfuEaMk_nTI2IV78KtzCWiH9PIXVr
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_rsci_2024_04_007
Cites_doi 10.3390/rs8010071
10.1126/science.1205438
10.1007/s11771-020-4348-4
10.1016/j.ecolind.2017.02.045
10.1016/j.isprsjprs.2012.12.002
10.1007/s00190-017-1091-1
10.5194/isprs-archives-xliii-b2-2020-375-2020
10.11834/jrs.20119282
10.3390/rs8060501
10.1016/j.agrformet.2019.107843
10.1016/j.compag.2008.03.009
10.1162/089976602760128081
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2021.3093976
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Forestry
EISSN 1558-0644
EndPage 7
ExternalDocumentID 10_1109_TGRS_2021_3093976
9487006
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41877283
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province, China
  grantid: 2020JJ4601
  funderid: 10.13039/501100004735
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
RXW
TAE
TN5
VH1
XFK
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c293t-461242433ba3c3daac751ffc15c0d2f7c7bf82487d83c1df15e51b15110fbe473
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Oct 24 14:24:27 EDT 2024
Fri Aug 23 02:58:52 EDT 2024
Wed Jun 26 19:25:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-461242433ba3c3daac751ffc15c0d2f7c7bf82487d83c1df15e51b15110fbe473
ORCID 0000-0003-0864-5439
0000-0003-0158-9227
PQID 2619590131
PQPubID 85465
PageCount 7
ParticipantIDs proquest_journals_2619590131
crossref_primary_10_1109_TGRS_2021_3093976
ieee_primary_9487006
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Yang (ref11) 2018; 40
Zhu (ref12) 2018; 47
ref14
Li (ref17) 2018
ref30
ref10
Zeng (ref27) 2019
ref19
Xie (ref7) 2015; 44
Shen (ref8) 2017; 46
Wang (ref21) 2017; 40
Deng (ref25) 2008; 33
Xiong (ref16) 2018; 47
ref23
Zhu (ref4) 2014; 43
ref26
ref20
Fan (ref24) 2014; 3
ref22
Xie (ref6) 2020; 49
ref28
Wang (ref9) 2017; 39
Zhao (ref18) 2018; 27
Xing (ref15) 2020
Shi (ref2) 2013
Zhu (ref1) 2018; 43
Wang (ref29) 2015; 31
ref3
ref5
References_xml – ident: ref13
  doi: 10.3390/rs8010071
– ident: ref22
  doi: 10.1126/science.1205438
– year: 2020
  ident: ref15
  article-title: Improved filtering algorithm for airborne radar point cloud based on surface and area types
  contributor:
    fullname: Xing
– volume: 43
  start-page: 45
  issue: 1
  year: 2014
  ident: ref4
  article-title: Criterion of complex least squares adjustment and its application in tree height inversion with PolInSAR data
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Zhu
– volume: 47
  start-page: 153
  issue: 2
  year: 2018
  ident: ref12
  article-title: Hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Zhu
– volume: 43
  start-page: 2030
  issue: 12
  year: 2018
  ident: ref1
  article-title: Methods and research progress of underlying topography estimation over forest areas by InSAR
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
  contributor:
    fullname: Zhu
– ident: ref3
  doi: 10.1007/s11771-020-4348-4
– ident: ref10
  doi: 10.1016/j.ecolind.2017.02.045
– ident: ref14
  doi: 10.1016/j.isprsjprs.2012.12.002
– volume: 27
  start-page: 13
  issue: 12
  year: 2018
  ident: ref18
  article-title: A study of classification of point clouds generated by oblique imagery based on random forest
  publication-title: Eng. Surv. Mapping
  contributor:
    fullname: Zhao
– volume: 40
  start-page: 220
  issue: 6
  year: 2017
  ident: ref21
  article-title: Application of UAV aerial photogrammetry in topographic map surveying
  publication-title: Geomatics Spatial Inf. Technol.
  contributor:
    fullname: Wang
– volume: 47
  start-page: 508
  issue: 4
  year: 2018
  ident: ref16
  article-title: Random forest method for dimension reduction and point cloud classification based on airborne LiDAR
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Xiong
– year: 2013
  ident: ref2
  article-title: Vegetation height and underlying ground altitude estimation based on multi-baseline PolInSAR data
  contributor:
    fullname: Shi
– ident: ref5
  doi: 10.1007/s00190-017-1091-1
– volume: 33
  start-page: 1122
  issue: 11
  year: 2008
  ident: ref25
  article-title: Learning algorithm of dynamic least square support vector machine
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
  contributor:
    fullname: Deng
– volume: 39
  start-page: 25
  issue: 12
  year: 2017
  ident: ref9
  article-title: Comparison of filter algorithms and combination analysis for DEM extracting based on airborne laser scanning point clouds
  publication-title: J. Beijing Forestry Univ.
  contributor:
    fullname: Wang
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: ref24
  article-title: Survey of research process on statistical correlation analysis
  publication-title: Math. Model. Appl.
  contributor:
    fullname: Fan
– ident: ref19
  doi: 10.5194/isprs-archives-xliii-b2-2020-375-2020
– ident: ref23
  doi: 10.11834/jrs.20119282
– volume: 31
  start-page: 152
  issue: 5
  year: 2015
  ident: ref29
  article-title: Extraction of vegetation information from visible unmanned aerial vehicle images
  publication-title: Trans. Chin. Soc. Agricult. Eng.
  contributor:
    fullname: Wang
– volume: 40
  start-page: 102
  issue: 11
  year: 2018
  ident: ref11
  article-title: Improved octree filtering algorithm of airborne LiDAR data in forest environment
  publication-title: J. Beijing Forestry Univ.
  contributor:
    fullname: Yang
– volume: 46
  start-page: 1868
  issue: 11
  year: 2017
  ident: ref8
  article-title: Vegetation height inversion method with three-layer model by fusing the ascending and descending PolInSAR data
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Shen
– ident: ref28
  doi: 10.3390/rs8060501
– volume: 49
  start-page: 1303
  issue: 10
  year: 2020
  ident: ref6
  article-title: A S-RVoG model-based PolInSAR nonlinear complex least squares method for forest height inversion
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Xie
– year: 2018
  ident: ref17
  article-title: Research on the application of research on airborne LIDAR point cloud data classification method
  contributor:
    fullname: Li
– ident: ref20
  doi: 10.1016/j.agrformet.2019.107843
– ident: ref30
  doi: 10.1016/j.compag.2008.03.009
– ident: ref26
  doi: 10.1162/089976602760128081
– year: 2019
  ident: ref27
  article-title: Extraction of under forest topography and individual tree parameters of southern plantation by oblique photogrammetry
  contributor:
    fullname: Zeng
– volume: 44
  start-page: 686
  issue: 6
  year: 2015
  ident: ref7
  article-title: Forest height inversion by combining S-RVOG model with terrain factor and PD coherence optimization
  publication-title: Acta Geodaetica Cartographica Sinica
  contributor:
    fullname: Xie
SSID ssj0014517
Score 2.4412491
Snippet The solutions of vegetation height and the mapping of terrain in forest have always been concerning and are still challenging problems. The purpose of this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Aerial photography
Algorithms
Correlation
Correlation coefficient
Correlation coefficients
Digital mapping
Digital terrain model (DTM)
Feature extraction
Forestry
Forests
geometric features
Height
Image color analysis
Indexes
Learning algorithms
Machine learning
Microwave integrated circuits
Modelling
Orthophotography
Photogrammetry
spectral features
Support vector machines
Surface topography
Terrain models
Topographic maps
Topographic surveying
Topographic surveys
Vegetation
vegetation height model (VHM)
Vegetation mapping
Title A Method for Forest Vegetation Height Modeling Based on Aerial Digital Orthophoto Map and Digital Surface Model
URI https://ieeexplore.ieee.org/document/9487006
https://www.proquest.com/docview/2619590131
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGP9QQdGDj01xvsjBk9itSZOmPc7nEKqgTnYraZJOEdYxu4t_vUnaFVEP3gpJQ5ovTX7f8wdwSnxBg9DnHhOcelQQbc9B6hllhGFFKVfOFZPch4MhvRux0RKcN7kwWmsXfKa79tH58lUh59ZU1osNunb1tZd5HFe5Wo3HgDJcp0aHnlEiSO3BxH7ce759fDKaIMFd6_aLbXmRb3eQI1X5dRK76-VmC5LFxKqokvfuvMy68vNHzcb_znwbNmucifrVxtiBJT1pwca36oMtWLO0nJbrrQWrLhBUfrSh6KPEkUojg2ZR1QO96HEdlYgGzpSKLIWaTWRHF-YWVMg09N1WRldvY0tDgh5mZpDpa1EWKBFTJCaqaXqaz3IhdTXGLgxvrp8vB15NyuBJgwxKjxpIRAkNgkwEMlBCSM5wnkvMpK9IziXP8oiYz1VRILHKMdMMZwZXYD_PNOXBHqxMioneByRlqHkUSoalpAa4ZiQSoSZRhs0pEivWgbOFmNJpVXsjdTqLH6dWpqmVaVrLtANtu-xNx3rFO3C0EGxa_50fqdUabc5tgA_-fusQ1olNc3CmliNYKWdzfWzAR5mduF33Bauk1B4
link.rule.ids 315,783,787,799,4033,27937,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH5CILYDSwFRlsEHTmhSYsfOcixrBwhIQ0HcIsd2ACE1VUkv_Hr8nLRCzBy4RbJjOX6O_b31AzhkvuRB6EeekBH3uGQGz0HuWWVEUM15pJ0rJr0New_86kk8zcDvaS6MMcYFn5kOPjpfvi7VGE1lx4lF166-9pxAXFFna019BlzQJjk69KwawRofJvWT4_7l33urCzLaQcdfggVGvtxCjlbln7PYXTAXq5BOplbHlbx1xlXeUR_fqjb-dO5rsNIgTdKtt8Y6zJhBC5a_1B9swQIScyLbWwvmXSioet-AsktSRytNLJ4ldQ_yaJ6buETSc8ZUgiRqmMpOTuw9qIlt6LrNTM5en5GIhNyN7CDDl7IqSSqHRA70tOl-PCqkMvUYm_Bwcd4_7XkNLYOnLDaoPG5BEWc8CHIZqEBLqSJBi0JRoXzNikhFeREz-7k6DhTVBRVG0NwiC-oXueFRsAWzg3JgtoEoFZooDpWgSnELXXMWy9CwOKf2HEm0aMPRREzZsK6-kTmtxU8ylGmGMs0ambZhA5d92rFZ8TbsTQSbNf_ne4Z6I2bdBnTn_28dwGKvn95kN39ur3dhiWHSgzO87MFsNRqbfQtFqvyX24Gf8NrXaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Forest+Vegetation+Height+Modeling+Based+on+Aerial+Digital+Orthophoto+Map+and+Digital+Surface+Model&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Deng%2C+Xingsheng&rft.au=Tang%2C+Guo&rft.au=Wang%2C+Qingyang&rft.au=Luo%2C+Lixia&rft.date=2022&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FTGRS.2021.3093976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2021_3093976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon