Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting

In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on sustainable energy Vol. 13; no. 1; pp. 159 - 169
Main Authors Li, Yang, Wang, Ruinong, Yang, Zhen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads. Firstly, a prioritized experience replay automated reinforcement learning (PER-AutoRL) is designed to simplify the deployment of deep reinforcement learning (DRL)-based forecasting model in a customized manner, the single-step multi-period forecasting method based on PER-AutoRL is proposed for the first time to address the error accumulation issue suffered by existing multi-step forecasting methods, then the prediction values obtained by the proposed forecasting method are revised via the error distribution to improve the prediction accuracy; secondly, a scheduling model considering demand response is constructed to minimize the total microgrid operating costs, where the revised forecasting values are used as the dispatch basis, and a spinning reserve chance constraint is set according to the error distribution; finally, by transforming the original scheduling model into a readily solvable mixed integer linear programming via the sequence operation theory (SOT), the transformed model is solved by using CPLEX solver. The simulation results show that compared with the traditional scheduling model without forecasting, this approach manages to significantly reduce the system operating costs by improving the prediction accuracy.
AbstractList In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is proposed for isolated microgrids by using automated reinforcement learning-based multi-period forecasting of renewable power generations and loads. Firstly, a prioritized experience replay automated reinforcement learning (PER-AutoRL) is designed to simplify the deployment of deep reinforcement learning (DRL)-based forecasting model in a customized manner, the single-step multi-period forecasting method based on PER-AutoRL is proposed for the first time to address the error accumulation issue suffered by existing multi-step forecasting methods, then the prediction values obtained by the proposed forecasting method are revised via the error distribution to improve the prediction accuracy; secondly, a scheduling model considering demand response is constructed to minimize the total microgrid operating costs, where the revised forecasting values are used as the dispatch basis, and a spinning reserve chance constraint is set according to the error distribution; finally, by transforming the original scheduling model into a readily solvable mixed integer linear programming via the sequence operation theory (SOT), the transformed model is solved by using CPLEX solver. The simulation results show that compared with the traditional scheduling model without forecasting, this approach manages to significantly reduce the system operating costs by improving the prediction accuracy.
Author Yang, Zhen
Li, Yang
Wang, Ruinong
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-6515-4567
  surname: Li
  fullname: Li, Yang
  email: liyang@neepu.edu.cn
  organization: School of Electrical Engineering, Northeast Electric Power University, Jilin, China
– sequence: 2
  givenname: Ruinong
  orcidid: 0000-0002-3649-9275
  surname: Wang
  fullname: Wang, Ruinong
  email: 624895223@qq.com
  organization: School of Electrical Engineering, Northeast Electric Power University, Jilin, China
– sequence: 3
  givenname: Zhen
  surname: Yang
  fullname: Yang, Zhen
  email: 1678084931@qq.com
  organization: State Grid Beijing Electric Power Company, Xicheng District, Beijing, China
BookMark eNp9kMtOwzAQRS0EEq9-AGITiXWK7bGTeAlVeUhFINquI8eZgFEaF9tZ8PcktGLBAm9s6d7j0ZxTcti5Dgm5YHTKGFXXq-VqPuWUsykwKiVXB-SEKaFSoJAf_r65OiaTED7ocAAgA3pC3PM22o1uk6V5x7pvbfeWuCZ5DK7VEevkyRrv3rytQ7IOY3jTR7f5iV7Rdo3zBjfYxWSB2ndDIb3VYeT6Ntr0Bb11dXLnPBod4hCfk6NGtwEn-_uMrO_mq9lDuni-f5zdLFLDFcQURKOFymgBhRCS11IYUUle5DU0jWFagm6EMjoXFeYVZxnNWYY6ryouC6kAzsjV7t-td589hlh-uN53w8iSZ4OzAigbW2zXGpYMwWNTbv1gw3-VjJaj2nJUW45qy73agcn_MMZGHa3rote2_Ze83JEWEX8nKckyBQK-AfMtiMY
CODEN ITSEAJ
CitedBy_id crossref_primary_10_1016_j_energy_2024_130296
crossref_primary_10_1049_rpg2_12921
crossref_primary_10_1049_rpg2_12763
crossref_primary_10_1109_ACCESS_2024_3406338
crossref_primary_10_1016_j_est_2024_111506
crossref_primary_10_1016_j_egyr_2022_07_158
crossref_primary_10_1007_s00202_024_02759_0
crossref_primary_10_1109_JRFID_2022_3205727
crossref_primary_10_3390_s22082822
crossref_primary_10_1016_j_epsr_2024_111014
crossref_primary_10_1002_ese3_1489
crossref_primary_10_1142_S0218126624502724
crossref_primary_10_1007_s12530_023_09522_z
crossref_primary_10_1016_j_egyr_2024_07_030
crossref_primary_10_3390_su152014865
crossref_primary_10_1371_journal_pone_0319257
crossref_primary_10_48084_etasr_5970
crossref_primary_10_1109_JPROC_2023_3303358
crossref_primary_10_1016_j_epsr_2022_108351
crossref_primary_10_1038_s41598_024_68339_1
crossref_primary_10_3390_en15217825
crossref_primary_10_1007_s00202_024_02586_3
crossref_primary_10_1007_s12530_022_09440_6
crossref_primary_10_1049_rpg2_12816
crossref_primary_10_1016_j_ijepes_2022_108608
crossref_primary_10_1016_j_apenergy_2024_124831
crossref_primary_10_1049_rpg2_13192
crossref_primary_10_3390_en16104025
crossref_primary_10_3934_mbe_2022540
crossref_primary_10_1016_j_egyr_2024_11_027
crossref_primary_10_3390_modelling5030055
crossref_primary_10_12688_digitaltwin_17632_2
crossref_primary_10_1016_j_eswa_2023_120474
crossref_primary_10_12688_digitaltwin_17632_1
crossref_primary_10_1016_j_energy_2023_129847
crossref_primary_10_1049_rpg2_12425
crossref_primary_10_1109_JAS_2023_123321
crossref_primary_10_3390_app13169305
crossref_primary_10_3390_electronics12244909
crossref_primary_10_1049_tje2_12128
crossref_primary_10_3390_smartcities7060125
crossref_primary_10_1007_s00202_024_02758_1
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_1016_j_egyr_2023_01_079
crossref_primary_10_1007_s00202_024_02857_z
crossref_primary_10_1109_OAJPE_2023_3234468
crossref_primary_10_1016_j_egyr_2022_08_226
crossref_primary_10_1109_TICPS_2023_3335328
crossref_primary_10_3389_fenrg_2022_933904
crossref_primary_10_1016_j_apenergy_2024_123611
crossref_primary_10_1016_j_renene_2024_121624
crossref_primary_10_1007_s12530_023_09505_0
crossref_primary_10_1016_j_jclepro_2023_139944
crossref_primary_10_1016_j_energy_2025_135572
crossref_primary_10_1155_2022_4260543
crossref_primary_10_3389_fenrg_2022_891867
crossref_primary_10_1080_15567249_2023_2294869
crossref_primary_10_1016_j_rser_2023_114031
crossref_primary_10_1016_j_energy_2023_128103
crossref_primary_10_1109_TAI_2024_3428510
crossref_primary_10_1016_j_apenergy_2022_120540
crossref_primary_10_3390_su151612332
crossref_primary_10_1016_j_epsr_2024_111244
crossref_primary_10_1109_TAES_2023_3290547
crossref_primary_10_1016_j_egyr_2022_07_164
crossref_primary_10_1016_j_egyr_2022_08_199
crossref_primary_10_1016_j_energy_2023_128698
crossref_primary_10_1109_TSTE_2022_3148236
crossref_primary_10_1016_j_egyr_2022_09_030
crossref_primary_10_3390_jmse12122155
crossref_primary_10_1109_JIOT_2024_3396641
crossref_primary_10_1016_j_egyr_2022_01_175
crossref_primary_10_3390_su16177462
crossref_primary_10_1049_rpg2_12846
crossref_primary_10_1049_tje2_12387
crossref_primary_10_1155_2023_9351345
crossref_primary_10_1016_j_egyr_2021_09_001
crossref_primary_10_1016_j_egyr_2022_10_015
crossref_primary_10_1016_j_egyr_2022_12_149
crossref_primary_10_1155_2022_5350786
crossref_primary_10_1016_j_enconman_2024_118734
crossref_primary_10_1016_j_egyr_2022_10_099
crossref_primary_10_1016_j_epsr_2024_110360
crossref_primary_10_1016_j_cnsns_2023_107114
crossref_primary_10_1016_j_jclepro_2021_129840
crossref_primary_10_1016_j_apenergy_2022_119162
crossref_primary_10_3390_electronics12204304
crossref_primary_10_1080_15435075_2023_2281329
crossref_primary_10_1016_j_egyr_2024_11_057
crossref_primary_10_1016_j_segan_2024_101351
crossref_primary_10_1016_j_est_2023_107964
crossref_primary_10_1109_JIOT_2023_3267625
crossref_primary_10_3390_electronics12132855
crossref_primary_10_1016_j_renene_2025_122692
crossref_primary_10_1016_j_rser_2024_114510
crossref_primary_10_1109_TIA_2022_3161607
crossref_primary_10_3389_fenrg_2022_932770
crossref_primary_10_1016_j_apenergy_2021_118347
crossref_primary_10_1049_rpg2_12736
crossref_primary_10_3389_fenrg_2022_907790
crossref_primary_10_3390_su152416750
crossref_primary_10_1049_rpg2_12697
crossref_primary_10_1049_rpg2_13029
crossref_primary_10_1016_j_engappai_2023_107300
crossref_primary_10_1016_j_enconman_2022_116049
crossref_primary_10_1049_tje2_70035
crossref_primary_10_1007_s11831_024_10155_x
crossref_primary_10_1016_j_energy_2022_126436
crossref_primary_10_1016_j_ecmx_2024_100767
crossref_primary_10_3390_en16073248
crossref_primary_10_1016_j_ijhydene_2024_12_141
crossref_primary_10_1109_ACCESS_2023_3335191
crossref_primary_10_3389_fenrg_2022_941074
crossref_primary_10_3390_en16124773
crossref_primary_10_1016_j_egyr_2022_08_211
crossref_primary_10_1016_j_enbuild_2023_113148
crossref_primary_10_1016_j_knosys_2023_111027
crossref_primary_10_1109_TSG_2022_3204796
crossref_primary_10_1109_TSTE_2022_3218169
crossref_primary_10_1016_j_egyr_2022_10_309
crossref_primary_10_3389_fenrg_2021_823380
crossref_primary_10_1016_j_energy_2025_134798
crossref_primary_10_1016_j_esr_2023_101242
crossref_primary_10_1016_j_apenergy_2025_125391
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_3389_fenrg_2022_851691
crossref_primary_10_1016_j_egyr_2022_10_399
crossref_primary_10_1016_j_egyr_2022_12_049
crossref_primary_10_1016_j_egyr_2024_06_011
crossref_primary_10_1109_TPEL_2024_3380322
crossref_primary_10_1016_j_rser_2023_113251
crossref_primary_10_1049_rpg2_12506
crossref_primary_10_3390_electronics13183754
crossref_primary_10_1016_j_est_2024_112137
crossref_primary_10_1007_s00202_025_02960_9
crossref_primary_10_1049_enc2_12086
crossref_primary_10_1016_j_apenergy_2022_120291
crossref_primary_10_1063_5_0097757
crossref_primary_10_1155_2022_1994063
crossref_primary_10_1016_j_energy_2023_128668
crossref_primary_10_1016_j_segan_2024_101376
crossref_primary_10_1109_ACCESS_2023_3235209
crossref_primary_10_1016_j_apenergy_2025_125434
crossref_primary_10_3390_su14052546
crossref_primary_10_1109_JSYST_2023_3285147
crossref_primary_10_1109_TIA_2023_3334220
crossref_primary_10_1109_TSG_2024_3382213
crossref_primary_10_3390_en14217238
crossref_primary_10_1016_j_ijepes_2023_109420
crossref_primary_10_1109_TIA_2022_3145763
crossref_primary_10_1016_j_energy_2024_131672
crossref_primary_10_1016_j_eswa_2025_126677
crossref_primary_10_1109_TSG_2023_3261979
crossref_primary_10_3390_su17030867
crossref_primary_10_1515_ehs_2023_0012
crossref_primary_10_1088_1742_6596_2384_1_012041
crossref_primary_10_3233_JIFS_232963
crossref_primary_10_7717_peerj_cs_1049
crossref_primary_10_3390_jmse11061201
crossref_primary_10_1016_j_jclepro_2022_134540
crossref_primary_10_3390_en15228739
crossref_primary_10_1016_j_heliyon_2024_e35167
crossref_primary_10_1007_s00202_024_02820_y
Cites_doi 10.1038/nature14236
10.1109/TPWRS.2019.2963109
10.1109/TII.2019.2932078
10.1016/S0951-8320(02)00048-0
10.1109/TSG.2016.2628061
10.1016/j.renene.2018.03.070
10.1109/TPWRS.2018.2868167
10.1109/TSTE.2019.2890875
10.1016/j.energy.2020.118248
10.1109/TSTE.2019.2926147
10.1016/j.apenergy.2018.06.087
10.1109/SMC.2017.8122622
10.1109/TIA.2005.847277
10.1016/j.energy.2019.01.075
10.1109/PES.2011.6038921
10.1016/j.enbuild.2019.109675
10.5772/intechopen.85457
10.1016/j.ijepes.2018.11.029
10.1016/j.enconman.2021.113996
10.1016/j.energy.2019.115873
10.1016/j.techfore.2011.02.009
10.1109/TSTE.2019.2904436
10.1016/0142-0615(80)90004-6
10.1109/TSTE.2018.2800689
10.1109/TIE.2018.2840498
10.1109/TSG.2020.2971689
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1109/TSTE.2021.3105529
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3037
EndPage 169
ExternalDocumentID 10_1109_TSTE_2021_3105529
9516934
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jilin Province, China
  grantid: 2020122349JC
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c293t-34fa49608384452d54c4b5287d3ffc1a53af49ca74be7b2160716ea7bb2585933
IEDL.DBID RIE
ISSN 1949-3029
IngestDate Mon Jun 30 08:26:19 EDT 2025
Tue Jul 01 01:57:05 EDT 2025
Thu Apr 24 23:00:15 EDT 2025
Wed Aug 27 05:11:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-34fa49608384452d54c4b5287d3ffc1a53af49ca74be7b2160716ea7bb2585933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6515-4567
0000-0002-3649-9275
PQID 2610983013
PQPubID 2040348
PageCount 11
ParticipantIDs crossref_primary_10_1109_TSTE_2021_3105529
crossref_citationtrail_10_1109_TSTE_2021_3105529
ieee_primary_9516934
proquest_journals_2610983013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on sustainable energy
PublicationTitleAbbrev TSTE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
ref17
silver (ref19) 0
ref16
ref18
li (ref20) 0
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
kumar (ref2) 2020; 208
ref6
ref5
References_xml – ident: ref18
  doi: 10.1038/nature14236
– ident: ref9
  doi: 10.1109/TPWRS.2019.2963109
– ident: ref16
  doi: 10.1109/TII.2019.2932078
– ident: ref24
  doi: 10.1016/S0951-8320(02)00048-0
– ident: ref7
  doi: 10.1109/TSG.2016.2628061
– ident: ref8
  doi: 10.1016/j.renene.2018.03.070
– ident: ref6
  doi: 10.1109/TPWRS.2018.2868167
– ident: ref22
  doi: 10.1109/TSTE.2019.2890875
– volume: 208
  start-page: 118248
  year: 2020
  ident: ref2
  article-title: Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118248
– ident: ref23
  doi: 10.1109/TSTE.2019.2926147
– ident: ref3
  doi: 10.1016/j.apenergy.2018.06.087
– ident: ref21
  doi: 10.1109/SMC.2017.8122622
– start-page: 387
  year: 0
  ident: ref19
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc Int Conf Mach Learn
– ident: ref13
  doi: 10.1109/TIA.2005.847277
– ident: ref17
  doi: 10.1016/j.energy.2019.01.075
– ident: ref28
  doi: 10.1109/PES.2011.6038921
– ident: ref11
  doi: 10.1016/j.enbuild.2019.109675
– ident: ref12
  doi: 10.5772/intechopen.85457
– ident: ref14
  doi: 10.1016/j.ijepes.2018.11.029
– start-page: 981
  year: 0
  ident: ref20
  article-title: Metis: Robustly tuning tail latencies of cloud systems
  publication-title: Proc Annu Tech Conf
– ident: ref26
  doi: 10.1016/j.enconman.2021.113996
– ident: ref10
  doi: 10.1016/j.energy.2019.115873
– ident: ref5
  doi: 10.1016/j.techfore.2011.02.009
– ident: ref1
  doi: 10.1109/TSTE.2019.2904436
– ident: ref4
  doi: 10.1016/0142-0615(80)90004-6
– ident: ref27
  doi: 10.1109/TSTE.2018.2800689
– ident: ref25
  doi: 10.1109/TIE.2018.2840498
– ident: ref15
  doi: 10.1109/TSG.2020.2971689
SSID ssj0000333630
Score 2.6564069
Snippet In order to reduce the negative impact of the uncertainty of load and renewable energies outputs on microgrid operation, an optimal scheduling model is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 159
SubjectTerms Automated reinforcement learning
Automation
Deep learning
Distributed generation
Errors
Forecasting
Integer programming
Learning
Linear programming
Load modeling
Mathematical models
microgrid
Microgrids
Mixed integer
Operating costs
optimal scheduling
Predictions
Predictive models
Reinforcement
Reinforcement learning
Renewable energy
Renewable energy sources
Scheduling
sequence operation theory
single-step multi-period forecasting
Uncertainty
uncertainty handling
Title Optimal Scheduling of Isolated Microgrids Using Automated Reinforcement Learning-Based Multi-Period Forecasting
URI https://ieeexplore.ieee.org/document/9516934
https://www.proquest.com/docview/2610983013
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BJzjQ8hJpodoDJ8QGZx9-HGkFokgBBEHiZu3LEYLEiDiX_vrObJyAKEK9WfKubOmbnZ3nNwAHeVH5FNUc7zmfceVkxi0KM5c6D8qlidOeupH7l-n5nbq41_dLcLTohQkhxOKz0KXHmMv3tZtSqOy4oKSOVMuwjI7brFdrEU9JpJRpHC2Cbjml80XRJjF7SXE8uB2cojMoeuijJlpHg_L1GopzVf5RxvGGOfsC_fm_zQpLHrvTxnbdn3e0jf_7819hvTU12clMNjZgKYw3Ye0NAeEW1FeoMUa46Bax81SUPmR1xX6jQKIN6lmfyvWGLw9-wmJtATuZNvUovroJkXPVxfAia2lah_wn3oq4j8oU-TV-pfaMpn86M6H66m24Ozsd_Drn7QgG7tAOaLhUlVHo5OQyV0oLr5VTVqOX5WVVuZ7R0lSqcCZTNmRWRLa6NJjMWqGJSU3uwMq4HoddYFmuLZ5xn7lgqU3LJE5Y6bQ1wkilVAeSOSKla_nJaUzGUxn9lKQoCcSSQCxbEDtwuNjyPCPn-GzxFoGyWNji0YG9Oexle3wnpSAS-hx1n_z28a7vsCqoDyLGYvZgpXmZhn20Thr7I4rlX_Pw4I8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOvAoiUGAPcEFyau_DjwOHAq0S2hREU6k3d1-OUNsYNY4Q_Bb-Cv-Nmc0m4iVulbhZ8q4t736endn95huAZ2XVuBzNXJJZVyTSiiIxCOZEqNJLm6dWOcpGHh3kgyP59lgdr8G3VS6M9z6Qz3yfLsNZvmvtnLbKtio61BEyUij3_JfPGKDNXg7f4Gw-53x3Z_x6kMQaAonFhaxLhGy0RC-9FKWUijslrTQKwwQnmsZmWgndyMrqQhpfGB7k1nKvC2O4Iikwgc-9AlfRz1B8kR222sFJhRB5KGaSVZIIBLyKx6ZZWm2ND8c7GH7yDKPiFDtXvyx8oZLLH-Y_rGm7t-D7cjQWVJbT_rwzffv1N6HI_3W4bsPN6Eyz7QX678Can96FGz9JLG5A-w5t4jk2OkR0OqLdT1jbsCH-cuhlOzYiQuLk4qObscCeYNvzrj0Ptz74oCprwwYqi0K0k-QVrvvYj4iYyXt8S-sY1Te1ekYM8ntwdClffB_Wp-3UPwBWlMqgFXOF9YYS0XRquRFWGc21kFL2IF0ioLZRgZ0KgZzVIRJLq5pAUxNo6giaHrxYdfm0kB_5V-MNAsGqYZz_HmwuYVZHAzWrOcnsl2jdxcO_93oK1wbj0X69PzzYewTXOWV9hJ2nTVjvLub-MfpinXkSfgkGJ5cNqh-PWTwu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Scheduling+of+Isolated+Microgrids+Using+Automated+Reinforcement+Learning-Based+Multi-Period+Forecasting&rft.jtitle=IEEE+transactions+on+sustainable+energy&rft.au=Li%2C+Yang&rft.au=Wang%2C+Ruinong&rft.au=Yang%2C+Zhen&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=1949-3029&rft.volume=13&rft.issue=1&rft.spage=159&rft.epage=169&rft_id=info:doi/10.1109%2FTSTE.2021.3105529&rft.externalDocID=9516934
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3029&client=summon