EEG-Based Maritime Object Detection for IoT-Driven Surveillance Systems in Smart Ocean
Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surv...
Saved in:
Published in | IEEE internet of things journal Vol. 7; no. 10; pp. 9678 - 9687 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2020.2991025 |
Cover
Loading…
Abstract | Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the <inline-formula> <tex-math notation="LaTeX">P3 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">N2 </tex-math></inline-formula> components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems. |
---|---|
AbstractList | Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the <inline-formula> <tex-math notation="LaTeX">P3 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">N2 </tex-math></inline-formula> components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems. Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart ocean applications. In particular, ship detection is recognized as one of the core research issues of these IoT-driven intelligent marine surveillance systems. Traditional methods based on machine learning have made some achievements in detection tasks for specific objects. However, the ship objects are relatively small, and they are usually not accurately detected. In this article, we propose an electroencephalography (EEG)-based maritime object detection algorithm for IoT-driven surveillance systems in the smart ocean. For this purpose, we conduct experiments to record the EEG signals of subjects when they are watching the maritime image scenes. With the feature analysis of EEG signals, the event-related potential (ERP) components associated with detecting objects are induced, such as the [Formula Omitted] and [Formula Omitted] components. Employing classification based on linear discriminant analysis (LDA), the area under curve (AUC) of the receiver operating characteristic (ROC) is used to evaluate the detection accuracy. We use this novel method to determine and identify essential objects and areas from IoT devices, such as digital camera imaging sensors. Our proposed method can not only help to detect small objects accurately using fewer samples but can also be used to reduce the data volume needed to be stored and transmitted in IoT-driven marine surveillance systems. |
Author | Hu, Shuzhan Li, Qiang Lu, Jianhua Duan, Yiping Li, Zhe Tao, Xiaoming |
Author_xml | – sequence: 1 givenname: Yiping orcidid: 0000-0001-9638-7112 surname: Duan fullname: Duan, Yiping email: yipingduan@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China – sequence: 2 givenname: Zhe surname: Li fullname: Li, Zhe email: zhe-li19@mails.tsinghua.edu.cn organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China – sequence: 3 givenname: Xiaoming orcidid: 0000-0002-8763-9338 surname: Tao fullname: Tao, Xiaoming email: taoxm@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China – sequence: 4 givenname: Qiang orcidid: 0000-0001-9927-8990 surname: Li fullname: Li, Qiang email: 18813121800@163.com organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China – sequence: 5 givenname: Shuzhan surname: Hu fullname: Hu, Shuzhan email: lhh-dee@mail.tsinghua.edu.cn organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China – sequence: 6 givenname: Jianhua surname: Lu fullname: Lu, Jianhua organization: Department of Electronic Engineering, National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chip, Tsinghua University, Beijing, China |
BookMark | eNp9kE1PAjEQQBuDiYj8AOOliefFabtfPSogYjB7AL1uunWalMAutoWEf-9uIMZ48DSTmXkzk3dNenVTIyG3DEaMgXx4nRerEQcOIy4lA55ckD4XPIviNOW9X_kVGXq_BoAWS5hM--RjOp1FT8rjJ31Tzga7RVpUa9SBTjC0wTY1NY2j82YVTZw9YE2Xe3dAu9moWiNdHn3Arae2rW-VC7TQqOobcmnUxuPwHAfk_Xm6Gr9Ei2I2Hz8uIs2lCFEMiBoqLiulQOo8Z5rlOtWQxyIRIstTEKYCFidZ20nTGAQoaYzJFQfDKjEg96e9O9d87dGHct3sXd2eLHkcS5kwIUU7xU5T2jXeOzTlztn22WPJoOwMlp3BsjNYng22TPaH0TaoTkdwym7-Je9OpEXEn0sSMplLLr4BnC595A |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3361938 crossref_primary_10_1109_TNSE_2023_3299462 crossref_primary_10_1109_TITS_2022_3191161 crossref_primary_10_1016_j_oceaneng_2025_120823 crossref_primary_10_1109_TITS_2023_3295733 crossref_primary_10_1109_TPAMI_2024_3408684 crossref_primary_10_1109_JIOT_2022_3176202 crossref_primary_10_1109_LSP_2022_3211157 crossref_primary_10_1007_s11227_022_04988_1 crossref_primary_10_1109_JIOT_2024_3422389 crossref_primary_10_3390_jmse11081509 crossref_primary_10_1109_JIOT_2022_3232481 crossref_primary_10_1109_TITS_2022_3159503 crossref_primary_10_1088_1755_1315_1423_1_012001 crossref_primary_10_3390_s22186879 crossref_primary_10_1088_1741_2552_ad658e |
Cites_doi | 10.1109/JIOT.2019.2950469 10.1109/TIP.2009.2025808 10.3389/fnins.2018.00097 10.1109/TNNLS.2014.2302898 10.1109/JIOT.2019.2902141 10.1109/TBME.2016.2583200 10.1109/IEMBS.2011.6091575 10.1016/j.patcog.2018.05.009 10.1111/j.1469-8986.2010.01061.x 10.7150/ijms.2.147 10.1109/JIOT.2018.2890541 10.1109/EMBC.2018.8512547 10.1109/JIOT.2019.2951365 10.1016/j.eswa.2010.06.065 10.1109/TBME.2015.2481482 10.1109/JIOT.2019.2949633 10.1016/j.neucom.2010.12.025 10.1109/EMBC.2015.7320066 10.1109/JIOT.2019.2936504 10.1109/TNSRE.2019.2943362 10.1109/TAMD.2015.2449553 10.1109/TIP.2019.2930906 10.1109/JIOT.2019.2946269 10.1109/CEEC.2014.6958567 10.1016/j.patrec.2005.10.010 10.1109/TMM.2019.2934425 10.1109/TNSRE.2008.2003381 10.1016/j.neulet.2004.05.097 10.1017/S1481803500013336 10.1109/TPAMI.2008.170 10.1109/MSP.2017.2749125 10.1007/s11571-016-9378-0 10.1109/JIOT.2017.2705560 10.1109/TBME.2015.2402252 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2020.2991025 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 9687 |
ExternalDocumentID | 10_1109_JIOT_2020_2991025 9079892 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFF0301205 – fundername: National Natural Science Foundation of China grantid: NSFC 61925105; 61801260 funderid: 10.13039/501100001809 – fundername: Chinese Postdoctoral Science Foundation grantid: 2018T110098 funderid: 10.13039/501100002858 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-40eec0b29baa09c881c18c6c084353378603fb014571c1664030a9fff8a20f1b3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 04:55:16 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 04:08:02 EDT 2025 Wed Aug 27 02:30:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-40eec0b29baa09c881c18c6c084353378603fb014571c1664030a9fff8a20f1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9638-7112 0000-0002-8763-9338 0000-0001-9927-8990 |
PQID | 2449951393 |
PQPubID | 2040421 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2449951393 ieee_primary_9079892 crossref_citationtrail_10_1109_JIOT_2020_2991025 crossref_primary_10_1109_JIOT_2020_2991025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 Chiou (ref35) ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Luck (ref15) 2005 Irina (ref27) 2012; 5 (ref28) 2019 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1109/JIOT.2019.2950469 – ident: ref5 doi: 10.1109/TIP.2009.2025808 – ident: ref31 doi: 10.3389/fnins.2018.00097 – start-page: 3859 volume-title: Proc. IEEE Int. Conf. Syst. ident: ref35 article-title: Spatial filter feature extraction methods for P300BCI speller: A comparison – ident: ref13 doi: 10.1109/TNNLS.2014.2302898 – ident: ref19 doi: 10.1109/JIOT.2019.2902141 – ident: ref14 doi: 10.1109/TBME.2016.2583200 – ident: ref23 doi: 10.1109/IEMBS.2011.6091575 – ident: ref7 doi: 10.1016/j.patcog.2018.05.009 – ident: ref33 doi: 10.1111/j.1469-8986.2010.01061.x – volume: 5 issue: 12 year: 2012 ident: ref27 article-title: Identifying object categories from event-related EEG: Toward decoding of conceptual representations publication-title: PLoS ONE – ident: ref16 doi: 10.7150/ijms.2.147 – ident: ref17 doi: 10.1109/JIOT.2018.2890541 – ident: ref30 doi: 10.1109/EMBC.2018.8512547 – ident: ref20 doi: 10.1109/JIOT.2019.2951365 – ident: ref32 doi: 10.1016/j.eswa.2010.06.065 – ident: ref29 doi: 10.1109/TBME.2015.2481482 – ident: ref18 doi: 10.1109/JIOT.2019.2949633 – ident: ref22 doi: 10.1016/j.neucom.2010.12.025 – ident: ref34 doi: 10.1109/EMBC.2015.7320066 – ident: ref1 doi: 10.1109/JIOT.2019.2936504 – ident: ref10 doi: 10.1109/TNSRE.2019.2943362 – volume-title: Airbus Ship Detection Challenge year: 2019 ident: ref28 – ident: ref12 doi: 10.1109/TAMD.2015.2449553 – ident: ref6 doi: 10.1109/TIP.2019.2930906 – ident: ref3 doi: 10.1109/JIOT.2019.2946269 – ident: ref26 doi: 10.1109/CEEC.2014.6958567 – ident: ref37 doi: 10.1016/j.patrec.2005.10.010 – ident: ref9 doi: 10.1109/TMM.2019.2934425 – ident: ref24 doi: 10.1109/TNSRE.2008.2003381 – ident: ref25 doi: 10.1016/j.neulet.2004.05.097 – ident: ref38 doi: 10.1017/S1481803500013336 – ident: ref4 doi: 10.1109/TPAMI.2008.170 – ident: ref8 doi: 10.1109/MSP.2017.2749125 – ident: ref11 doi: 10.1007/s11571-016-9378-0 – volume-title: An Introduction to The Event-Related Potential Technique year: 2005 ident: ref15 – ident: ref21 doi: 10.1109/JIOT.2017.2705560 – ident: ref36 doi: 10.1109/TBME.2015.2402252 |
SSID | ssj0001105196 |
Score | 2.2963815 |
Snippet | Automated maritime object detection is a significant research challenge in intelligent marine surveillance systems for the Internet of Things (IoT) and smart... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9678 |
SubjectTerms | Algorithms Digital cameras Digital imaging Discriminant analysis Electroencephalography Electroencephalography (EEG) Feature extraction intelligent surveillance systems Internet of Things Internet of Things (IoT) Machine learning Marine vehicles maritime object detection Object detection Object recognition Oceans smart ocean Surveillance Surveillance systems |
Title | EEG-Based Maritime Object Detection for IoT-Driven Surveillance Systems in Smart Ocean |
URI | https://ieeexplore.ieee.org/document/9079892 https://www.proquest.com/docview/2449951393 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwMhFCbVkxd3Y93CwZNxWmZj4OjSak1qD7amtwnDkhh1aurUg7_eB0NrXGK8TRgghAfvfW_hPYSOFVMiSmMSJGEmgyTOsqCgFJQVmhmWpEloXEqh_i29HiU343TcQKeLtzBaaxd8plv20_ny1UTOrKmsDYocZxwY7hIobvVbrU97SmjBCPWOy5Dw9k1vMAQFMCItYLkgR9MvosfVUvnBgJ1U6a6h_nw9dTDJY2tWFS35_i1V438XvI5WPbzEZ_V52EANXW6itXnpBuxv8ha673SugnOQYAr3hc1r9KzxoLA2GXypKxeeVWLAs7g3GQaXU8sS8d1s-qZtkSKYAftM5_gB2p_h-OGB1KLcRqNuZ3hxHfgSC4EEOV-B9qi1JEXECyEIl4yFMmSSSsIARsVxxiiJTWFdjxn8oTQBniC4MYaJiJiwiHfQcjkp9S7CSlOjUhO5Kn9KJdwIQ0QKCDNSkdRJE5H57ufS5x-3ZTCecqeHEJ5bguWWYLknWBOdLIa81Mk3_uq8ZQmw6Oj3vokO5iTO_fV8zQHTcG6XFu_9Pmofrdi566i9A7RcTWf6ENBHVRy5Y_cB8xbVPA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4hOMAFKBSRQlsfekJs8L689rEtgQQIOTQgbiuvHxKibFDYcODXM_Y6qUpRxW3ltXctz3jmG3seAN801zLJUxplcaGiLC2KqGIMjRVWWJ7lWWx9SqHhJetfZWc3-c0SHC5iYYwx3vnMdN2jv8vXEzVzR2VHaMgJLlDgruQuGLeN1vpzohI7OMLC1WVMxdHZYDRGEzChXRS6qEnzv5SPr6byjwj2euVkA4bzGbXuJHfdWVN11fOrZI3vnfImrAeASb63HPEBlky9BRvz4g0k7OVtuO71TqMfqMM0GUqX2ejekFHlTmXIsWm8g1ZNENGSwWQcHU-dUCS_ZtMn48oU4RdIyHVObrH9HhmQjJSR9Ue4OumNf_ajUGQhUqjpG7QfjVG0SkQlJRWK81jFXDFFOQKpNC04o6mt3OVjgW8Yy1AqSGGt5TKhNq7SHViuJ7XZBaINszq3ia_zp3UmrLRU5ogxE50ok3WAzle_VCEDuSuE8bv0lggVpSNY6QhWBoJ14GAx5KFNv_G_ztuOAIuOYe07sD8ncRk26GOJqEYIN7X009ujvsJqfzy8KC8Gl-d7sOb-0_rw7cNyM52Zz4hFmuqLZ8EXOlPYhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Maritime+Object+Detection+for+IoT-Driven+Surveillance+Systems+in+Smart+Ocean&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Duan%2C+Yiping&rft.au=Li%2C+Zhe&rft.au=Tao%2C+Xiaoming&rft.au=Li%2C+Qiang&rft.date=2020-10-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=7&rft.issue=10&rft.spage=9678&rft.epage=9687&rft_id=info:doi/10.1109%2FJIOT.2020.2991025&rft.externalDocID=9079892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |