Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection
The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mea...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 57; no. 4; pp. 2093 - 2108 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mean-reverting process; thereby, it addresses the problem of establishing whether a vessel is reporting adulterated position information through AIS messages in order to hide its current planned route and a possible deviation from the nominal route. Multiple hypothesis testing suggests a framework to enlist reliable information from monitoring systems (coastal radars and space-born satellite sensors) in support of detection of anomalies, spoofing, and stealth deviations. The proposed solution involves the derivation of anomaly detection rules based on the generalized likelihood ratio test and the model-order selection methodologies. The effectiveness of the proposed anomaly detection strategy is tested for different case studies within an operational scenario with simulated data. |
---|---|
AbstractList | The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mean-reverting process; thereby, it addresses the problem of establishing whether a vessel is reporting adulterated position information through AIS messages in order to hide its current planned route and a possible deviation from the nominal route. Multiple hypothesis testing suggests a framework to enlist reliable information from monitoring systems (coastal radars and space-born satellite sensors) in support of detection of anomalies, spoofing, and stealth deviations. The proposed solution involves the derivation of anomaly detection rules based on the generalized likelihood ratio test and the model-order selection methodologies. The effectiveness of the proposed anomaly detection strategy is tested for different case studies within an operational scenario with simulated data. |
Author | d'Afflisio, Enrica Braca, Paolo Willett, Peter |
Author_xml | – sequence: 1 givenname: Enrica orcidid: 0000-0002-3300-7394 surname: d'Afflisio fullname: d'Afflisio, Enrica email: enrica.d’afflisio@cmre.nato.int organization: North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO) Centre for Maritime Research and Experimentation (CMRE), Italy – sequence: 2 givenname: Paolo orcidid: 0000-0002-3762-4373 surname: Braca fullname: Braca, Paolo email: paolo.braca@cmre.nato.int organization: North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO) Centre for Maritime Research and Experimentation (CMRE), Italy – sequence: 3 givenname: Peter orcidid: 0000-0001-8443-5586 surname: Willett fullname: Willett, Peter email: peter.willett@uconn.edu organization: University of Connecticut, Storrs, USA |
BookMark | eNp9kM1OAjEURhuDiYA-gHHTxPVgf2bK1N0EQUkgLsD1pHQ6UpxpsS0aEh_eIsSFCze3uel3vpucHugYaxQA1xgNMEb8blmMFwOCCB5QlNOUsTPQxVk2TDhDtAO6COE84STDF6Dn_SauaZ7SLviai0ZLbXceFtMFXGytrbV5hcJUsFgZ61rRwEVQoglr-KA-tAjaGn8PCziy7daptTJef6iYiT8-aBnzEyda9WndG6ytg3PhdNCtgoWxsW0fa4KSh5pLcF6Lxqur09sHL5PxcvSUzJ4fp6NilkjCaUhoKjOW11jmgqFVLcUKIUklwioOkrKcc5pxOqwoZzxPySqtKiorlDFGeZRD--D22Lt19n2nfCg3dudMPFmSjCFMI8ViCh9T0lnvnarLrdOtcPsSo_IguTxILg-Sy5PkyAz_MFKHH0XBCd38S94cSa2U-r3E0yElJKPf-uSL9g |
