Markov Chains for Fault-Tolerance Modeling of Stochastic Networks

Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain undergoing an epileptic seizure, spontaneous infection and recovery in epidemics, and intermittent functioning of devices in the Internet of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 3; pp. 1 - 16
Main Authors Meyers, Adam, Yang, Hui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain undergoing an epileptic seizure, spontaneous infection and recovery in epidemics, and intermittent functioning of devices in the Internet of Things. Moreover, such networks are becoming increasingly large due to rapid technological advances. However, little has been done to study time-varying, large-scale, stochastic networks (SNs) from a reliability engineering perspective. Toward this goal, this article develops a fault-tolerance model for a type of time-varying network in which nodes (and/or edges) stochastically switch between active and inactive states. It considers fault tolerance from a global connectivity point of view, which has applications in many natural and engineered networks. Specifically, this article presents a Markov chain framework that models the dynamic behavior of nodes and allows for the computation of quantitative measures, including availability and time-to-failure metrics. To accommodate large-scale networks and emphasize global connectivity, this framework utilizes percolation theory, which has recently been of interest in the reliability engineering discipline, to characterize network failure. This article makes several contributions: it proposes a Markov chain framework for computing fault-tolerance metrics that is tractable for large-scale networks, it shows the existence of a phase transition in network availability of a time-varying SN, and it accounts for finite-size effects of percolation in the fault-tolerance model. The proposed methodology is applied to Erdös-Rényi random graphs and a real, large-scale power grid. Experimental results provide insights into network design, maintenance, and failure prevention of time-varying SNs.
AbstractList Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain undergoing an epileptic seizure, spontaneous infection and recovery in epidemics, and intermittent functioning of devices in the Internet of Things. Moreover, such networks are becoming increasingly large due to rapid technological advances. However, little has been done to study time-varying, large-scale, stochastic networks (SNs) from a reliability engineering perspective. Toward this goal, this article develops a fault-tolerance model for a type of time-varying network in which nodes (and/or edges) stochastically switch between active and inactive states. It considers fault tolerance from a global connectivity point of view, which has applications in many natural and engineered networks. Specifically, this article presents a Markov chain framework that models the dynamic behavior of nodes and allows for the computation of quantitative measures, including availability and time-to-failure metrics. To accommodate large-scale networks and emphasize global connectivity, this framework utilizes percolation theory, which has recently been of interest in the reliability engineering discipline, to characterize network failure. This article makes several contributions: it proposes a Markov chain framework for computing fault-tolerance metrics that is tractable for large-scale networks, it shows the existence of a phase transition in network availability of a time-varying SN, and it accounts for finite-size effects of percolation in the fault-tolerance model. The proposed methodology is applied to Erdös–Rényi random graphs and a real, large-scale power grid. Experimental results provide insights into network design, maintenance, and failure prevention of time-varying SNs. Note to Practitioners —This work develops a fault-tolerance model for time-varying stochastic networks in which nodes (and/or edges) randomly switch between active and inactive states. To address increasingly large-scale networks that are being studied, this article appeals to percolation theory. Fault tolerance is, thus, studied from a global connectivity perspective where the existence of a large connected component containing most of the nodes characterizes the functioning of the network. Specifically, this article presents a continuous-time Markov chain (CTMC) framework that models node dynamics and allows for the computation of fault-tolerance metrics, including network availability and mean time to failure. The proposed framework computes metrics efficiently for large networks and allows for studying their asymptotics. The percolation threshold describing the dissolution of the large connected component is used as the failure criterion in the CTMC. The practitioner should note that several assumptions are made in the proposed CTMC framework: nodes possess identical and time-invariant failure and recovery rates, node failure and recovery times are exponentially distributed, and node dynamics are independent of one another. In addition, fault-tolerance metrics computed for finite networks are estimators of the true metric values. The proposed framework is advantageous for quantifying the fault tolerance of large-scale, time-varying networks where the combinatorial explosion and a changing network topology pose challenges to the use of traditional reliability methods. A case study of a power grid network shows how to apply the proposed methodology to real networks.
Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain undergoing an epileptic seizure, spontaneous infection and recovery in epidemics, and intermittent functioning of devices in the Internet of Things. Moreover, such networks are becoming increasingly large due to rapid technological advances. However, little has been done to study time-varying, large-scale, stochastic networks (SNs) from a reliability engineering perspective. Toward this goal, this article develops a fault-tolerance model for a type of time-varying network in which nodes (and/or edges) stochastically switch between active and inactive states. It considers fault tolerance from a global connectivity point of view, which has applications in many natural and engineered networks. Specifically, this article presents a Markov chain framework that models the dynamic behavior of nodes and allows for the computation of quantitative measures, including availability and time-to-failure metrics. To accommodate large-scale networks and emphasize global connectivity, this framework utilizes percolation theory, which has recently been of interest in the reliability engineering discipline, to characterize network failure. This article makes several contributions: it proposes a Markov chain framework for computing fault-tolerance metrics that is tractable for large-scale networks, it shows the existence of a phase transition in network availability of a time-varying SN, and it accounts for finite-size effects of percolation in the fault-tolerance model. The proposed methodology is applied to Erdös-Rényi random graphs and a real, large-scale power grid. Experimental results provide insights into network design, maintenance, and failure prevention of time-varying SNs.
Author Meyers, Adam
Yang, Hui
Author_xml – sequence: 1
  givenname: Adam
  surname: Meyers
  fullname: Meyers, Adam
  organization: Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802 USA
– sequence: 2
  givenname: Hui
  orcidid: 0000-0001-5997-6823
  surname: Yang
  fullname: Yang, Hui
  organization: Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802 USA (e-mail: huy25@psu.edu)
BookMark eNp9kEtPAjEUhRuDiYD-AONmEteDt9Ppa0kIPhLQBbhuOp2OFMYptkXjvxcCceHC1b2L852TfAPU63xnEbrGMMIY5N1yvJiOCijwiIAkQOgZ6mNKRU64IL3DX9KcSkov0CDGNUBRCgl9NJ7rsPGf2WSlXRezxofsXu_alC99a4PujM3mvrat694y32SL5M1Kx-RM9mzTlw-beInOG91Ge3W6Q_R6P11OHvPZy8PTZDzLTSFJyomtgRVaYmxpRQEkNTUzti7LmmkuGKkMJaYyJRY1bSpuGDHccmDcQFVTQYbo9ti7Df5jZ2NSa78L3X5SFUxQzAgIvk_hY8oEH2OwjdoG967Dt8KgDqbUwZQ6mFInU3uG_2GMSzo536WgXfsveXMknbX2d0mWAmPGyQ-uJXdu
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2023_3324649
crossref_primary_10_1109_TASE_2024_3389455
crossref_primary_10_1109_TNET_2023_3324257
Cites_doi 10.1103/physrevresearch.1.013009
10.1109/TIFS.2011.2165946
10.1109/INFOCOM.2008.11
10.1109/COMSNETS.2012.6151313
10.1103/physreve.61.5678
10.1214/17-aap1357
10.1137/0109045
10.1109/TIT.2011.2173726
10.1103/physrevlett.86.3682
10.1002/(sici)1098-2418(199610)9:3<295::aid-rsa3>3.0.co;2-s
10.1103/physrevx.4.041020
10.1093/bioinformatics/btq078
10.1109/TSP.2016.2552499
10.1103/physreve.75.066110
10.1088/1478-3975/aac194
10.1109/TNET.2019.2892709
10.1063/1.2820231
10.1109/TMC.2007.1041
10.1109/TPDS.2008.146
10.1109/TIT.2006.890791
10.1016/j.neuroimage.2009.10.003
10.1103/physreve.89.032807
10.1016/j.ress.2015.05.021
10.1109/JSAC.2009.090902
10.1093/acprof:oso/9780199206650.001.0001
10.1103/physreve.64.016706
10.1109/TWC.2010.07.060438
10.1038/s41598-017-14763-5
10.1016/S0304-4149(97)00044-6
10.1371/journal.pcbi.1000968
10.1109/TNET.2005.845546
10.1007/978-3-0346-0030-9_5
10.1007/s10955-004-8826-0
10.2307/1427621
10.1109/JSAC.2013.130920
10.1088/1742-5468/aa8c36
10.1109/MAHSS.2004.1392188
10.1080/24725579.2020.1741738
10.1177/1550147718810692
10.1038/30918
10.1103/physreve.93.052301
10.1002/adfm.201700845
10.1109/TWC.2010.07.071283
10.1016/j.physa.2013.01.023
10.1038/nphys2819
10.1109/TASE.2015.2459068
10.1145/989459.989474
10.1038/ncomms10850
10.1038/s41598-018-25363-2
10.1038/srep22834
10.1016/j.ssci.2009.02.002
10.1103/physreve.94.022316
10.1103/physrevlett.85.4626
10.1002/rsa.3240060204
10.1016/S0246-0203(97)80103-3
10.1214/aoap/1050689601
10.1038/srep41729
10.1109/TIFS.2011.2165947
10.1088/1751-8113/49/19/195101
10.1109/TNET.2019.2911126
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3093035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 16
ExternalDocumentID 10_1109_TASE_2021_3093035
9481167
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CMMI-1617148
– fundername: Harold and Inge Marcus Career Professorship
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-3ed062a911e5b50095cd6ced44d6a7863bc53cbc418d5fb7c63c7e7067c0bd583
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Sun Jun 29 16:48:17 EDT 2025
Tue Jul 01 02:56:31 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Aug 27 02:40:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-3ed062a911e5b50095cd6ced44d6a7863bc53cbc418d5fb7c63c7e7067c0bd583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5997-6823
0000-0002-9226-9992
PQID 2685163087
PQPubID 27623
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TASE_2021_3093035
proquest_journals_2685163087
crossref_primary_10_1109_TASE_2021_3093035
ieee_primary_9481167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
Kong (ref49) 2009
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
Bunde (ref8) 2012
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Newman (ref7) 2010
ref60
ref62
ref61
References_xml – ident: ref62
  doi: 10.1103/physrevresearch.1.013009
– ident: ref27
  doi: 10.1109/TIFS.2011.2165946
– ident: ref48
  doi: 10.1109/INFOCOM.2008.11
– ident: ref53
  doi: 10.1109/COMSNETS.2012.6151313
– ident: ref9
  doi: 10.1103/physreve.61.5678
– ident: ref52
  doi: 10.1214/17-aap1357
– ident: ref42
  doi: 10.1137/0109045
– ident: ref44
  doi: 10.1109/TIT.2011.2173726
– ident: ref13
  doi: 10.1103/physrevlett.86.3682
– ident: ref46
  doi: 10.1002/(sici)1098-2418(199610)9:3<295::aid-rsa3>3.0.co;2-s
– ident: ref10
  doi: 10.1103/physrevx.4.041020
– ident: ref6
  doi: 10.1093/bioinformatics/btq078
– ident: ref33
  doi: 10.1109/TSP.2016.2552499
– ident: ref57
  doi: 10.1103/physreve.75.066110
– ident: ref11
  doi: 10.1088/1478-3975/aac194
– ident: ref34
  doi: 10.1109/TNET.2019.2892709
– ident: ref19
  doi: 10.1063/1.2820231
– ident: ref26
  doi: 10.1109/TMC.2007.1041
– ident: ref15
  doi: 10.1109/TPDS.2008.146
– ident: ref25
  doi: 10.1109/TIT.2006.890791
– ident: ref14
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref50
  doi: 10.1103/physreve.89.032807
– ident: ref41
  doi: 10.1016/j.ress.2015.05.021
– ident: ref23
  doi: 10.1109/JSAC.2009.090902
– volume-title: Networks
  year: 2010
  ident: ref7
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– start-page: 1
  year: 2009
  ident: ref49
  article-title: Connectivity, percolation, and information dissemination in large-scale wireless networks with dynamic links
– ident: ref56
  doi: 10.1103/physreve.64.016706
– ident: ref31
  doi: 10.1109/TWC.2010.07.060438
– ident: ref3
  doi: 10.1038/s41598-017-14763-5
– ident: ref21
  doi: 10.1016/S0304-4149(97)00044-6
– ident: ref4
  doi: 10.1371/journal.pcbi.1000968
– ident: ref24
  doi: 10.1109/TNET.2005.845546
– ident: ref55
  doi: 10.1007/978-3-0346-0030-9_5
– ident: ref47
  doi: 10.1007/s10955-004-8826-0
– ident: ref45
  doi: 10.2307/1427621
– ident: ref29
  doi: 10.1109/JSAC.2013.130920
– ident: ref40
  doi: 10.1088/1742-5468/aa8c36
– ident: ref17
  doi: 10.1109/MAHSS.2004.1392188
– ident: ref5
  doi: 10.1080/24725579.2020.1741738
– ident: ref18
  doi: 10.1177/1550147718810692
– ident: ref59
  doi: 10.1038/30918
– ident: ref2
  doi: 10.1103/physreve.93.052301
– ident: ref16
  doi: 10.1002/adfm.201700845
– ident: ref32
  doi: 10.1109/TWC.2010.07.071283
– ident: ref61
  doi: 10.1016/j.physa.2013.01.023
– ident: ref35
  doi: 10.1038/nphys2819
– ident: ref1
  doi: 10.1109/TASE.2015.2459068
– ident: ref22
  doi: 10.1145/989459.989474
– ident: ref37
  doi: 10.1038/ncomms10850
– ident: ref54
  doi: 10.1038/s41598-018-25363-2
– ident: ref38
  doi: 10.1038/srep22834
– ident: ref60
  doi: 10.1016/j.ssci.2009.02.002
– ident: ref51
  doi: 10.1103/physreve.94.022316
– ident: ref12
  doi: 10.1103/physrevlett.85.4626
– ident: ref58
  doi: 10.1002/rsa.3240060204
– volume-title: Fractals and Disordered Systems
  year: 2012
  ident: ref8
– ident: ref20
  doi: 10.1016/S0246-0203(97)80103-3
– ident: ref43
  doi: 10.1214/aoap/1050689601
– ident: ref36
  doi: 10.1038/srep41729
– ident: ref28
  doi: 10.1109/TIFS.2011.2165947
– ident: ref39
  doi: 10.1088/1751-8113/49/19/195101
– ident: ref30
  doi: 10.1109/TNET.2019.2911126
SSID ssj0024890
Score 2.3255835
Snippet Most real-world networks are time-varying, and many are subject to the stochastic functioning of their nodes and edges. Examples can be seen in the human brain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Availability
Combinatorial analysis
Computation
Computational modeling
Connectivity
Electric power grids
Erbium
Failure prevention
Fault tolerance
Fault tolerant systems
Internet of Things
Markov analysis
Markov chain
Markov chains
Markov processes
Mean time to failure
Measurement
Network design
Network reliability
Network topologies
Nodes
Percolation theory
Phase transitions
random graph
Recovery
Reliability engineering
Seizures
Size effects
stochastic network (SN)
time-varying network
Title Markov Chains for Fault-Tolerance Modeling of Stochastic Networks
URI https://ieeexplore.ieee.org/document/9481167
https://www.proquest.com/docview/2685163087
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4I8pLHpgQKXES28lYIaoKqSwUiS3yUyCqBtGUgV-Pz0kLAoTYMtiS5XN8d777vg_gzBqWGKVEJLh0WGZkkXQFjYSRSlLmnAxwsdEtH95nNw_sYQUullgYa21oPrM9_Ay1fFPpOT6VXSKzCOViFVZ94tZgtT559fLwnoIRQcQKxtoKJo2Ly3H_7tpnggntYdkvDspunz4oiKr8uImDexlswmixsKar5Lk3r1VPv3_jbPzvyrdgo40zSb85GNuwYqc7sP6FfXAX-ojTqd7I1aN8ms6Ij17JQM4ndTSuJhb1NixBpTTEq5PKkbu60o8SaZ3JbdM7PtuD-8H1-GoYtYoKkfZuvY5Sa2KeSH_BWaYYhlfacG1NlhkuRc5TpVmqlc5obphTQvNUCyu8R9OxMixP96Ezrab2AIi0ymcqObUiU5lMc0W5o9Ixl7gi47HpQrzY41K3dOOoejEpQ9oRFyWapUSzlK1ZunC-nPLScG38NXgXt3k5sN3hLhwvDFm2f-OsTLiPKzlyHx7-PusI1hKENYQ23GPo1K9ze-KDjVqdhlP2AWoo0Dg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMAednlqy7LgAydESpzEdnKsEFV5tBeKxC3yUyCqZrVNOfDr8ThpWS0rtLccbMmacTxjz3zfB3BiDUuMUiISXDosM7JIuoJGwkglKXNOBrjYcMQH99n1A3tYgbMlFsZaG5rPbBc_Qy3fVHqOT2XnyCxCuViFdR_3GW3QWu_Menl4UcGcIGIFY20Nk8bF-bh3d-nvggntYuEvDtpu71EoyKp8OItDgOl_g-FiaU1fyXN3Xquufv2LtfF_174FX9tMk_SarbENK3a6A1_-4B_chR4idaoXcvEon6Yz4vNX0pfzSR2Nq4lFxQ1LUCsNEeukcuSurvSjRGJnMmq6x2d7cN-_HF8MolZTIdI-sNdRak3ME-mPOMsUwwRLG66tyTLDpch5qjRLtdIZzQ1zSmieamGFj2k6Vobl6T6sTaup_Q5EWuXvKjm1IlOZTHNFuaPSMZe4IuOx6UC8sHGpW8Jx1L2YlOHiERcluqVEt5StWzpwupzyq2Hb-GzwLpp5ObC1cAcOF44s2_9xVibcZ5Yc2Q8P_j3rGDYG4-FteXs1uvkBmwmCHEJT7iGs1b_n9qdPPWp1FHbcG3Qn04E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Markov+Chains+for+Fault-Tolerance+Modeling+of+Stochastic+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Meyers%2C+Adam&rft.au=Yang%2C+Hui&rft.date=2022-07-01&rft.pub=IEEE&rft.issn=1545-5955&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTASE.2021.3093035&rft.externalDocID=9481167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon