Support Vector Regression-Based Behavioral Modeling Technique for RF Power Transistors

A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based o...

Full description

Saved in:
Bibliographic Details
Published inIEEE microwave and wireless components letters Vol. 28; no. 5; pp. 428 - 430
Main Authors Cai, Jialin, King, Justin, Yu, Chao, Liu, Jun, Sun, Lingling
Format Journal Article
LanguageEnglish
Published IEEE 01.05.2018
Subjects
Online AccessGet full text
ISSN1531-1309
1558-1764
DOI10.1109/LMWC.2018.2819427

Cover

Loading…
Abstract A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based on artificial neural network (ANN) techniques. The proposed technique can overcome the well-known overfitting issue often associated with ANNs. In this letter, the basic theory of the proposed SVR modeling method is provided, along with details on model implementation in the context of RF transistor devices. Both simulation and experimental test examples for a 10-W gallium nitride (GaN) transistor are provided, revealing that the new modeling methodology provides a more efficient and robust prediction throughout the Smith chart when compared with ANNs, with the latest results showing excellent model fidelity at both the fundamental and at the second harmonic.
AbstractList A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique, the SVR method provides a more effective way to determine the optimal model when compared with the more traditional modeling approaches based on artificial neural network (ANN) techniques. The proposed technique can overcome the well-known overfitting issue often associated with ANNs. In this letter, the basic theory of the proposed SVR modeling method is provided, along with details on model implementation in the context of RF transistor devices. Both simulation and experimental test examples for a 10-W gallium nitride (GaN) transistor are provided, revealing that the new modeling methodology provides a more efficient and robust prediction throughout the Smith chart when compared with ANNs, with the latest results showing excellent model fidelity at both the fundamental and at the second harmonic.
Author Cai, Jialin
Yu, Chao
King, Justin
Sun, Lingling
Liu, Jun
Author_xml – sequence: 1
  givenname: Jialin
  orcidid: 0000-0001-8621-1105
  surname: Cai
  fullname: Cai, Jialin
  email: caijialin@hdu.edu.cn
  organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Justin
  orcidid: 0000-0002-5144-1821
  surname: King
  fullname: King, Justin
  organization: RF and Microwave Research Group, University College Dublin, Ireland
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-3710-460X
  surname: Yu
  fullname: Yu, Chao
  organization: State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-8627-5085
  surname: Liu
  fullname: Liu, Jun
  organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
– sequence: 5
  givenname: Lingling
  surname: Sun
  fullname: Sun, Lingling
  organization: Key Laboratory of RF Circuit and System, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, China
BookMark eNp9kMFOAjEURRuDiYB-gHHTHxjsazsz7VKIqAlEo4jLSem8gZpxiu2g8e9lgnHhwtW7m3Nv3hmQXuMbJOQc2AiA6cvZ_GUy4gzUiCvQkudHpA9pqhLIM9nrsoAEBNMnZBDjK2MglYQ-WT7ttlsfWrpE2_pAH3EdMEbnm2RsIpZ0jBvz4XwwNZ37EmvXrOkC7aZx7zukVYdM6YP_xEAXwTTRxX1NPCXHlakjnv3cIXmeXi8mt8ns_uZucjVLLNeiTURWSsFXLC9LDariHFbc5owptGCsWUngRgijVMktKq3TVGCaZzrL00pmGYghgUOvDT7GgFWxDe7NhK8CWNGJKToxRSem-BGzZ_I_jHWtafcvt8G4-l_y4kA6RPxdUiKFTDDxDS56ctE
CODEN IMWCBJ
CitedBy_id crossref_primary_10_48084_etasr_4476
crossref_primary_10_1109_LMWT_2022_3226450
crossref_primary_10_1002_jnm_70013
crossref_primary_10_1109_TAP_2021_3083742
crossref_primary_10_1002_jnm_3259
crossref_primary_10_1016_j_knosys_2022_109388
crossref_primary_10_1038_s41598_022_04810_1
crossref_primary_10_1108_EC_04_2019_0155
crossref_primary_10_1038_s41598_025_87465_y
crossref_primary_10_1109_JEDS_2023_3324084
crossref_primary_10_1002_mop_33295
crossref_primary_10_1017_S1759078720001385
crossref_primary_10_1109_ACCESS_2020_3006708
crossref_primary_10_3390_app13148144
crossref_primary_10_1109_ACCESS_2023_3324733
crossref_primary_10_1109_TAP_2021_3074632
crossref_primary_10_1109_TCAD_2022_3174165
crossref_primary_10_1016_j_aeue_2020_153419
crossref_primary_10_1016_j_knosys_2021_107698
crossref_primary_10_1038_s41598_023_45890_x
crossref_primary_10_1109_TAP_2023_3234167
crossref_primary_10_1038_s41598_022_17661_7
crossref_primary_10_1038_s41598_023_27532_4
crossref_primary_10_3390_en15020403
crossref_primary_10_1038_s41598_023_34414_2
crossref_primary_10_3390_app122311923
crossref_primary_10_1109_TAP_2021_3083792
crossref_primary_10_1109_TMTT_2021_3132892
crossref_primary_10_1109_LMWC_2022_3149751
crossref_primary_10_1038_s41598_024_70246_4
crossref_primary_10_1080_0305215X_2019_1630399
crossref_primary_10_3390_electronics8030266
crossref_primary_10_1109_TAP_2023_3248446
crossref_primary_10_1002_jnm_3177
crossref_primary_10_1016_j_knosys_2023_110453
crossref_primary_10_1002_mmce_22268
crossref_primary_10_1049_iet_map_2020_0101
crossref_primary_10_1109_COMST_2022_3199884
crossref_primary_10_3390_s21072557
crossref_primary_10_1109_TAP_2021_3138487
crossref_primary_10_3390_electronics9101621
crossref_primary_10_1038_s41598_024_73323_w
crossref_primary_10_1016_j_knosys_2023_110557
crossref_primary_10_1109_TAP_2021_3111285
crossref_primary_10_1016_j_aeue_2020_153224
crossref_primary_10_1109_JEDS_2024_3461169
crossref_primary_10_1109_JEDS_2022_3224433
crossref_primary_10_1109_ACCESS_2021_3105811
crossref_primary_10_1109_ACCESS_2020_3033788
crossref_primary_10_3390_mi14091673
crossref_primary_10_1002_mmce_22112
crossref_primary_10_1109_ACCESS_2020_3013616
crossref_primary_10_1016_j_knosys_2023_111296
crossref_primary_10_3390_mi15010046
crossref_primary_10_1109_ACCESS_2020_3036600
crossref_primary_10_1109_TVT_2020_2981959
crossref_primary_10_1109_JEDS_2020_3035628
crossref_primary_10_1109_ACCESS_2023_3258691
crossref_primary_10_1109_TAP_2023_3312582
crossref_primary_10_3390_electronics10131536
crossref_primary_10_1109_LSENS_2023_3307064
crossref_primary_10_1002_jnm_2930
crossref_primary_10_1155_2024_6247693
crossref_primary_10_1038_s41598_024_59512_7
crossref_primary_10_3390_electronics11244094
crossref_primary_10_1038_s41598_022_20495_y
crossref_primary_10_1109_ACCESS_2020_3028314
crossref_primary_10_1038_s41598_022_20728_0
crossref_primary_10_1109_ACCESS_2023_3235912
crossref_primary_10_1109_TCAD_2023_3327095
crossref_primary_10_1002_jnm_3195
crossref_primary_10_1109_TMTT_2018_2884414
Cites_doi 10.1109/TMAG.2007.892480
10.1017/CBO9781139042970.006
10.1007/BF00994018
10.1109/INMMIC.2015.7330376
10.1109/TMTT.2004.823583
10.1109/ARFTG.2014.6899526
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LMWC.2018.2819427
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-1764
EndPage 430
ExternalDocumentID 10_1109_LMWC_2018_2819427
8351630
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61701147; 61601117
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFFNX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c293t-36d432b07dd918f221b2c7008ec1acab412a33a88d2ce899553e5769675f46613
IEDL.DBID RIE
ISSN 1531-1309
IngestDate Tue Jul 01 01:00:39 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Wed Aug 27 02:50:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-36d432b07dd918f221b2c7008ec1acab412a33a88d2ce899553e5769675f46613
ORCID 0000-0002-3710-460X
0000-0001-8621-1105
0000-0002-5144-1821
0000-0002-8627-5085
PageCount 3
ParticipantIDs crossref_primary_10_1109_LMWC_2018_2819427
crossref_citationtrail_10_1109_LMWC_2018_2819427
ieee_primary_8351630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE microwave and wireless components letters
PublicationTitleAbbrev LMWC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref8
koziel (ref7) 2015
ref4
ref3
ref6
ref5
ref2
cripps (ref1) 2006
References_xml – year: 2006
  ident: ref1
  publication-title: RF Power Amplifiers for Wireless Communications
– ident: ref5
  doi: 10.1109/TMAG.2007.892480
– start-page: 1
  year: 2015
  ident: ref7
  article-title: Support-vector-regression-based output space-mapping for microwave device modeling
  publication-title: IEEE MTT-S Int Microw Symp Dig
– ident: ref2
  doi: 10.1017/CBO9781139042970.006
– ident: ref6
  doi: 10.1007/BF00994018
– ident: ref8
  doi: 10.1109/INMMIC.2015.7330376
– ident: ref4
  doi: 10.1109/TMTT.2004.823583
– ident: ref3
  doi: 10.1109/ARFTG.2014.6899526
SSID ssj0014841
Score 2.5282898
Snippet A nonlinear behavioral modeling technique, based on support vector regression (SVR), is presented in this letter. As an advanced machine-learning technique,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 428
SubjectTerms Computational modeling
Harmonic analysis
Integrated circuit modeling
Load modeling
Machine learning
nonlinear behavioral model
Predictive models
Radio frequency
support vector regression (SVR)
Transistors
Title Support Vector Regression-Based Behavioral Modeling Technique for RF Power Transistors
URI https://ieeexplore.ieee.org/document/8351630
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qQdCDj1axvtiDJ3HbJLt5HW2xFLEi0tbeQvYRD0oqNr34653ZpKGIiLcQdmDJLJlvdma-j5ArJ0gj7WvOMhk6TPjcZxJwP8t0HGQA2JUMcRp5_BiMpuJ-7s8b5KaehTHG2OYz08VHW8vXC7XCq7IeoAWAD5Cgb0HiVs5q1RUDEYmKG9Vl8F-Oqwqm68S9h_HLAJu4oi5WjQQKyGzEoA1RFRtThvtkvN5N2Ury1l0Vsqu-fhA1_ne7B2SvApf0tjwNh6Rh8hbZ3aAcbJFt2_Kplm0yQ0FPAN90Zi_u6bN5LXtic9aH0KZpv57gp6iYhnPrdLKmfKUZmgzpE6qsURvxLOHI8ohMh3eTwYhVKgtMQagvGA-04J50Qq1jN8o8z5WeCgEaGOWmKpXC9VLO0yjSnjKQnfk-N5CkxJBpZAKiOz8mzXyRmxNCM8AjQqcel2EgpHZloDxUrNKZpWnjHeKsv3uiKgpyVMJ4T2wq4sQJuipBVyWVqzrkujb5KPk3_lrcRi_UCysHnP7--ozsoHHZvXhOmsXnylwAwijkpT1a3xd9y-Y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5EEfXgoyq-3YMncWuS3byOWixVWxFpq7eQfcSDUkXbi7_emU0aioh4C2E3LJll55udme8DOPGiPDGhEbxQscdlKEKuEPfzwqRRgYBdq5i6kXt3UWcgb57Cpzk4q3thrLWu-Mw26dHl8s2bntBV2TmiBYQPGKAvoN8P_bJbq84ZyERW7Kg-x5M5rXKYvpeed3uPLSrjSpqUN5IkITPjhWZkVZxXaa9Bb7qespjkpTkZq6b--kHV-N8Fr8NqBS_ZRbkfNmDOjhqwMkM62IBFV_SpPzdhSJKeCL_Z0F3dswf7XFbFjvglOjfDLusefkaaadS5zvpT0ldW0JQ2uyedNeZ8nqMc-dyCQfuq3-rwSmeBa3T2Yy4iI0WgvNiY1E-KIPBVoGMEB1b7uc6V9INciDxJTKAtxmdhKCyGKSnGGoVE_y62YX70NrI7wApEJNLkgVBxJJXxVaQD0qwyhSNqE7vgTf97pisSctLCeM1cMOKlGZkqI1Nllal24bSe8l4ycPw1eJOsUA-sDLD3--tjWOr0e92se313uw_L9KGylvEA5scfE3uIeGOsjtw2-wbn0s8v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+Vector+Regression-Based+Behavioral+Modeling+Technique+for+RF+Power+Transistors&rft.jtitle=IEEE+microwave+and+wireless+components+letters&rft.au=Cai%2C+Jialin&rft.au=King%2C+Justin&rft.au=Yu%2C+Chao&rft.au=Liu%2C+Jun&rft.date=2018-05-01&rft.issn=1531-1309&rft.eissn=1558-1764&rft.volume=28&rft.issue=5&rft.spage=428&rft.epage=430&rft_id=info:doi/10.1109%2FLMWC.2018.2819427&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LMWC_2018_2819427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-1309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-1309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-1309&client=summon