CODEN | IEARAX |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_116316 crossref_primary_10_1109_TIFS_2024_3515834 crossref_primary_10_1109_TVT_2022_3230781 crossref_primary_10_1109_ACCESS_2022_3197215 crossref_primary_10_1109_TAES_2021_3122888 crossref_primary_10_1145_3652158 crossref_primary_10_1016_j_apor_2024_103924 crossref_primary_10_3390_jmse11061174 crossref_primary_10_1016_j_oceaneng_2024_119057 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_3390_s24113458 crossref_primary_10_3390_jmse12081352 crossref_primary_10_1109_TITS_2021_3123890 crossref_primary_10_1109_JPROC_2022_3194445 crossref_primary_10_3390_s24175623 crossref_primary_10_1016_j_oceaneng_2023_113673 crossref_primary_10_1109_ACCESS_2023_3349081 crossref_primary_10_1016_j_oceaneng_2023_115373 crossref_primary_10_3390_s22166063 crossref_primary_10_4018_JDM_321636 crossref_primary_10_1111_tgis_12939 crossref_primary_10_1016_j_oceaneng_2025_120700 crossref_primary_10_1631_FITEE_2300621 crossref_primary_10_3390_jmse12122333 crossref_primary_10_1016_j_oceaneng_2023_116082 crossref_primary_10_3390_rs15215080 crossref_primary_10_3390_jmse12101751 |
Cites_doi | 10.1109/78.157294 10.1109/ICIF.2010.5711998 10.1109/TCYB.2016.2629025 10.1109/ICASSP.2017.7952636 10.1109/AERO.2012.6187198 10.1007/978-1-4612-1694-0_16 10.1109/PLANS46316.2020.9109806 10.1109/AERO.2015.7119003 10.1109/TAES.2016.150596 10.1109/BigData.2017.8258101 10.23919/ICIF.2018.8455854 10.1007/978-3-030-47358-7_41 10.1109/TPAMI.1982.4767213 10.1109/TAES.2018.2808098 10.1109/TGRS.2017.2729622 10.1109/TAES.2017.2651684 10.1109/TSP.2018.2875887 10.1109/ICASSP.2019.8683428 10.3390/e15062218 10.1214/aos/1176344136 10.1049/cp.2012.0414 10.23919/ICIF.2018.8455217 10.1109/78.398720 10.1007/978-1-4613-9745-8 10.1017/S0373463319000031 10.21236/ADA143209 10.1109/MSP.2004.1311138 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 H8D L7M |
DOI | 10.1109/TAES.2021.3083466 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9603 |
EndPage | 2108 |
ExternalDocumentID | 10_1109_TAES_2021_3083466 9473225 |
Genre | orig-research |
GrantInformation_xml | – fundername: CMRE – fundername: DKOE – fundername: ACT funderid: 10.13039/100008416 – fundername: STO funderid: 10.13039/100010999 |
GroupedDBID | -~X 0R~ 29I 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c293t-34c568f1c8a60bfcab00c3c01e3c024689935937d3969842b4dd3cd0566391093 |
IEDL.DBID | RIE |
ISSN | 0018-9251 |
IngestDate | Mon Jun 30 10:18:28 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 00:48:33 EDT 2025 Wed Aug 27 02:39:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-34c568f1c8a60bfcab00c3c01e3c024689935937d3969842b4dd3cd0566391093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3762-4373 0000-0001-8443-5586 0000-0002-3300-7394 |
PQID | 2560139846 |
PQPubID | 85477 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2560139846 crossref_primary_10_1109_TAES_2021_3083466 crossref_citationtrail_10_1109_TAES_2021_3083466 ieee_primary_9473225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on aerospace and electronic systems |
PublicationTitleAbbrev | T-AES |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref37 zucchini (ref34) 2011 ref15 ref36 katsilieris (ref13) 0 ref31 akaike (ref44) 1998 ref11 ref32 ref2 ref17 guerriero (ref4) 2010 martineau (ref8) 2011 ref19 golub (ref48) 1996 ref18 (ref1) 0 soldi (ref21) 0 weisberg (ref38) 1980 coraluppi (ref30) 0 burnham (ref35) 2002 li (ref41) 0; 39 kowalska (ref5) 0 ref24 ref45 ref23 ref26 ref25 ref42 ref22 wang (ref16) 0 ref43 draper (ref39) 1966 ref28 stoica (ref33) 0; 21 ref29 pallotta (ref27) 0 ref7 krüger (ref14) 0 ristic (ref3) 0 ref9 ref6 soldi (ref20) 0 zhen (ref10) 0; 70 ref40 kay (ref47) 1998; ii huang (ref46) 0; 53 |
References_xml | – year: 0 ident: ref21 article-title: Space-based global maritime surveillance. Part II: Artificial intelligence and data fusion techniques publication-title: IEEE Aerosp Electron Syst – volume: ii year: 1998 ident: ref47 publication-title: Fundamentals of Statistical Signal Processing – ident: ref32 doi: 10.1109/78.157294 – start-page: 1164 year: 0 ident: ref5 article-title: Maritime anomaly detection using Gaussian process active learning publication-title: Proc 15th Int Conf Inf Fusion – start-page: 830 year: 2011 ident: ref34 publication-title: Model Selection – year: 1980 ident: ref38 publication-title: Applied Linear Regression – start-page: 217 year: 0 ident: ref30 article-title: The mixed Ornstein-Uhlenbeck process and context exploitation in multi-target tracking publication-title: Proc 19th Int Conf Inf Fusion – volume: 70 start-page: 1 year: 0 ident: ref10 article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier publication-title: J Navigation – ident: ref2 doi: 10.1109/ICIF.2010.5711998 – ident: ref31 doi: 10.1109/TCYB.2016.2629025 – ident: ref11 doi: 10.1109/ICASSP.2017.7952636 – year: 2002 ident: ref35 publication-title: Model Selection and Multi-Model Inference – year: 0 ident: ref1 article-title: International Convention for the Safety of Life At Sea publication-title: International Maritime Organization (IMO) – ident: ref29 doi: 10.1109/AERO.2012.6187198 – ident: ref43 doi: 10.1007/978-1-4612-1694-0_16 – ident: ref15 doi: 10.1109/PLANS46316.2020.9109806 – year: 2011 ident: ref8 article-title: Maritime anomaly detection: Domain introduction and review of selected literature publication-title: Tech Memo DRDC Valcartier TM 2010-460 – ident: ref28 doi: 10.1109/AERO.2015.7119003 – ident: ref23 doi: 10.1109/TAES.2016.150596 – year: 2010 ident: ref4 article-title: Analysis of AIS intermittency and vessel characterization using a hidden Markov model publication-title: NURC – year: 1996 ident: ref48 publication-title: Matrix Computations – ident: ref24 doi: 10.1109/BigData.2017.8258101 – ident: ref18 doi: 10.23919/ICIF.2018.8455854 – ident: ref12 doi: 10.1007/978-3-030-47358-7_41 – ident: ref37 doi: 10.1109/TPAMI.1982.4767213 – ident: ref25 doi: 10.1109/TAES.2018.2808098 – ident: ref26 doi: 10.1109/TGRS.2017.2729622 – start-page: 1196 year: 0 ident: ref13 article-title: Detection of malicious AIS position spoofing by exploiting radar information publication-title: Proc 16th Int Conf Inf Fusion – volume: 53 start-page: 1545 year: 0 ident: ref46 article-title: A novel robust Student's t-based Kalman filter publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2017.2651684 – volume: 39 start-page: 1333 year: 0 ident: ref41 article-title: Survey of maneuvering target tracking. Part I. Dynamic models publication-title: IEEE Trans Aerosp Electron Syst – start-page: 1 year: 0 ident: ref14 article-title: Detection of AIS spoofing in fishery scenarios publication-title: Proc 22th Int Conf Inf Fusion – start-page: 173 year: 0 ident: ref16 article-title: Application of neural network in abnormal AIS data identification publication-title: Proc IEEE Int Conf Artif Intell Comput – start-page: 289 year: 1998 ident: ref44 publication-title: On the Likelihood of a Time Series Model – ident: ref17 doi: 10.1109/TSP.2018.2875887 – ident: ref19 doi: 10.1109/ICASSP.2019.8683428 – start-page: 1 year: 0 ident: ref27 article-title: Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results publication-title: Proc 17th Int Conf Inf Fusion – ident: ref7 doi: 10.3390/e15062218 – ident: ref45 doi: 10.1214/aos/1176344136 – ident: ref6 doi: 10.1049/cp.2012.0414 – ident: ref22 doi: 10.23919/ICIF.2018.8455217 – ident: ref42 doi: 10.1109/78.398720 – year: 1966 ident: ref39 publication-title: Applied regression analysis – ident: ref36 doi: 10.1007/978-1-4613-9745-8 – start-page: 1 year: 0 ident: ref3 article-title: Statistical analysis of motion patterns in AIS data: Anomaly detection and motion prediction publication-title: Proc 11th Inter Conf Info Fusion – ident: ref9 doi: 10.1017/S0373463319000031 – ident: ref40 doi: 10.21236/ADA143209 – volume: 21 start-page: 36 year: 0 ident: ref33 article-title: Model-order selection: A review of information criterion rules publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2004.1311138 – year: 0 ident: ref20 article-title: Space-based global maritime surveillance. Part I: Satellite technologies publication-title: IEEE Aerosp Electron Syst |
SSID | ssj0014843 |
Score | 2.5127933 |
Snippet | The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2093 |
SubjectTerms | Anomalies Artificial intelligence Automatic identification system (AIS) Collision avoidance Data models data spoofing Deviation Hypothesis testing Likelihood ratio maritime anomaly detection maritime security maritime situational awareness Model testing model-order selection (MOS) multiple statistical hypothesis test Ornstein–Uhlenbeck (OU) process Radar Radar tracking Spoofing Surveillance target tracking Testing Trajectory |
Title | Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection |
URI | https://ieeexplore.ieee.org/document/9473225 https://www.proquest.com/docview/2560139846 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yItIntug5bBK0AqSwtUrfIsR2QKCmCdADx4zk7aUGAEEuU4Ww5ujvfd7nPZ4Bjq01kaN5BR5Ii4Apz1oxRFmgraExVmFelmP6NuLzl16P2aAFO52dhrLWefGab7tXX8s1ET92vslbMO87-FmERE7fqrNa8YsBlzZCL0IExaNcVzCiMW8OkO8BMkEZNhoCD-4aInzHIX6ryYyf24aW3Bv3ZwipWyUNzWmZN_fatZ-N_V74OqzXOJEllGBuwYItNWPnSfXAL3vuIwbXjwJLkakAGTxM0tOKOqMKQJCscmB0Tx_cdl_fkAgNo9XPvjCTE7SLP9r4ivxMHWH2_Z5TvzcheBNEw6SvXM-nRkqSY4GyvOE3puV_FNtz2usPzy6C-jCHQiAjKgHHdFjKPtFQizHKt0F8102Fk8UG5wLyNtRHrGBaLWHKacWOYNoivEAO5nlU7sFRMCrsLRIYdTYVUKGq4VDxr004W5Zgf58oqKRsQztST6rpTubswY5z6jCWMU6fR1Gk0rTXagJP5kKeqTcdfwltOQ3PBWjkNOJjZQFo78kvqM1aGHyT2fh-1D8tu7ooTeABL5fPUHiJOKbMjb6AfPFbjkw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPQAHKNCqy1d94ISaJbEdr8MtAlZLS7jsInGLHNthpW6zCLKHVvx4xk52i6CquEQ52I6jmfG88TyPAY6sNpGhZQ8NSYqAK4xZC0ZZoK2gCVVh2aRismsxuOHfb-PbJfi2OAtjrfXkM9t1rz6Xb6Z65rbKThLec_q3DB_Q78e0Oa21yBlw2XLkIjRhdNttDjMKk5NRejHEWJBGXYaQg_uSiH-9kL9W5c1a7B1MfxOy-dQaXsnP7qwuuvrPq6qN7537R9hokSZJG9XYgiVbbcP6i_qDO_CUIQrXjgVL0sshGd5PUdWqO6IqQ9KicnB2Qhzjd1KPyTm60GZ775SkxK0jD3bc0N-Jg6y-4jO278_pXgTxMMmUq5r0y5K0muJov3GY2rO_qk9w078YnQ2C9jqGQCMmqAPGdSxkGWmpRFiUWqHFaqbDyOKDcoGRG4sR7RiWiERyWnBjmDaIsBAFuapVn2Glmlb2CxAZ9jQVUmFTw6XiRUx7RVRihFwqq6TsQDgXT67bWuXuyoxJ7mOWMMmdRHMn0byVaAeOF13um0Id_2u84yS0aNgKpwP7cx3IW1N-zH3MyvCHxO6_e32F1cEou8qvLq9_7MGa-07DENyHlfphZg8QtdTFoVfWZ0VL5t0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+AIS+Spoofing+and+Abnormal+Stealth+Deviations%3A+A+Comprehensive+Statistical+Framework+for+Maritime+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=d%27Afflisio%2C+Enrica&rft.au=Braca%2C+Paolo&rft.au=Willett%2C+Peter&rft.date=2021-08-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=57&rft.issue=4&rft.spage=2093&rft.epage=2108&rft_id=info:doi/10.1109%2FTAES.2021.3083466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2021_3083466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon |