A Method of Classifying Railway Sleepers and Surface Defects in Real Environment
Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of r...
Saved in:
Published in | IEEE sensors journal Vol. 21; no. 10; pp. 11301 - 11309 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
15.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2020.3026173 |
Cover
Loading…
Abstract | Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of railway assets have been developed in recent years/in the last decade. In particular, the automatic inspection of railway sleepers still needs improvement and consolidation. This work presents a method for sleepers inventorying, identification of the type and defects based on image processing, heuristics and feature fusion in an unsupervised way. The Haar transform and integral images are used, as well as other image processing techniques such as edge detection, and entropy computation along with aspects of railroad topology. The algorithm was developed using real images of daily railway, previously unclassified, and that were subject to various noises and variations of a real railway operation. The method was validated through experiments with an image set comprising 32,917 sleepers in 10,116 images. The results are promising in which 97% accuracy is reached, for the identification of the type of sleepers, and 93% accuracy for the identification of visible defects in sleepers. |
---|---|
AbstractList | Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues, mainly due to assets of great extent, quantity, weight, and geographic dispersion. Because of this, some initiatives in automatic inspection of railway assets have been developed in recent years/in the last decade. In particular, the automatic inspection of railway sleepers still needs improvement and consolidation. This work presents a method for sleepers inventorying, identification of the type and defects based on image processing, heuristics and feature fusion in an unsupervised way. The Haar transform and integral images are used, as well as other image processing techniques such as edge detection, and entropy computation along with aspects of railroad topology. The algorithm was developed using real images of daily railway, previously unclassified, and that were subject to various noises and variations of a real railway operation. The method was validated through experiments with an image set comprising 32,917 sleepers in 10,116 images. The results are promising in which 97% accuracy is reached, for the identification of the type of sleepers, and 93% accuracy for the identification of visible defects in sleepers. |
Author | Vassallo, Raquel Frizera Franca, Andre Stanzani |
Author_xml | – sequence: 1 givenname: Andre Stanzani orcidid: 0000-0001-7203-7943 surname: Franca fullname: Franca, Andre Stanzani email: andre.stanzani@gmail.com organization: Innovation and Technology Ferrous Department, Vale S.A., Vitoria, Brazil – sequence: 2 givenname: Raquel Frizera surname: Vassallo fullname: Vassallo, Raquel Frizera email: raquel@ele.ufes.br organization: Electrical Engineering Department, Universidade Federal do Espírito Santo, Vitoria, Brazil |
BookMark | eNp9kMtOwzAQRS1UJNrCByA2llin2PErXlalvFQeakFiF7nJGFylTrFTUP-eREUsWLCaWdxzR3MGqOdrDwidUjKilOiLu8X0YZSSlIwYSSVV7AD1qRBZQhXPet3OSMKZej1CgxhXhFCthOqjpzG-h-a9LnFt8aQyMTq7c_4Nz42rvswOLyqADYSIjS_xYhusKQBfgoWiidh5PAdT4an_dKH2a_DNMTq0popw8jOH6OVq-jy5SWaP17eT8SwpUs2ahHFpipLLgmeguba0FCwDBSm3mdRQLiW3zKQSGCOlkkZmrFBLkVHJBCdcsyE63_duQv2xhdjkq3obfHsyTwUVmVCtljal9qki1DEGsHnhGtO42jehfTCnJO_05Z2-vNOX_-hrSfqH3AS3NmH3L3O2ZxwA_OZ1SrgUmn0DE057jQ |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1007_s00521_024_09781_0 crossref_primary_10_32604_cmc_2024_056413 crossref_primary_10_21605_cukurovaumfd_1230955 crossref_primary_10_1016_j_measurement_2023_112579 crossref_primary_10_1093_iti_liad016 crossref_primary_10_1038_s41598_022_10062_w crossref_primary_10_1541_ieejias_144_79 crossref_primary_10_3390_s22155885 crossref_primary_10_1109_JSEN_2024_3402730 crossref_primary_10_3390_app14093573 crossref_primary_10_1109_JSEN_2023_3324668 crossref_primary_10_1016_j_conbuildmat_2024_137385 crossref_primary_10_1177_09544097231203275 crossref_primary_10_35234_fumbd_1039995 crossref_primary_10_1109_JSEN_2023_3334013 |
Cites_doi | 10.1109/WACV.2015.98 10.1109/ICSMC.2009.5346713 10.1109/ICCV.1998.710772 10.1007/978-3-319-59162-9_14 10.1023/B:VISI.0000013087.49260.fb 10.1016/j.jsv.2016.11.018 10.1145/800031.808600 10.1016/j.engstruct.2014.08.035 10.1109/MCIT.2010.5444850 10.1109/DICTA.2007.4426820 10.1007/978-3-540-45476-2_18 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2020.3026173 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 11309 |
ExternalDocumentID | 10_1109_JSEN_2020_3026173 9204659 |
Genre | orig-research |
GrantInformation_xml | – fundername: VALE S.A., which provided hours of work for its employee and allowed the use of images |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c293t-346acd46c48e949f1d538e7e24f869edb64f3a26e330d76a683c7b58163540493 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:07:43 EDT 2025 Tue Jul 01 03:36:58 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Aug 27 02:30:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-346acd46c48e949f1d538e7e24f869edb64f3a26e330d76a683c7b58163540493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7203-7943 |
PQID | 2515857109 |
PQPubID | 75733 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2515857109 ieee_primary_9204659 crossref_citationtrail_10_1109_JSEN_2020_3026173 crossref_primary_10_1109_JSEN_2020_3026173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 shah (ref3) 2010 ref15 altman (ref20) 1991 ref14 rubinstejn (ref4) 2011 babenko (ref6) 2009 ref11 yella (ref10) 2007; 5 yella (ref9) 2008; 11 ref17 ref16 ref19 ref18 ref7 (ref2) 2009 ref5 mohammad (ref8) 2008 spoors (ref1) 2019 |
References_xml | – start-page: 152 year: 1991 ident: ref20 article-title: Principles of statistical analysis publication-title: Practical Statistics for Medical Research – year: 2009 ident: ref2 publication-title: Manual for Railway Engineering Chapter 30 Ties V 4 – ident: ref7 doi: 10.1109/WACV.2015.98 – ident: ref11 doi: 10.1109/ICSMC.2009.5346713 – ident: ref17 doi: 10.1109/ICCV.1998.710772 – ident: ref15 doi: 10.1007/978-3-319-59162-9_14 – volume: 11 start-page: 32 year: 2008 ident: ref9 article-title: Classifier fusion for condition monitoring of wooden railway sleepers publication-title: EnineerIT Meas Inst – ident: ref5 doi: 10.1023/B:VISI.0000013087.49260.fb – year: 2011 ident: ref4 article-title: Automatic detection of objects of interest from rail track image – ident: ref16 doi: 10.1016/j.jsv.2016.11.018 – ident: ref18 doi: 10.1145/800031.808600 – year: 2010 ident: ref3 article-title: Automated visual inspection/detection of railroad track – volume: 5 start-page: 68 year: 2007 ident: ref10 article-title: Automating condition monitoring of wooden railway sleepers publication-title: EnineerIT Meas Inst – ident: ref14 doi: 10.1016/j.engstruct.2014.08.035 – start-page: 33 year: 2019 ident: ref1 article-title: A development in the management of absolute track geometry publication-title: Rail Infrastruct – ident: ref12 doi: 10.1109/MCIT.2010.5444850 – year: 2008 ident: ref8 article-title: Machine vision for automating visual inspection of wooden railway sleepers – ident: ref19 doi: 10.1109/DICTA.2007.4426820 – ident: ref13 doi: 10.1007/978-3-540-45476-2_18 – year: 2009 ident: ref6 article-title: Visual inspection of railroads tracks |
SSID | ssj0019757 |
Score | 2.394041 |
Snippet | Rail transport is an efficient and safe way to move large quantities of goods and people over long distances but it still suffers from maintenance issues,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11301 |
SubjectTerms | Algorithms Automatic optical inspection Edge detection Electronic ballasts Fasteners Haar transformations Image processing Inspection object detection Rail transportation Railroad ties Rails railway engineering Sensors Surface defects Topology |
Title | A Method of Classifying Railway Sleepers and Surface Defects in Real Environment |
URI | https://ieeexplore.ieee.org/document/9204659 https://www.proquest.com/docview/2515857109 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BF9gD3ysKZeXDnlakJLFrx8cKihBSEaIg9RY59kRUVCmCVgh-PWM3LV-r1d5ysCXLE3ve88y8AfitnCwz4StzfZBQOGkiLbMkMpy8lY65UtY_6Pcu5fmtuBi0B0twtKiFQcSQfIYt_xli-W5sp_6p7FinxObaehmWibjNarUWEQOtgqonHeA4ElwN6ghmEuvji373kphgSgQ1CJDzTz4oNFX5dhMH93K2Ab35wmZZJfet6aRo2dcvmo3_u_JNWK9xJuvMfowtWMJqG358UB_chtW6Afrdyw5cdVgv9JJm45KFRpnDUADFrs1w9GxeWH-E-EBQkZnKsf70sTQW2SmGZBA2rNg1AU7Wfa-a24Xbs-7NyXlUN1uILHn8ScSFNNYJaUWGWugycXQVosJUlJnU6AopSm5SiZzHTkkjM25V0c4IzxHoE5r_hJVqXOEeMO00L40zMiVyh4S_RCF4ViQmcTRZpQ2I59uf21qJ3DfEGOWBkcQ69xbLvcXy2mIN-LOY8jCT4fjX4B1vgcXAevMb0JzbOK8P6lNO8I4Ik09I3f_7rANYS30aixdsbTdhZfI4xUPCIZPiV_gB3wCZKdWo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BThsxEB1RONAeKIVWTaHUB06IDbtrr70-ojYoUBIhAlJuK689q0aNNogmquDrGTubQFuEevPBI1ke2_PGM_MGYF85WeXCV-b6IKFw0kRa5klkOFkrHXOlrP_Q7_Vl91qcDbPhChwua2EQMSSfYdsPQyzfTezMf5Ud6ZS8uUy_gjWy-1kyr9Zaxgy0CryedIXjSHA1bGKYSayPzgadPvmCKbmogYKc_2GFQluVf97iYGBO3kJvsbR5XsnP9mxatu39X6yN_7v2TdhokCY7nh-Nd7CC9Ra8ecI_uAXrTQv0H3fbcHHMeqGbNJtULLTKHIUSKHZpRuPf5o4Nxog3BBaZqR0bzG4rY5F9w5AOwkY1uyTIyTqPdXPv4fqkc_W1GzXtFiJLNn8acSGNdUJakaMWukocPYaoMBVVLjW6UoqKm1Qi57FT0sicW1VmOSE6gn1C8w-wWk9q_AhMO80r44xMyb1DQmCiFDwvE5M4ElZpC-LF9he24SL3LTHGRfBJYl14jRVeY0WjsRYcLEVu5kQcL03e9hpYTmw2vwW7Cx0XzVX9VRDAI5fJp6R-el7qC6x3r3rnxflp__sOvE59Uounb812YXV6O8PPhEqm5V44jA_qn9jx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+of+Classifying+Railway+Sleepers+and+Surface+Defects+in+Real+Environment&rft.jtitle=IEEE+sensors+journal&rft.au=Franca%2C+Andre+Stanzani&rft.au=Vassallo%2C+Raquel+Frizera&rft.date=2021-05-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=10&rft.spage=11301&rft.epage=11309&rft_id=info:doi/10.1109%2FJSEN.2020.3026173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2020_3026173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |