Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting
In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads....
Saved in:
Published in | IEEE transactions on sustainable energy Vol. 13; no. 1; pp. 159 - 169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads. Firstly, a prioritized experience replay automated reinforcement learning (PER-AutoRL) is designed to simplify the deployment of deep reinforcement learning (DRL)-based forecasting model in a customized manner, the single-step multi-period forecasting method based on PER-AutoRL is proposed for the first time to address the error accumulation issue suffered by existing multi-step forecasting methods, then the prediction values obtained by the proposed forecasting method are revised via the error distribution to improve the prediction accuracy; secondly, a scheduling model considering demand response is constructed to minimize the total microgrid operating costs, where the revised forecasting values are used as the dispatch basis, and a spinning reserve chance constraint is set according to the error distribution; finally, by transforming the original scheduling model into a readily solvable mixed integer linear programming via the sequence operation theory (SOT), the transformed model is solved by using CPLEX solver. The simulation results show that compared with the traditional scheduling model without forecasting, this approach manages to significantly reduce the system operating costs by improving the prediction accuracy. |
---|---|
AbstractList | In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads. Firstly, a prioritized experience replay automated reinforcement learning (PER-AutoRL) is designed to simplify the deployment of deep reinforcement learning (DRL)-based forecasting model in a customized manner, the single-step multi-period forecasting method based on PER-AutoRL is proposed for the first time to address the error accumulation issue suffered by existing multi-step forecasting methods, then the prediction values obtained by the proposed forecasting method are revised via the error distribution to improve the prediction accuracy; secondly, a scheduling model considering demand response is constructed to minimize the total microgrid operating costs, where the revised forecasting values are used as the dispatch basis, and a spinning reserve chance constraint is set according to the error distribution; finally, by transforming the original scheduling model into a readily solvable mixed integer linear programming via the sequence operation theory (SOT), the transformed model is solved by using CPLEX solver. The simulation results show that compared with the traditional scheduling model without forecasting, this approach manages to significantly reduce the system operating costs by improving the prediction accuracy. |
Author | Yang, Zhen Li, Yang Wang, Ruinong |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-6515-4567 surname: Li fullname: Li, Yang email: liyang@neepu.edu.cn organization: School of Electrical Engineering, Northeast Electric Power University, Jilin, China – sequence: 2 givenname: Ruinong orcidid: 0000-0002-3649-9275 surname: Wang fullname: Wang, Ruinong email: 624895223@qq.com organization: School of Electrical Engineering, Northeast Electric Power University, Jilin, China – sequence: 3 givenname: Zhen surname: Yang fullname: Yang, Zhen email: 1678084931@qq.com organization: State Grid Beijing Electric Power Company, Xicheng District, Beijing, China |
BookMark | eNp9kMtOwzAQRS0EEq9-AGITiXWK7bGTeAlVeUhFINquI8eZgFEaF9tZ8PcktGLBAm9s6d7j0ZxTcti5Dgm5YHTKGFXXq-VqPuWUsykwKiVXB-SEKaFSoJAf_r65OiaTED7ocAAgA3pC3PM22o1uk6V5x7pvbfeWuCZ5DK7VEevkyRrv3rytQ7IOY3jTR7f5iV7Rdo3zBjfYxWSB2ndDIb3VYeT6Ntr0Bb11dXLnPBod4hCfk6NGtwEn-_uMrO_mq9lDuni-f5zdLFLDFcQURKOFymgBhRCS11IYUUle5DU0jWFagm6EMjoXFeYVZxnNWYY6ryouC6kAzsjV7t-td589hlh-uN53w8iSZ4OzAigbW2zXGpYMwWNTbv1gw3-VjJaj2nJUW45qy73agcn_MMZGHa3rote2_Ze83JEWEX8nKckyBQK-AfMtiMY |
CODEN | ITSEAJ |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_130296 crossref_primary_10_1049_rpg2_12921 crossref_primary_10_1049_rpg2_12763 crossref_primary_10_1109_ACCESS_2024_3406338 crossref_primary_10_1016_j_est_2024_111506 crossref_primary_10_1016_j_egyr_2022_07_158 crossref_primary_10_1007_s00202_024_02759_0 crossref_primary_10_1109_JRFID_2022_3205727 crossref_primary_10_3390_s22082822 crossref_primary_10_1016_j_epsr_2024_111014 crossref_primary_10_1002_ese3_1489 crossref_primary_10_1142_S0218126624502724 crossref_primary_10_1007_s12530_023_09522_z crossref_primary_10_1016_j_egyr_2024_07_030 crossref_primary_10_3390_su152014865 crossref_primary_10_1371_journal_pone_0319257 crossref_primary_10_48084_etasr_5970 crossref_primary_10_1109_JPROC_2023_3303358 crossref_primary_10_1016_j_epsr_2022_108351 crossref_primary_10_1038_s41598_024_68339_1 crossref_primary_10_3390_en15217825 crossref_primary_10_1007_s00202_024_02586_3 crossref_primary_10_1007_s12530_022_09440_6 crossref_primary_10_1049_rpg2_12816 crossref_primary_10_1016_j_ijepes_2022_108608 crossref_primary_10_1016_j_apenergy_2024_124831 crossref_primary_10_1049_rpg2_13192 crossref_primary_10_3390_en16104025 crossref_primary_10_3934_mbe_2022540 crossref_primary_10_1016_j_egyr_2024_11_027 crossref_primary_10_3390_modelling5030055 crossref_primary_10_12688_digitaltwin_17632_2 crossref_primary_10_1016_j_eswa_2023_120474 crossref_primary_10_12688_digitaltwin_17632_1 crossref_primary_10_1016_j_energy_2023_129847 crossref_primary_10_1049_rpg2_12425 crossref_primary_10_1109_JAS_2023_123321 crossref_primary_10_3390_app13169305 crossref_primary_10_3390_electronics12244909 crossref_primary_10_1049_tje2_12128 crossref_primary_10_3390_smartcities7060125 crossref_primary_10_1007_s00202_024_02758_1 crossref_primary_10_1109_ACCESS_2022_3215532 crossref_primary_10_1016_j_egyr_2023_01_079 crossref_primary_10_1007_s00202_024_02857_z crossref_primary_10_1109_OAJPE_2023_3234468 crossref_primary_10_1016_j_egyr_2022_08_226 crossref_primary_10_1109_TICPS_2023_3335328 crossref_primary_10_3389_fenrg_2022_933904 crossref_primary_10_1016_j_apenergy_2024_123611 crossref_primary_10_1016_j_renene_2024_121624 crossref_primary_10_1007_s12530_023_09505_0 crossref_primary_10_1016_j_jclepro_2023_139944 crossref_primary_10_1016_j_energy_2025_135572 crossref_primary_10_1155_2022_4260543 crossref_primary_10_3389_fenrg_2022_891867 crossref_primary_10_1080_15567249_2023_2294869 crossref_primary_10_1016_j_rser_2023_114031 crossref_primary_10_1016_j_energy_2023_128103 crossref_primary_10_1109_TAI_2024_3428510 crossref_primary_10_1016_j_apenergy_2022_120540 crossref_primary_10_3390_su151612332 crossref_primary_10_1016_j_epsr_2024_111244 crossref_primary_10_1109_TAES_2023_3290547 crossref_primary_10_1016_j_egyr_2022_07_164 crossref_primary_10_1016_j_egyr_2022_08_199 crossref_primary_10_1016_j_energy_2023_128698 crossref_primary_10_1109_TSTE_2022_3148236 crossref_primary_10_1016_j_egyr_2022_09_030 crossref_primary_10_3390_jmse12122155 crossref_primary_10_1109_JIOT_2024_3396641 crossref_primary_10_1016_j_egyr_2022_01_175 crossref_primary_10_3390_su16177462 crossref_primary_10_1049_rpg2_12846 crossref_primary_10_1049_tje2_12387 crossref_primary_10_1155_2023_9351345 crossref_primary_10_1016_j_egyr_2021_09_001 crossref_primary_10_1016_j_egyr_2022_10_015 crossref_primary_10_1016_j_egyr_2022_12_149 crossref_primary_10_1155_2022_5350786 crossref_primary_10_1016_j_enconman_2024_118734 crossref_primary_10_1016_j_egyr_2022_10_099 crossref_primary_10_1016_j_epsr_2024_110360 crossref_primary_10_1016_j_cnsns_2023_107114 crossref_primary_10_1016_j_jclepro_2021_129840 crossref_primary_10_1016_j_apenergy_2022_119162 crossref_primary_10_3390_electronics12204304 crossref_primary_10_1080_15435075_2023_2281329 crossref_primary_10_1016_j_egyr_2024_11_057 crossref_primary_10_1016_j_segan_2024_101351 crossref_primary_10_1016_j_est_2023_107964 crossref_primary_10_1109_JIOT_2023_3267625 crossref_primary_10_3390_electronics12132855 crossref_primary_10_1016_j_renene_2025_122692 crossref_primary_10_1016_j_rser_2024_114510 crossref_primary_10_1109_TIA_2022_3161607 crossref_primary_10_3389_fenrg_2022_932770 crossref_primary_10_1016_j_apenergy_2021_118347 crossref_primary_10_1049_rpg2_12736 crossref_primary_10_3389_fenrg_2022_907790 crossref_primary_10_3390_su152416750 crossref_primary_10_1049_rpg2_12697 crossref_primary_10_1049_rpg2_13029 crossref_primary_10_1016_j_engappai_2023_107300 crossref_primary_10_1016_j_enconman_2022_116049 crossref_primary_10_1049_tje2_70035 crossref_primary_10_1007_s11831_024_10155_x crossref_primary_10_1016_j_energy_2022_126436 crossref_primary_10_1016_j_ecmx_2024_100767 crossref_primary_10_3390_en16073248 crossref_primary_10_1016_j_ijhydene_2024_12_141 crossref_primary_10_1109_ACCESS_2023_3335191 crossref_primary_10_3389_fenrg_2022_941074 crossref_primary_10_3390_en16124773 crossref_primary_10_1016_j_egyr_2022_08_211 crossref_primary_10_1016_j_enbuild_2023_113148 crossref_primary_10_1016_j_knosys_2023_111027 crossref_primary_10_1109_TSG_2022_3204796 crossref_primary_10_1109_TSTE_2022_3218169 crossref_primary_10_1016_j_egyr_2022_10_309 crossref_primary_10_3389_fenrg_2021_823380 crossref_primary_10_1016_j_energy_2025_134798 crossref_primary_10_1016_j_esr_2023_101242 crossref_primary_10_1016_j_apenergy_2025_125391 crossref_primary_10_1016_j_egyr_2022_09_068 crossref_primary_10_3389_fenrg_2022_851691 crossref_primary_10_1016_j_egyr_2022_10_399 crossref_primary_10_1016_j_egyr_2022_12_049 crossref_primary_10_1016_j_egyr_2024_06_011 crossref_primary_10_1109_TPEL_2024_3380322 crossref_primary_10_1016_j_rser_2023_113251 crossref_primary_10_1049_rpg2_12506 crossref_primary_10_3390_electronics13183754 crossref_primary_10_1016_j_est_2024_112137 crossref_primary_10_1007_s00202_025_02960_9 crossref_primary_10_1049_enc2_12086 crossref_primary_10_1016_j_apenergy_2022_120291 crossref_primary_10_1063_5_0097757 crossref_primary_10_1155_2022_1994063 crossref_primary_10_1016_j_energy_2023_128668 crossref_primary_10_1016_j_segan_2024_101376 crossref_primary_10_1109_ACCESS_2023_3235209 crossref_primary_10_1016_j_apenergy_2025_125434 crossref_primary_10_3390_su14052546 crossref_primary_10_1109_JSYST_2023_3285147 crossref_primary_10_1109_TIA_2023_3334220 crossref_primary_10_1109_TSG_2024_3382213 crossref_primary_10_3390_en14217238 crossref_primary_10_1016_j_ijepes_2023_109420 crossref_primary_10_1109_TIA_2022_3145763 crossref_primary_10_1016_j_energy_2024_131672 crossref_primary_10_1016_j_eswa_2025_126677 crossref_primary_10_1109_TSG_2023_3261979 crossref_primary_10_3390_su17030867 crossref_primary_10_1515_ehs_2023_0012 crossref_primary_10_1088_1742_6596_2384_1_012041 crossref_primary_10_3233_JIFS_232963 crossref_primary_10_7717_peerj_cs_1049 crossref_primary_10_3390_jmse11061201 crossref_primary_10_1016_j_jclepro_2022_134540 crossref_primary_10_3390_en15228739 crossref_primary_10_1016_j_heliyon_2024_e35167 crossref_primary_10_1007_s00202_024_02820_y |
Cites_doi | 10.1038/nature14236 10.1109/TPWRS.2019.2963109 10.1109/TII.2019.2932078 10.1016/S0951-8320(02)00048-0 10.1109/TSG.2016.2628061 10.1016/j.renene.2018.03.070 10.1109/TPWRS.2018.2868167 10.1109/TSTE.2019.2890875 10.1016/j.energy.2020.118248 10.1109/TSTE.2019.2926147 10.1016/j.apenergy.2018.06.087 10.1109/SMC.2017.8122622 10.1109/TIA.2005.847277 10.1016/j.energy.2019.01.075 10.1109/PES.2011.6038921 10.1016/j.enbuild.2019.109675 10.5772/intechopen.85457 10.1016/j.ijepes.2018.11.029 10.1016/j.enconman.2021.113996 10.1016/j.energy.2019.115873 10.1016/j.techfore.2011.02.009 10.1109/TSTE.2019.2904436 10.1016/0142-0615(80)90004-6 10.1109/TSTE.2018.2800689 10.1109/TIE.2018.2840498 10.1109/TSG.2020.2971689 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1109/TSTE.2021.3105529 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3037 |
EndPage | 169 |
ExternalDocumentID | 10_1109_TSTE_2021_3105529 9516934 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jilin Province, China grantid: 2020122349JC |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SP 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c293t-34fa49608384452d54c4b5287d3ffc1a53af49ca74be7b2160716ea7bb2585933 |
IEDL.DBID | RIE |
ISSN | 1949-3029 |
IngestDate | Mon Jun 30 08:26:19 EDT 2025 Tue Jul 01 01:57:05 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Wed Aug 27 05:11:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-34fa49608384452d54c4b5287d3ffc1a53af49ca74be7b2160716ea7bb2585933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6515-4567 0000-0002-3649-9275 |
PQID | 2610983013 |
PQPubID | 2040348 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TSTE_2021_3105529 crossref_citationtrail_10_1109_TSTE_2021_3105529 ieee_primary_9516934 proquest_journals_2610983013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-Jan. 2022-1-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on sustainable energy |
PublicationTitleAbbrev | TSTE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref1 ref17 silver (ref19) 0 ref16 ref18 li (ref20) 0 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 kumar (ref2) 2020; 208 ref6 ref5 |
References_xml | – ident: ref18 doi: 10.1038/nature14236 – ident: ref9 doi: 10.1109/TPWRS.2019.2963109 – ident: ref16 doi: 10.1109/TII.2019.2932078 – ident: ref24 doi: 10.1016/S0951-8320(02)00048-0 – ident: ref7 doi: 10.1109/TSG.2016.2628061 – ident: ref8 doi: 10.1016/j.renene.2018.03.070 – ident: ref6 doi: 10.1109/TPWRS.2018.2868167 – ident: ref22 doi: 10.1109/TSTE.2019.2890875 – volume: 208 start-page: 118248 year: 2020 ident: ref2 article-title: Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities publication-title: Energy doi: 10.1016/j.energy.2020.118248 – ident: ref23 doi: 10.1109/TSTE.2019.2926147 – ident: ref3 doi: 10.1016/j.apenergy.2018.06.087 – ident: ref21 doi: 10.1109/SMC.2017.8122622 – start-page: 387 year: 0 ident: ref19 article-title: Deterministic policy gradient algorithms publication-title: Proc Int Conf Mach Learn – ident: ref13 doi: 10.1109/TIA.2005.847277 – ident: ref17 doi: 10.1016/j.energy.2019.01.075 – ident: ref28 doi: 10.1109/PES.2011.6038921 – ident: ref11 doi: 10.1016/j.enbuild.2019.109675 – ident: ref12 doi: 10.5772/intechopen.85457 – ident: ref14 doi: 10.1016/j.ijepes.2018.11.029 – start-page: 981 year: 0 ident: ref20 article-title: Metis: Robustly tuning tail latencies of cloud systems publication-title: Proc Annu Tech Conf – ident: ref26 doi: 10.1016/j.enconman.2021.113996 – ident: ref10 doi: 10.1016/j.energy.2019.115873 – ident: ref5 doi: 10.1016/j.techfore.2011.02.009 – ident: ref1 doi: 10.1109/TSTE.2019.2904436 – ident: ref4 doi: 10.1016/0142-0615(80)90004-6 – ident: ref27 doi: 10.1109/TSTE.2018.2800689 – ident: ref25 doi: 10.1109/TIE.2018.2840498 – ident: ref15 doi: 10.1109/TSG.2020.2971689 |
SSID | ssj0000333630 |
Score | 2.6564069 |
Snippet | In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 159 |
SubjectTerms | Automated reinforcement learning Automation Deep learning Distributed generation Errors Forecasting Integer programming Learning Linear programming Load modeling Mathematical models microgrid Microgrids Mixed integer Operating costs optimal scheduling Predictions Predictive models Reinforcement Reinforcement learning Renewable energy Renewable energy sources Scheduling sequence operation theory single-step multi-period forecasting Uncertainty uncertainty handling |
Title | Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting |
URI | https://ieeexplore.ieee.org/document/9516934 https://www.proquest.com/docview/2610983013 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BJzjQ8hJpodoDJ8QGZx9-HGkFokgBBEHiZu3LEYLEiDiX_vrObJyAKEK9WfKubOmbnZ3nNwAHeVH5FNUc7zmfceVkxi0KM5c6D8qlidOeupH7l-n5nbq41_dLcLTohQkhxOKz0KXHmMv3tZtSqOy4oKSOVMuwjI7brFdrEU9JpJRpHC2Cbjml80XRJjF7SXE8uB2cojMoeuijJlpHg_L1GopzVf5RxvGGOfsC_fm_zQpLHrvTxnbdn3e0jf_7819hvTU12clMNjZgKYw3Ye0NAeEW1FeoMUa46Bax81SUPmR1xX6jQKIN6lmfyvWGLw9-wmJtATuZNvUovroJkXPVxfAia2lah_wn3oq4j8oU-TV-pfaMpn86M6H66m24Ozsd_Drn7QgG7tAOaLhUlVHo5OQyV0oLr5VTVqOX5WVVuZ7R0lSqcCZTNmRWRLa6NJjMWqGJSU3uwMq4HoddYFmuLZ5xn7lgqU3LJE5Y6bQ1wkilVAeSOSKla_nJaUzGUxn9lKQoCcSSQCxbEDtwuNjyPCPn-GzxFoGyWNji0YG9Oexle3wnpSAS-hx1n_z28a7vsCqoDyLGYvZgpXmZhn20Thr7I4rlX_Pw4I8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOvAoiUGAPcEFyau_DjwOHAq0S2hREU6k3d1-OUNsYNY4Q_Bb-Cv-Nmc0m4iVulbhZ8q4t736endn95huAZ2XVuBzNXJJZVyTSiiIxCOZEqNJLm6dWOcpGHh3kgyP59lgdr8G3VS6M9z6Qz3yfLsNZvmvtnLbKtio61BEyUij3_JfPGKDNXg7f4Gw-53x3Z_x6kMQaAonFhaxLhGy0RC-9FKWUijslrTQKwwQnmsZmWgndyMrqQhpfGB7k1nKvC2O4Iikwgc-9AlfRz1B8kR222sFJhRB5KGaSVZIIBLyKx6ZZWm2ND8c7GH7yDKPiFDtXvyx8oZLLH-Y_rGm7t-D7cjQWVJbT_rwzffv1N6HI_3W4bsPN6Eyz7QX678Can96FGz9JLG5A-w5t4jk2OkR0OqLdT1jbsCH-cuhlOzYiQuLk4qObscCeYNvzrj0Ptz74oCprwwYqi0K0k-QVrvvYj4iYyXt8S-sY1Te1ekYM8ntwdClffB_Wp-3UPwBWlMqgFXOF9YYS0XRquRFWGc21kFL2IF0ioLZRgZ0KgZzVIRJLq5pAUxNo6giaHrxYdfm0kB_5V-MNAsGqYZz_HmwuYVZHAzWrOcnsl2jdxcO_93oK1wbj0X69PzzYewTXOWV9hJ2nTVjvLub-MfpinXkSfgkGJ5cNqh-PWTwu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Scheduling+of+Isolated+Microgrids+Using+Automated+Reinforcement+Learning-Based+Multi-Period+Forecasting&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Li%2C+Yang&rft.au=Wang%2C+Ruinong&rft.au=Yang%2C+Zhen&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=1949-3029&rft.volume=13&rft.issue=1&rft.spage=159&rft.epage=169&rft_id=info:doi/10.1109%2FTSTE.2021.3105529&rft.externalDocID=9516934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon |