Support Vector Regression-Based Behavioral Modeling Technique for RF Power Transistors
A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based o...
Saved in:
Published in | IEEE microwave and wireless components letters Vol. 28; no. 5; pp. 428 - 430 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1531-1309 1558-1764 |
DOI | 10.1109/LMWC.2018.2819427 |
Cover
Loading…
Abstract | A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based on artificial neural network (ANN) techniques. The proposed technique can overcome the well-known overfitting issue often associated with ANNs. In this letter, the basic theory of the proposed SVR modeling method is provided, along with details on model implementation in the context of RF transistor devices. Both simulation and experimental test examples for a 10-W gallium nitride (GaN) transistor are provided, revealing that the new modeling methodology provides a more efficient and robust prediction throughout the Smith chart when compared with ANNs, with the latest results showing excellent model fidelity at both the fundamental and at the second harmonic. |
---|---|
AbstractList | A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based on artificial neural network (ANN) techniques. The proposed technique can overcome the well-known overfitting issue often associated with ANNs. In this letter, the basic theory of the proposed SVR modeling method is provided, along with details on model implementation in the context of RF transistor devices. Both simulation and experimental test examples for a 10-W gallium nitride (GaN) transistor are provided, revealing that the new modeling methodology provides a more efficient and robust prediction throughout the Smith chart when compared with ANNs, with the latest results showing excellent model fidelity at both the fundamental and at the second harmonic. |
Author | Cai, Jialin Yu, Chao King, Justin Sun, Lingling Liu, Jun |
Author_xml | – sequence: 1 givenname: Jialin orcidid: 0000-0001-8621-1105 surname: Cai fullname: Cai, Jialin email: caijialin@hdu.edu.cn organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Justin orcidid: 0000-0002-5144-1821 surname: King fullname: King, Justin organization: RF and Microwave Research Group, University College Dublin, Ireland – sequence: 3 givenname: Chao orcidid: 0000-0002-3710-460X surname: Yu fullname: Yu, Chao organization: State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Jun orcidid: 0000-0002-8627-5085 surname: Liu fullname: Liu, Jun organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China – sequence: 5 givenname: Lingling surname: Sun fullname: Sun, Lingling organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China |
BookMark | eNp9kMFOAjEURRuDiYB-gHHTHxjsazsz7VKIqAlEo4jLSem8gZpxiu2g8e9lgnHhwtW7m3Nv3hmQXuMbJOQc2AiA6cvZ_GUy4gzUiCvQkudHpA9pqhLIM9nrsoAEBNMnZBDjK2MglYQ-WT7ttlsfWrpE2_pAH3EdMEbnm2RsIpZ0jBvz4XwwNZ37EmvXrOkC7aZx7zukVYdM6YP_xEAXwTTRxX1NPCXHlakjnv3cIXmeXi8mt8ns_uZucjVLLNeiTURWSsFXLC9LDariHFbc5owptGCsWUngRgijVMktKq3TVGCaZzrL00pmGYghgUOvDT7GgFWxDe7NhK8CWNGJKToxRSem-BGzZ_I_jHWtafcvt8G4-l_y4kA6RPxdUiKFTDDxDS56ctE |
CODEN | IMWCBJ |
CitedBy_id | crossref_primary_10_48084_etasr_4476 crossref_primary_10_1109_LMWT_2022_3226450 crossref_primary_10_1002_jnm_70013 crossref_primary_10_1109_TAP_2021_3083742 crossref_primary_10_1002_jnm_3259 crossref_primary_10_1016_j_knosys_2022_109388 crossref_primary_10_1038_s41598_022_04810_1 crossref_primary_10_1108_EC_04_2019_0155 crossref_primary_10_1038_s41598_025_87465_y crossref_primary_10_1109_JEDS_2023_3324084 crossref_primary_10_1002_mop_33295 crossref_primary_10_1017_S1759078720001385 crossref_primary_10_1109_ACCESS_2020_3006708 crossref_primary_10_3390_app13148144 crossref_primary_10_1109_ACCESS_2023_3324733 crossref_primary_10_1109_TAP_2021_3074632 crossref_primary_10_1109_TCAD_2022_3174165 crossref_primary_10_1016_j_aeue_2020_153419 crossref_primary_10_1016_j_knosys_2021_107698 crossref_primary_10_1038_s41598_023_45890_x crossref_primary_10_1109_TAP_2023_3234167 crossref_primary_10_1038_s41598_022_17661_7 crossref_primary_10_1038_s41598_023_27532_4 crossref_primary_10_3390_en15020403 crossref_primary_10_1038_s41598_023_34414_2 crossref_primary_10_3390_app122311923 crossref_primary_10_1109_TAP_2021_3083792 crossref_primary_10_1109_TMTT_2021_3132892 crossref_primary_10_1109_LMWC_2022_3149751 crossref_primary_10_1038_s41598_024_70246_4 crossref_primary_10_1080_0305215X_2019_1630399 crossref_primary_10_3390_electronics8030266 crossref_primary_10_1109_TAP_2023_3248446 crossref_primary_10_1002_jnm_3177 crossref_primary_10_1016_j_knosys_2023_110453 crossref_primary_10_1002_mmce_22268 crossref_primary_10_1049_iet_map_2020_0101 crossref_primary_10_1109_COMST_2022_3199884 crossref_primary_10_3390_s21072557 crossref_primary_10_1109_TAP_2021_3138487 crossref_primary_10_3390_electronics9101621 crossref_primary_10_1038_s41598_024_73323_w crossref_primary_10_1016_j_knosys_2023_110557 crossref_primary_10_1109_TAP_2021_3111285 crossref_primary_10_1016_j_aeue_2020_153224 crossref_primary_10_1109_JEDS_2024_3461169 crossref_primary_10_1109_JEDS_2022_3224433 crossref_primary_10_1109_ACCESS_2021_3105811 crossref_primary_10_1109_ACCESS_2020_3033788 crossref_primary_10_3390_mi14091673 crossref_primary_10_1002_mmce_22112 crossref_primary_10_1109_ACCESS_2020_3013616 crossref_primary_10_1016_j_knosys_2023_111296 crossref_primary_10_3390_mi15010046 crossref_primary_10_1109_ACCESS_2020_3036600 crossref_primary_10_1109_TVT_2020_2981959 crossref_primary_10_1109_JEDS_2020_3035628 crossref_primary_10_1109_ACCESS_2023_3258691 crossref_primary_10_1109_TAP_2023_3312582 crossref_primary_10_3390_electronics10131536 crossref_primary_10_1109_LSENS_2023_3307064 crossref_primary_10_1002_jnm_2930 crossref_primary_10_1155_2024_6247693 crossref_primary_10_1038_s41598_024_59512_7 crossref_primary_10_3390_electronics11244094 crossref_primary_10_1038_s41598_022_20495_y crossref_primary_10_1109_ACCESS_2020_3028314 crossref_primary_10_1038_s41598_022_20728_0 crossref_primary_10_1109_ACCESS_2023_3235912 crossref_primary_10_1109_TCAD_2023_3327095 crossref_primary_10_1002_jnm_3195 crossref_primary_10_1109_TMTT_2018_2884414 |
Cites_doi | 10.1109/TMAG.2007.892480 10.1017/CBO9781139042970.006 10.1007/BF00994018 10.1109/INMMIC.2015.7330376 10.1109/TMTT.2004.823583 10.1109/ARFTG.2014.6899526 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LMWC.2018.2819427 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-1764 |
EndPage | 430 |
ExternalDocumentID | 10_1109_LMWC_2018_2819427 8351630 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61701147; 61601117 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c293t-36d432b07dd918f221b2c7008ec1acab412a33a88d2ce899553e5769675f46613 |
IEDL.DBID | RIE |
ISSN | 1531-1309 |
IngestDate | Tue Jul 01 01:00:39 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Wed Aug 27 02:50:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-36d432b07dd918f221b2c7008ec1acab412a33a88d2ce899553e5769675f46613 |
ORCID | 0000-0002-3710-460X 0000-0001-8621-1105 0000-0002-5144-1821 0000-0002-8627-5085 |
PageCount | 3 |
ParticipantIDs | crossref_primary_10_1109_LMWC_2018_2819427 crossref_citationtrail_10_1109_LMWC_2018_2819427 ieee_primary_8351630 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE microwave and wireless components letters |
PublicationTitleAbbrev | LMWC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref8 koziel (ref7) 2015 ref4 ref3 ref6 ref5 ref2 cripps (ref1) 2006 |
References_xml | – year: 2006 ident: ref1 publication-title: RF Power Amplifiers for Wireless Communications – ident: ref5 doi: 10.1109/TMAG.2007.892480 – start-page: 1 year: 2015 ident: ref7 article-title: Support-vector-regression-based output space-mapping for microwave device modeling publication-title: IEEE MTT-S Int Microw Symp Dig – ident: ref2 doi: 10.1017/CBO9781139042970.006 – ident: ref6 doi: 10.1007/BF00994018 – ident: ref8 doi: 10.1109/INMMIC.2015.7330376 – ident: ref4 doi: 10.1109/TMTT.2004.823583 – ident: ref3 doi: 10.1109/ARFTG.2014.6899526 |
SSID | ssj0014841 |
Score | 2.5282898 |
Snippet | A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique,... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 428 |
SubjectTerms | Computational modeling Harmonic analysis Integrated circuit modeling Load modeling Machine learning nonlinear behavioral model Predictive models Radio frequency support vector regression (SVR) Transistors |
Title | Support Vector Regression-Based Behavioral Modeling Technique for RF Power Transistors |
URI | https://ieeexplore.ieee.org/document/8351630 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qQdCDj1axvtiDJ3HbJLt5HW2xFLEi0tbeQvYRD0oqNr34653ZpKGIiLcQdmDJLJlvdma-j5ArJ0gj7WvOMhk6TPjcZxJwP8t0HGQA2JUMcRp5_BiMpuJ-7s8b5KaehTHG2OYz08VHW8vXC7XCq7IeoAWAD5Cgb0HiVs5q1RUDEYmKG9Vl8F-Oqwqm68S9h_HLAJu4oi5WjQQKyGzEoA1RFRtThvtkvN5N2Ury1l0Vsqu-fhA1_ne7B2SvApf0tjwNh6Rh8hbZ3aAcbJFt2_Kplm0yQ0FPAN90Zi_u6bN5LXtic9aH0KZpv57gp6iYhnPrdLKmfKUZmgzpE6qsURvxLOHI8ohMh3eTwYhVKgtMQagvGA-04J50Qq1jN8o8z5WeCgEaGOWmKpXC9VLO0yjSnjKQnfk-N5CkxJBpZAKiOz8mzXyRmxNCM8AjQqcel2EgpHZloDxUrNKZpWnjHeKsv3uiKgpyVMJ4T2wq4sQJuipBVyWVqzrkujb5KPk3_lrcRi_UCysHnP7--ozsoHHZvXhOmsXnylwAwijkpT1a3xd9y-Y |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5EEfXgoyq-3YMncWuS3byOWixVWxFpq7eQfcSDUkXbi7_emU0aioh4C2E3LJll55udme8DOPGiPDGhEbxQscdlKEKuEPfzwqRRgYBdq5i6kXt3UWcgb57Cpzk4q3thrLWu-Mw26dHl8s2bntBV2TmiBYQPGKAvoN8P_bJbq84ZyERW7Kg-x5M5rXKYvpeed3uPLSrjSpqUN5IkITPjhWZkVZxXaa9Bb7qespjkpTkZq6b--kHV-N8Fr8NqBS_ZRbkfNmDOjhqwMkM62IBFV_SpPzdhSJKeCL_Z0F3dswf7XFbFjvglOjfDLusefkaaadS5zvpT0ldW0JQ2uyedNeZ8nqMc-dyCQfuq3-rwSmeBa3T2Yy4iI0WgvNiY1E-KIPBVoGMEB1b7uc6V9INciDxJTKAtxmdhKCyGKSnGGoVE_y62YX70NrI7wApEJNLkgVBxJJXxVaQD0qwyhSNqE7vgTf97pisSctLCeM1cMOKlGZkqI1Nllal24bSe8l4ycPw1eJOsUA-sDLD3--tjWOr0e92se313uw_L9KGylvEA5scfE3uIeGOsjtw2-wbn0s8v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+Vector+Regression-Based+Behavioral+Modeling+Technique+for+RF+Power+Transistors&rft.jtitle=IEEE+microwave+and+wireless+components+letters&rft.au=Cai%2C+Jialin&rft.au=King%2C+Justin&rft.au=Yu%2C+Chao&rft.au=Liu%2C+Jun&rft.date=2018-05-01&rft.issn=1531-1309&rft.eissn=1558-1764&rft.volume=28&rft.issue=5&rft.spage=428&rft.epage=430&rft_id=info:doi/10.1109%2FLMWC.2018.2819427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LMWC_2018_2819427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-1309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-1309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-1309&client=summon |