Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection

The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 57; no. 4; pp. 2093 - 2108
Main Authors d'Afflisio, Enrica, Braca, Paolo, Willett, Peter
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mean-reverting process; thereby, it addresses the problem of establishing whether a vessel is reporting adulterated position information through AIS messages in order to hide its current planned route and a possible deviation from the nominal route. Multiple hypothesis testing suggests a framework to enlist reliable information from monitoring systems (coastal radars and space-born satellite sensors) in support of detection of anomalies, spoofing, and stealth deviations. The proposed solution involves the derivation of anomaly detection rules based on the generalized likelihood ratio test and the model-order selection methodologies. The effectiveness of the proposed anomaly detection strategy is tested for different case studies within an operational scenario with simulated data.
AbstractList The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be subject to intentional reporting of false information, or “spoofing”. This article assumes the vessel trajectory nominally follows a piecewise mean-reverting process; thereby, it addresses the problem of establishing whether a vessel is reporting adulterated position information through AIS messages in order to hide its current planned route and a possible deviation from the nominal route. Multiple hypothesis testing suggests a framework to enlist reliable information from monitoring systems (coastal radars and space-born satellite sensors) in support of detection of anomalies, spoofing, and stealth deviations. The proposed solution involves the derivation of anomaly detection rules based on the generalized likelihood ratio test and the model-order selection methodologies. The effectiveness of the proposed anomaly detection strategy is tested for different case studies within an operational scenario with simulated data.
Author d'Afflisio, Enrica
Braca, Paolo
Willett, Peter
Author_xml – sequence: 1
  givenname: Enrica
  orcidid: 0000-0002-3300-7394
  surname: d'Afflisio
  fullname: d'Afflisio, Enrica
  email: enrica.d’afflisio@cmre.nato.int
  organization: North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO) Centre for Maritime Research and Experimentation (CMRE), Italy
– sequence: 2
  givenname: Paolo
  orcidid: 0000-0002-3762-4373
  surname: Braca
  fullname: Braca, Paolo
  email: paolo.braca@cmre.nato.int
  organization: North Atlantic Treaty Organization (NATO) Science and Technology Organization (STO) Centre for Maritime Research and Experimentation (CMRE), Italy
– sequence: 3
  givenname: Peter
  orcidid: 0000-0001-8443-5586
  surname: Willett
  fullname: Willett, Peter
  email: peter.willett@uconn.edu
  organization: University of Connecticut, Storrs, USA
BookMark eNp9kM1OAjEURhuDiYA-gHHTxPVgf2bK1N0EQUkgLsD1pHQ6UpxpsS0aEh_eIsSFCze3uel3vpucHugYaxQA1xgNMEb8blmMFwOCCB5QlNOUsTPQxVk2TDhDtAO6COE84STDF6Dn_SauaZ7SLviai0ZLbXceFtMFXGytrbV5hcJUsFgZ61rRwEVQoglr-KA-tAjaGn8PCziy7daptTJef6iYiT8-aBnzEyda9WndG6ytg3PhdNCtgoWxsW0fa4KSh5pLcF6Lxqur09sHL5PxcvSUzJ4fp6NilkjCaUhoKjOW11jmgqFVLcUKIUklwioOkrKcc5pxOqwoZzxPySqtKiorlDFGeZRD--D22Lt19n2nfCg3dudMPFmSjCFMI8ViCh9T0lnvnarLrdOtcPsSo_IguTxILg-Sy5PkyAz_MFKHH0XBCd38S94cSa2U-r3E0yElJKPf-uSL9g
CODEN IEARAX
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_116316
crossref_primary_10_1109_TIFS_2024_3515834
crossref_primary_10_1109_TVT_2022_3230781
crossref_primary_10_1109_ACCESS_2022_3197215
crossref_primary_10_1109_TAES_2021_3122888
crossref_primary_10_1145_3652158
crossref_primary_10_1016_j_apor_2024_103924
crossref_primary_10_3390_jmse11061174
crossref_primary_10_1016_j_oceaneng_2024_119057
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_3390_s24113458
crossref_primary_10_3390_jmse12081352
crossref_primary_10_1109_TITS_2021_3123890
crossref_primary_10_1109_JPROC_2022_3194445
crossref_primary_10_3390_s24175623
crossref_primary_10_1016_j_oceaneng_2023_113673
crossref_primary_10_1109_ACCESS_2023_3349081
crossref_primary_10_1016_j_oceaneng_2023_115373
crossref_primary_10_3390_s22166063
crossref_primary_10_4018_JDM_321636
crossref_primary_10_1111_tgis_12939
crossref_primary_10_1016_j_oceaneng_2025_120700
crossref_primary_10_1631_FITEE_2300621
crossref_primary_10_3390_jmse12122333
crossref_primary_10_1016_j_oceaneng_2023_116082
crossref_primary_10_3390_rs15215080
crossref_primary_10_3390_jmse12101751
Cites_doi 10.1109/78.157294
10.1109/ICIF.2010.5711998
10.1109/TCYB.2016.2629025
10.1109/ICASSP.2017.7952636
10.1109/AERO.2012.6187198
10.1007/978-1-4612-1694-0_16
10.1109/PLANS46316.2020.9109806
10.1109/AERO.2015.7119003
10.1109/TAES.2016.150596
10.1109/BigData.2017.8258101
10.23919/ICIF.2018.8455854
10.1007/978-3-030-47358-7_41
10.1109/TPAMI.1982.4767213
10.1109/TAES.2018.2808098
10.1109/TGRS.2017.2729622
10.1109/TAES.2017.2651684
10.1109/TSP.2018.2875887
10.1109/ICASSP.2019.8683428
10.3390/e15062218
10.1214/aos/1176344136
10.1049/cp.2012.0414
10.23919/ICIF.2018.8455217
10.1109/78.398720
10.1007/978-1-4613-9745-8
10.1017/S0373463319000031
10.21236/ADA143209
10.1109/MSP.2004.1311138
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
H8D
L7M
DOI 10.1109/TAES.2021.3083466
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9603
EndPage 2108
ExternalDocumentID 10_1109_TAES_2021_3083466
9473225
Genre orig-research
GrantInformation_xml – fundername: CMRE
– fundername: DKOE
– fundername: ACT
  funderid: 10.13039/100008416
– fundername: STO
  funderid: 10.13039/100010999
GroupedDBID -~X
0R~
29I
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c293t-34c568f1c8a60bfcab00c3c01e3c024689935937d3969842b4dd3cd0566391093
IEDL.DBID RIE
ISSN 0018-9251
IngestDate Mon Jun 30 10:18:28 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 00:48:33 EDT 2025
Wed Aug 27 02:39:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-34c568f1c8a60bfcab00c3c01e3c024689935937d3969842b4dd3cd0566391093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3762-4373
0000-0001-8443-5586
0000-0002-3300-7394
PQID 2560139846
PQPubID 85477
PageCount 16
ParticipantIDs proquest_journals_2560139846
crossref_primary_10_1109_TAES_2021_3083466
crossref_citationtrail_10_1109_TAES_2021_3083466
ieee_primary_9473225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on aerospace and electronic systems
PublicationTitleAbbrev T-AES
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref37
zucchini (ref34) 2011
ref15
ref36
katsilieris (ref13) 0
ref31
akaike (ref44) 1998
ref11
ref32
ref2
ref17
guerriero (ref4) 2010
martineau (ref8) 2011
ref19
golub (ref48) 1996
ref18
(ref1) 0
soldi (ref21) 0
weisberg (ref38) 1980
coraluppi (ref30) 0
burnham (ref35) 2002
li (ref41) 0; 39
kowalska (ref5) 0
ref24
ref45
ref23
ref26
ref25
ref42
ref22
wang (ref16) 0
ref43
draper (ref39) 1966
ref28
stoica (ref33) 0; 21
ref29
pallotta (ref27) 0
ref7
krüger (ref14) 0
ristic (ref3) 0
ref9
ref6
soldi (ref20) 0
zhen (ref10) 0; 70
ref40
kay (ref47) 1998; ii
huang (ref46) 0; 53
References_xml – year: 0
  ident: ref21
  article-title: Space-based global maritime surveillance. Part II: Artificial intelligence and data fusion techniques
  publication-title: IEEE Aerosp Electron Syst
– volume: ii
  year: 1998
  ident: ref47
  publication-title: Fundamentals of Statistical Signal Processing
– ident: ref32
  doi: 10.1109/78.157294
– start-page: 1164
  year: 0
  ident: ref5
  article-title: Maritime anomaly detection using Gaussian process active learning
  publication-title: Proc 15th Int Conf Inf Fusion
– start-page: 830
  year: 2011
  ident: ref34
  publication-title: Model Selection
– year: 1980
  ident: ref38
  publication-title: Applied Linear Regression
– start-page: 217
  year: 0
  ident: ref30
  article-title: The mixed Ornstein-Uhlenbeck process and context exploitation in multi-target tracking
  publication-title: Proc 19th Int Conf Inf Fusion
– volume: 70
  start-page: 1
  year: 0
  ident: ref10
  article-title: Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier
  publication-title: J Navigation
– ident: ref2
  doi: 10.1109/ICIF.2010.5711998
– ident: ref31
  doi: 10.1109/TCYB.2016.2629025
– ident: ref11
  doi: 10.1109/ICASSP.2017.7952636
– year: 2002
  ident: ref35
  publication-title: Model Selection and Multi-Model Inference
– year: 0
  ident: ref1
  article-title: International Convention for the Safety of Life At Sea
  publication-title: International Maritime Organization (IMO)
– ident: ref29
  doi: 10.1109/AERO.2012.6187198
– ident: ref43
  doi: 10.1007/978-1-4612-1694-0_16
– ident: ref15
  doi: 10.1109/PLANS46316.2020.9109806
– year: 2011
  ident: ref8
  article-title: Maritime anomaly detection: Domain introduction and review of selected literature
  publication-title: Tech Memo DRDC Valcartier TM 2010-460
– ident: ref28
  doi: 10.1109/AERO.2015.7119003
– ident: ref23
  doi: 10.1109/TAES.2016.150596
– year: 2010
  ident: ref4
  article-title: Analysis of AIS intermittency and vessel characterization using a hidden Markov model
  publication-title: NURC
– year: 1996
  ident: ref48
  publication-title: Matrix Computations
– ident: ref24
  doi: 10.1109/BigData.2017.8258101
– ident: ref18
  doi: 10.23919/ICIF.2018.8455854
– ident: ref12
  doi: 10.1007/978-3-030-47358-7_41
– ident: ref37
  doi: 10.1109/TPAMI.1982.4767213
– ident: ref25
  doi: 10.1109/TAES.2018.2808098
– ident: ref26
  doi: 10.1109/TGRS.2017.2729622
– start-page: 1196
  year: 0
  ident: ref13
  article-title: Detection of malicious AIS position spoofing by exploiting radar information
  publication-title: Proc 16th Int Conf Inf Fusion
– volume: 53
  start-page: 1545
  year: 0
  ident: ref46
  article-title: A novel robust Student's t-based Kalman filter
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2017.2651684
– volume: 39
  start-page: 1333
  year: 0
  ident: ref41
  article-title: Survey of maneuvering target tracking. Part I. Dynamic models
  publication-title: IEEE Trans Aerosp Electron Syst
– start-page: 1
  year: 0
  ident: ref14
  article-title: Detection of AIS spoofing in fishery scenarios
  publication-title: Proc 22th Int Conf Inf Fusion
– start-page: 173
  year: 0
  ident: ref16
  article-title: Application of neural network in abnormal AIS data identification
  publication-title: Proc IEEE Int Conf Artif Intell Comput
– start-page: 289
  year: 1998
  ident: ref44
  publication-title: On the Likelihood of a Time Series Model
– ident: ref17
  doi: 10.1109/TSP.2018.2875887
– ident: ref19
  doi: 10.1109/ICASSP.2019.8683428
– start-page: 1
  year: 0
  ident: ref27
  article-title: Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results
  publication-title: Proc 17th Int Conf Inf Fusion
– ident: ref7
  doi: 10.3390/e15062218
– ident: ref45
  doi: 10.1214/aos/1176344136
– ident: ref6
  doi: 10.1049/cp.2012.0414
– ident: ref22
  doi: 10.23919/ICIF.2018.8455217
– ident: ref42
  doi: 10.1109/78.398720
– year: 1966
  ident: ref39
  publication-title: Applied regression analysis
– ident: ref36
  doi: 10.1007/978-1-4613-9745-8
– start-page: 1
  year: 0
  ident: ref3
  article-title: Statistical analysis of motion patterns in AIS data: Anomaly detection and motion prediction
  publication-title: Proc 11th Inter Conf Info Fusion
– ident: ref9
  doi: 10.1017/S0373463319000031
– ident: ref40
  doi: 10.21236/ADA143209
– volume: 21
  start-page: 36
  year: 0
  ident: ref33
  article-title: Model-order selection: A review of information criterion rules
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2004.1311138
– year: 0
  ident: ref20
  article-title: Space-based global maritime surveillance. Part I: Satellite technologies
  publication-title: IEEE Aerosp Electron Syst
SSID ssj0014843
Score 2.5127933
Snippet The automatic identification system (AIS) is an essential and economical equipment for collision avoidance and maritime surveillance. However, AIS can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2093
SubjectTerms Anomalies
Artificial intelligence
Automatic identification system (AIS)
Collision avoidance
Data models
data spoofing
Deviation
Hypothesis testing
Likelihood ratio
maritime anomaly detection
maritime security
maritime situational awareness
Model testing
model-order selection (MOS)
multiple statistical hypothesis test
Ornstein–Uhlenbeck (OU) process
Radar
Radar tracking
Spoofing
Surveillance
target tracking
Testing
Trajectory
Title Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection
URI https://ieeexplore.ieee.org/document/9473225
https://www.proquest.com/docview/2560139846
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yItIntug5bBK0AqSwtUrfIsR2QKCmCdADx4zk7aUGAEEuU4Ww5ujvfd7nPZ4Bjq01kaN5BR5Ii4Apz1oxRFmgraExVmFelmP6NuLzl16P2aAFO52dhrLWefGab7tXX8s1ET92vslbMO87-FmERE7fqrNa8YsBlzZCL0IExaNcVzCiMW8OkO8BMkEZNhoCD-4aInzHIX6ryYyf24aW3Bv3ZwipWyUNzWmZN_fatZ-N_V74OqzXOJEllGBuwYItNWPnSfXAL3vuIwbXjwJLkakAGTxM0tOKOqMKQJCscmB0Tx_cdl_fkAgNo9XPvjCTE7SLP9r4ivxMHWH2_Z5TvzcheBNEw6SvXM-nRkqSY4GyvOE3puV_FNtz2usPzy6C-jCHQiAjKgHHdFjKPtFQizHKt0F8102Fk8UG5wLyNtRHrGBaLWHKacWOYNoivEAO5nlU7sFRMCrsLRIYdTYVUKGq4VDxr004W5Zgf58oqKRsQztST6rpTubswY5z6jCWMU6fR1Gk0rTXagJP5kKeqTcdfwltOQ3PBWjkNOJjZQFo78kvqM1aGHyT2fh-1D8tu7ooTeABL5fPUHiJOKbMjb6AfPFbjkw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BPQAHKNCqy1d94ISaJbEdr8MtAlZLS7jsInGLHNthpW6zCLKHVvx4xk52i6CquEQ52I6jmfG88TyPAY6sNpGhZQ8NSYqAK4xZC0ZZoK2gCVVh2aRismsxuOHfb-PbJfi2OAtjrfXkM9t1rz6Xb6Z65rbKThLec_q3DB_Q78e0Oa21yBlw2XLkIjRhdNttDjMKk5NRejHEWJBGXYaQg_uSiH-9kL9W5c1a7B1MfxOy-dQaXsnP7qwuuvrPq6qN7537R9hokSZJG9XYgiVbbcP6i_qDO_CUIQrXjgVL0sshGd5PUdWqO6IqQ9KicnB2Qhzjd1KPyTm60GZ775SkxK0jD3bc0N-Jg6y-4jO278_pXgTxMMmUq5r0y5K0muJov3GY2rO_qk9w078YnQ2C9jqGQCMmqAPGdSxkGWmpRFiUWqHFaqbDyOKDcoGRG4sR7RiWiERyWnBjmDaIsBAFuapVn2Glmlb2CxAZ9jQVUmFTw6XiRUx7RVRihFwqq6TsQDgXT67bWuXuyoxJ7mOWMMmdRHMn0byVaAeOF13um0Id_2u84yS0aNgKpwP7cx3IW1N-zH3MyvCHxO6_e32F1cEou8qvLq9_7MGa-07DENyHlfphZg8QtdTFoVfWZ0VL5t0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+AIS+Spoofing+and+Abnormal+Stealth+Deviations%3A+A+Comprehensive+Statistical+Framework+for+Maritime+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+aerospace+and+electronic+systems&rft.au=d%27Afflisio%2C+Enrica&rft.au=Braca%2C+Paolo&rft.au=Willett%2C+Peter&rft.date=2021-08-01&rft.issn=0018-9251&rft.eissn=1557-9603&rft.volume=57&rft.issue=4&rft.spage=2093&rft.epage=2108&rft_id=info:doi/10.1109%2FTAES.2021.3083466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAES_2021_3083466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9251&client=summon