A Method of Classifying Railway Sleepers and Surface Defects in Real Environment

Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of r...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 10; pp. 11301 - 11309
Main Authors Franca, Andre Stanzani, Vassallo, Raquel Frizera
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2020.3026173

Cover

Loading…
Abstract Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of railway assets have been developed in recent years/in the last decade. In particular, the automatic inspection of railway sleepers still needs improvement and consolidation. This work presents a method for sleepers inventorying, identification of the type and defects based on image processing, heuristics and feature fusion in an unsupervised way. The Haar transform and integral images are used, as well as other image processing techniques such as edge detection, and entropy computation along with aspects of railroad topology. The algorithm was developed using real images of daily railway, previously unclassified, and that were subject to various noises and variations of a real railway operation. The method was validated through experiments with an image set comprising 32,917 sleepers in 10,116 images. The results are promising in which 97% accuracy is reached, for the identification of the type of sleepers, and 93% accuracy for the identification of visible defects in sleepers.
AbstractList Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of railway assets have been developed in recent years/in the last decade. In particular, the automatic inspection of railway sleepers still needs improvement and consolidation. This work presents a method for sleepers inventorying, identification of the type and defects based on image processing, heuristics and feature fusion in an unsupervised way. The Haar transform and integral images are used, as well as other image processing techniques such as edge detection, and entropy computation along with aspects of railroad topology. The algorithm was developed using real images of daily railway, previously unclassified, and that were subject to various noises and variations of a real railway operation. The method was validated through experiments with an image set comprising 32,917 sleepers in 10,116 images. The results are promising in which 97% accuracy is reached, for the identification of the type of sleepers, and 93% accuracy for the identification of visible defects in sleepers.
Author Vassallo, Raquel Frizera
Franca, Andre Stanzani
Author_xml – sequence: 1
  givenname: Andre Stanzani
  orcidid: 0000-0001-7203-7943
  surname: Franca
  fullname: Franca, Andre Stanzani
  email: andre.stanzani@gmail.com
  organization: Innovation and Technology Ferrous Department, Vale S.A., Vitoria, Brazil
– sequence: 2
  givenname: Raquel Frizera
  surname: Vassallo
  fullname: Vassallo, Raquel Frizera
  email: raquel@ele.ufes.br
  organization: Electrical Engineering Department, Universidade Federal do Espírito Santo, Vitoria, Brazil
BookMark eNp9kMtOwzAQRS1UJNrCByA2llin2PErXlalvFQeakFiF7nJGFylTrFTUP-eREUsWLCaWdxzR3MGqOdrDwidUjKilOiLu8X0YZSSlIwYSSVV7AD1qRBZQhXPet3OSMKZej1CgxhXhFCthOqjpzG-h-a9LnFt8aQyMTq7c_4Nz42rvswOLyqADYSIjS_xYhusKQBfgoWiidh5PAdT4an_dKH2a_DNMTq0popw8jOH6OVq-jy5SWaP17eT8SwpUs2ahHFpipLLgmeguba0FCwDBSm3mdRQLiW3zKQSGCOlkkZmrFBLkVHJBCdcsyE63_duQv2xhdjkq3obfHsyTwUVmVCtljal9qki1DEGsHnhGtO42jehfTCnJO_05Z2-vNOX_-hrSfqH3AS3NmH3L3O2ZxwA_OZ1SrgUmn0DE057jQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1007_s00521_024_09781_0
crossref_primary_10_32604_cmc_2024_056413
crossref_primary_10_21605_cukurovaumfd_1230955
crossref_primary_10_1016_j_measurement_2023_112579
crossref_primary_10_1093_iti_liad016
crossref_primary_10_1038_s41598_022_10062_w
crossref_primary_10_1541_ieejias_144_79
crossref_primary_10_3390_s22155885
crossref_primary_10_1109_JSEN_2024_3402730
crossref_primary_10_3390_app14093573
crossref_primary_10_1109_JSEN_2023_3324668
crossref_primary_10_1016_j_conbuildmat_2024_137385
crossref_primary_10_1177_09544097231203275
crossref_primary_10_35234_fumbd_1039995
crossref_primary_10_1109_JSEN_2023_3334013
Cites_doi 10.1109/WACV.2015.98
10.1109/ICSMC.2009.5346713
10.1109/ICCV.1998.710772
10.1007/978-3-319-59162-9_14
10.1023/B:VISI.0000013087.49260.fb
10.1016/j.jsv.2016.11.018
10.1145/800031.808600
10.1016/j.engstruct.2014.08.035
10.1109/MCIT.2010.5444850
10.1109/DICTA.2007.4426820
10.1007/978-3-540-45476-2_18
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2020.3026173
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 11309
ExternalDocumentID 10_1109_JSEN_2020_3026173
9204659
Genre orig-research
GrantInformation_xml – fundername: VALE S.A., which provided hours of work for its employee and allowed the use of images
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c293t-346acd46c48e949f1d538e7e24f869edb64f3a26e330d76a683c7b58163540493
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:07:43 EDT 2025
Tue Jul 01 03:36:58 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Aug 27 02:30:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-346acd46c48e949f1d538e7e24f869edb64f3a26e330d76a683c7b58163540493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7203-7943
PQID 2515857109
PQPubID 75733
PageCount 9
ParticipantIDs proquest_journals_2515857109
ieee_primary_9204659
crossref_citationtrail_10_1109_JSEN_2020_3026173
crossref_primary_10_1109_JSEN_2020_3026173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
shah (ref3) 2010
ref15
altman (ref20) 1991
ref14
rubinstejn (ref4) 2011
babenko (ref6) 2009
ref11
yella (ref10) 2007; 5
yella (ref9) 2008; 11
ref17
ref16
ref19
ref18
ref7
(ref2) 2009
ref5
mohammad (ref8) 2008
spoors (ref1) 2019
References_xml – start-page: 152
  year: 1991
  ident: ref20
  article-title: Principles of statistical analysis
  publication-title: Practical Statistics for Medical Research
– year: 2009
  ident: ref2
  publication-title: Manual for Railway Engineering Chapter 30 Ties V 4
– ident: ref7
  doi: 10.1109/WACV.2015.98
– ident: ref11
  doi: 10.1109/ICSMC.2009.5346713
– ident: ref17
  doi: 10.1109/ICCV.1998.710772
– ident: ref15
  doi: 10.1007/978-3-319-59162-9_14
– volume: 11
  start-page: 32
  year: 2008
  ident: ref9
  article-title: Classifier fusion for condition monitoring of wooden railway sleepers
  publication-title: EnineerIT Meas Inst
– ident: ref5
  doi: 10.1023/B:VISI.0000013087.49260.fb
– year: 2011
  ident: ref4
  article-title: Automatic detection of objects of interest from rail track image
– ident: ref16
  doi: 10.1016/j.jsv.2016.11.018
– ident: ref18
  doi: 10.1145/800031.808600
– year: 2010
  ident: ref3
  article-title: Automated visual inspection/detection of railroad track
– volume: 5
  start-page: 68
  year: 2007
  ident: ref10
  article-title: Automating condition monitoring of wooden railway sleepers
  publication-title: EnineerIT Meas Inst
– ident: ref14
  doi: 10.1016/j.engstruct.2014.08.035
– start-page: 33
  year: 2019
  ident: ref1
  article-title: A development in the management of absolute track geometry
  publication-title: Rail Infrastruct
– ident: ref12
  doi: 10.1109/MCIT.2010.5444850
– year: 2008
  ident: ref8
  article-title: Machine vision for automating visual inspection of wooden railway sleepers
– ident: ref19
  doi: 10.1109/DICTA.2007.4426820
– ident: ref13
  doi: 10.1007/978-3-540-45476-2_18
– year: 2009
  ident: ref6
  article-title: Visual inspection of railroads tracks
SSID ssj0019757
Score 2.394041
Snippet Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11301
SubjectTerms Algorithms
Automatic optical inspection
Edge detection
Electronic ballasts
Fasteners
Haar transformations
Image processing
Inspection
object detection
Rail transportation
Railroad ties
Rails
railway engineering
Sensors
Surface defects
Topology
Title A Method of Classifying Railway Sleepers and Surface Defects in Real Environment
URI https://ieeexplore.ieee.org/document/9204659
https://www.proquest.com/docview/2515857109
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BF9gD3ysKZeXDnlakJLFrx8cKihBSEaIg9RY59kRUVCmCVgh-PWM3LV-r1d5ysCXLE3ve88y8AfitnCwz4StzfZBQOGkiLbMkMpy8lY65UtY_6Pcu5fmtuBi0B0twtKiFQcSQfIYt_xli-W5sp_6p7FinxObaehmWibjNarUWEQOtgqonHeA4ElwN6ghmEuvji373kphgSgQ1CJDzTz4oNFX5dhMH93K2Ab35wmZZJfet6aRo2dcvmo3_u_JNWK9xJuvMfowtWMJqG358UB_chtW6Afrdyw5cdVgv9JJm45KFRpnDUADFrs1w9GxeWH-E-EBQkZnKsf70sTQW2SmGZBA2rNg1AU7Wfa-a24Xbs-7NyXlUN1uILHn8ScSFNNYJaUWGWugycXQVosJUlJnU6AopSm5SiZzHTkkjM25V0c4IzxHoE5r_hJVqXOEeMO00L40zMiVyh4S_RCF4ViQmcTRZpQ2I59uf21qJ3DfEGOWBkcQ69xbLvcXy2mIN-LOY8jCT4fjX4B1vgcXAevMb0JzbOK8P6lNO8I4Ik09I3f_7rANYS30aixdsbTdhZfI4xUPCIZPiV_gB3wCZKdWo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BThsxEB1RONAeKIVWTaHUB06IDbtrr70-ojYoUBIhAlJuK689q0aNNogmquDrGTubQFuEevPBI1ke2_PGM_MGYF85WeXCV-b6IKFw0kRa5klkOFkrHXOlrP_Q7_Vl91qcDbPhChwua2EQMSSfYdsPQyzfTezMf5Ud6ZS8uUy_gjWy-1kyr9Zaxgy0CryedIXjSHA1bGKYSayPzgadPvmCKbmogYKc_2GFQluVf97iYGBO3kJvsbR5XsnP9mxatu39X6yN_7v2TdhokCY7nh-Nd7CC9Ra8ecI_uAXrTQv0H3fbcHHMeqGbNJtULLTKHIUSKHZpRuPf5o4Nxog3BBaZqR0bzG4rY5F9w5AOwkY1uyTIyTqPdXPv4fqkc_W1GzXtFiJLNn8acSGNdUJakaMWukocPYaoMBVVLjW6UoqKm1Qi57FT0sicW1VmOSE6gn1C8w-wWk9q_AhMO80r44xMyb1DQmCiFDwvE5M4ElZpC-LF9he24SL3LTHGRfBJYl14jRVeY0WjsRYcLEVu5kQcL03e9hpYTmw2vwW7Cx0XzVX9VRDAI5fJp6R-el7qC6x3r3rnxflp__sOvE59Uounb812YXV6O8PPhEqm5V44jA_qn9jx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Classifying+Railway+Sleepers+and+Surface+Defects+in+Real+Environment&rft.jtitle=IEEE+sensors+journal&rft.au=Franca%2C+Andre+Stanzani&rft.au=Vassallo%2C+Raquel+Frizera&rft.date=2021-05-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=10&rft.spage=11301&rft.epage=11309&rft_id=info:doi/10.1109%2FJSEN.2020.3026173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3026173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon