EEG-Based Maritime Object Detection for IoT-Driven Surveillance Systems in Smart Ocean

Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surv...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 7; no. 10; pp. 9678 - 9687
Main Authors Duan, Yiping, Li, Zhe, Tao, Xiaoming, Li, Qiang, Hu, Shuzhan, Lu, Jianhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2020.2991025

Cover

Loading…
Abstract Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the <inline-formula> <tex-math notation="LaTeX">P3 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">N2 </tex-math></inline-formula> components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems.
AbstractList Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the <inline-formula> <tex-math notation="LaTeX">P3 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">N2 </tex-math></inline-formula> components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems.
Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the [Formula Omitted] and [Formula Omitted] components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems.
Author Hu, Shuzhan
Li, Qiang
Lu, Jianhua
Duan, Yiping
Li, Zhe
Tao, Xiaoming
Author_xml – sequence: 1
  givenname: Yiping
  orcidid: 0000-0001-9638-7112
  surname: Duan
  fullname: Duan, Yiping
  email: yipingduan@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  email: zhe-li19@mails.tsinghua.edu.cn
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Xiaoming
  orcidid: 0000-0002-8763-9338
  surname: Tao
  fullname: Tao, Xiaoming
  email: taoxm@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0001-9927-8990
  surname: Li
  fullname: Li, Qiang
  email: 18813121800@163.com
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Shuzhan
  surname: Hu
  fullname: Hu, Shuzhan
  email: lhh-dee@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Jianhua
  surname: Lu
  fullname: Lu, Jianhua
  organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China
BookMark eNp9kE1PAjEQQBuDiYj8AOOliefFabtfPSogYjB7AL1uunWalMAutoWEf-9uIMZ48DSTmXkzk3dNenVTIyG3DEaMgXx4nRerEQcOIy4lA55ckD4XPIviNOW9X_kVGXq_BoAWS5hM--RjOp1FT8rjJ31Tzga7RVpUa9SBTjC0wTY1NY2j82YVTZw9YE2Xe3dAu9moWiNdHn3Arae2rW-VC7TQqOobcmnUxuPwHAfk_Xm6Gr9Ei2I2Hz8uIs2lCFEMiBoqLiulQOo8Z5rlOtWQxyIRIstTEKYCFidZ20nTGAQoaYzJFQfDKjEg96e9O9d87dGHct3sXd2eLHkcS5kwIUU7xU5T2jXeOzTlztn22WPJoOwMlp3BsjNYng22TPaH0TaoTkdwym7-Je9OpEXEn0sSMplLLr4BnC595A
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2024_3361938
crossref_primary_10_1109_TNSE_2023_3299462
crossref_primary_10_1109_TITS_2022_3191161
crossref_primary_10_1016_j_oceaneng_2025_120823
crossref_primary_10_1109_TITS_2023_3295733
crossref_primary_10_1109_TPAMI_2024_3408684
crossref_primary_10_1109_JIOT_2022_3176202
crossref_primary_10_1109_LSP_2022_3211157
crossref_primary_10_1007_s11227_022_04988_1
crossref_primary_10_1109_JIOT_2024_3422389
crossref_primary_10_3390_jmse11081509
crossref_primary_10_1109_JIOT_2022_3232481
crossref_primary_10_1109_TITS_2022_3159503
crossref_primary_10_1088_1755_1315_1423_1_012001
crossref_primary_10_3390_s22186879
crossref_primary_10_1088_1741_2552_ad658e
Cites_doi 10.1109/JIOT.2019.2950469
10.1109/TIP.2009.2025808
10.3389/fnins.2018.00097
10.1109/TNNLS.2014.2302898
10.1109/JIOT.2019.2902141
10.1109/TBME.2016.2583200
10.1109/IEMBS.2011.6091575
10.1016/j.patcog.2018.05.009
10.1111/j.1469-8986.2010.01061.x
10.7150/ijms.2.147
10.1109/JIOT.2018.2890541
10.1109/EMBC.2018.8512547
10.1109/JIOT.2019.2951365
10.1016/j.eswa.2010.06.065
10.1109/TBME.2015.2481482
10.1109/JIOT.2019.2949633
10.1016/j.neucom.2010.12.025
10.1109/EMBC.2015.7320066
10.1109/JIOT.2019.2936504
10.1109/TNSRE.2019.2943362
10.1109/TAMD.2015.2449553
10.1109/TIP.2019.2930906
10.1109/JIOT.2019.2946269
10.1109/CEEC.2014.6958567
10.1016/j.patrec.2005.10.010
10.1109/TMM.2019.2934425
10.1109/TNSRE.2008.2003381
10.1016/j.neulet.2004.05.097
10.1017/S1481803500013336
10.1109/TPAMI.2008.170
10.1109/MSP.2017.2749125
10.1007/s11571-016-9378-0
10.1109/JIOT.2017.2705560
10.1109/TBME.2015.2402252
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2020.2991025
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 9687
ExternalDocumentID 10_1109_JIOT_2020_2991025
9079892
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFF0301205
– fundername: National Natural Science Foundation of China
  grantid: NSFC 61925105; 61801260
  funderid: 10.13039/501100001809
– fundername: Chinese Postdoctoral Science Foundation
  grantid: 2018T110098
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-40eec0b29baa09c881c18c6c084353378603fb014571c1664030a9fff8a20f1b3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 04:55:16 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Jul 01 04:08:02 EDT 2025
Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-40eec0b29baa09c881c18c6c084353378603fb014571c1664030a9fff8a20f1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9638-7112
0000-0002-8763-9338
0000-0001-9927-8990
PQID 2449951393
PQPubID 2040421
PageCount 10
ParticipantIDs proquest_journals_2449951393
ieee_primary_9079892
crossref_citationtrail_10_1109_JIOT_2020_2991025
crossref_primary_10_1109_JIOT_2020_2991025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
Chiou (ref35)
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Luck (ref15) 2005
Irina (ref27) 2012; 5
(ref28) 2019
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/JIOT.2019.2950469
– ident: ref5
  doi: 10.1109/TIP.2009.2025808
– ident: ref31
  doi: 10.3389/fnins.2018.00097
– start-page: 3859
  volume-title: Proc. IEEE Int. Conf. Syst.
  ident: ref35
  article-title: Spatial filter feature extraction methods for P300BCI speller: A comparison
– ident: ref13
  doi: 10.1109/TNNLS.2014.2302898
– ident: ref19
  doi: 10.1109/JIOT.2019.2902141
– ident: ref14
  doi: 10.1109/TBME.2016.2583200
– ident: ref23
  doi: 10.1109/IEMBS.2011.6091575
– ident: ref7
  doi: 10.1016/j.patcog.2018.05.009
– ident: ref33
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 5
  issue: 12
  year: 2012
  ident: ref27
  article-title: Identifying object categories from event-related EEG: Toward decoding of conceptual representations
  publication-title: PLoS ONE
– ident: ref16
  doi: 10.7150/ijms.2.147
– ident: ref17
  doi: 10.1109/JIOT.2018.2890541
– ident: ref30
  doi: 10.1109/EMBC.2018.8512547
– ident: ref20
  doi: 10.1109/JIOT.2019.2951365
– ident: ref32
  doi: 10.1016/j.eswa.2010.06.065
– ident: ref29
  doi: 10.1109/TBME.2015.2481482
– ident: ref18
  doi: 10.1109/JIOT.2019.2949633
– ident: ref22
  doi: 10.1016/j.neucom.2010.12.025
– ident: ref34
  doi: 10.1109/EMBC.2015.7320066
– ident: ref1
  doi: 10.1109/JIOT.2019.2936504
– ident: ref10
  doi: 10.1109/TNSRE.2019.2943362
– volume-title: Airbus Ship Detection Challenge
  year: 2019
  ident: ref28
– ident: ref12
  doi: 10.1109/TAMD.2015.2449553
– ident: ref6
  doi: 10.1109/TIP.2019.2930906
– ident: ref3
  doi: 10.1109/JIOT.2019.2946269
– ident: ref26
  doi: 10.1109/CEEC.2014.6958567
– ident: ref37
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref9
  doi: 10.1109/TMM.2019.2934425
– ident: ref24
  doi: 10.1109/TNSRE.2008.2003381
– ident: ref25
  doi: 10.1016/j.neulet.2004.05.097
– ident: ref38
  doi: 10.1017/S1481803500013336
– ident: ref4
  doi: 10.1109/TPAMI.2008.170
– ident: ref8
  doi: 10.1109/MSP.2017.2749125
– ident: ref11
  doi: 10.1007/s11571-016-9378-0
– volume-title: An Introduction to The Event-Related Potential Technique
  year: 2005
  ident: ref15
– ident: ref21
  doi: 10.1109/JIOT.2017.2705560
– ident: ref36
  doi: 10.1109/TBME.2015.2402252
SSID ssj0001105196
Score 2.2963815
Snippet Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9678
SubjectTerms Algorithms
Digital cameras
Digital imaging
Discriminant analysis
Electroencephalography
Electroencephalography (EEG)
Feature extraction
intelligent surveillance systems
Internet of Things
Internet of Things (IoT)
Machine learning
Marine vehicles
maritime object detection
Object detection
Object recognition
Oceans
smart ocean
Surveillance
Surveillance systems
Title EEG-Based Maritime Object Detection for IoT-Driven Surveillance Systems in Smart Ocean
URI https://ieeexplore.ieee.org/document/9079892
https://www.proquest.com/docview/2449951393
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwMhFCbVkxd3Y93CwZNxWmZj4OjSak1qD7amtwnDkhh1aurUg7_eB0NrXGK8TRgghAfvfW_hPYSOFVMiSmMSJGEmgyTOsqCgFJQVmhmWpEloXEqh_i29HiU343TcQKeLtzBaaxd8plv20_ny1UTOrKmsDYocZxwY7hIobvVbrU97SmjBCPWOy5Dw9k1vMAQFMCItYLkgR9MvosfVUvnBgJ1U6a6h_nw9dTDJY2tWFS35_i1V438XvI5WPbzEZ_V52EANXW6itXnpBuxv8ha673SugnOQYAr3hc1r9KzxoLA2GXypKxeeVWLAs7g3GQaXU8sS8d1s-qZtkSKYAftM5_gB2p_h-OGB1KLcRqNuZ3hxHfgSC4EEOV-B9qi1JEXECyEIl4yFMmSSSsIARsVxxiiJTWFdjxn8oTQBniC4MYaJiJiwiHfQcjkp9S7CSlOjUhO5Kn9KJdwIQ0QKCDNSkdRJE5H57ufS5x-3ZTCecqeHEJ5bguWWYLknWBOdLIa81Mk3_uq8ZQmw6Oj3vokO5iTO_fV8zQHTcG6XFu_9Pmofrdi566i9A7RcTWf6ENBHVRy5Y_cB8xbVPA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOMAFKBSRQlsfekJs8L689rEtgQQIOTQgbiuvHxKibFDYcODXM_Y6qUpRxW3ltXctz3jmG3seAN801zLJUxplcaGiLC2KqGIMjRVWWJ7lWWx9SqHhJetfZWc3-c0SHC5iYYwx3vnMdN2jv8vXEzVzR2VHaMgJLlDgruQuGLeN1vpzohI7OMLC1WVMxdHZYDRGEzChXRS6qEnzv5SPr6byjwj2euVkA4bzGbXuJHfdWVN11fOrZI3vnfImrAeASb63HPEBlky9BRvz4g0k7OVtuO71TqMfqMM0GUqX2ejekFHlTmXIsWm8g1ZNENGSwWQcHU-dUCS_ZtMn48oU4RdIyHVObrH9HhmQjJSR9Ue4OumNf_ajUGQhUqjpG7QfjVG0SkQlJRWK81jFXDFFOQKpNC04o6mt3OVjgW8Yy1AqSGGt5TKhNq7SHViuJ7XZBaINszq3ia_zp3UmrLRU5ogxE50ok3WAzle_VCEDuSuE8bv0lggVpSNY6QhWBoJ14GAx5KFNv_G_ztuOAIuOYe07sD8ncRk26GOJqEYIN7X009ujvsJqfzy8KC8Gl-d7sOb-0_rw7cNyM52Zz4hFmuqLZ8EXOlPYhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Maritime+Object+Detection+for+IoT-Driven+Surveillance+Systems+in+Smart+Ocean&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Duan%2C+Yiping&rft.au=Li%2C+Zhe&rft.au=Tao%2C+Xiaoming&rft.au=Li%2C+Qiang&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=10&rft.spage=9678&rft.epage=9687&rft_id=info:doi/10.1109%2FJIOT.2020.2991025&rft.externalDocID=9079892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon