Hydrogen-Based Networked Microgrids Planning Through Two-Stage Stochastic Programming With Mixed-Integer Conic Recourse

Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked micr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 19; no. 4; pp. 3672 - 3685
Main Authors Cao, Xiaoyu, Sun, Xunhang, Xu, Zhanbo, Zeng, Bo, Guan, Xiaohong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2021.3130179

Cover

Loading…
Abstract Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked microgrids planning subject to multiple uncertainties (e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles), we propose a two-stage stochastic formulation with mixed integer conic program (MICP) recourse decisions. Our formulation involves the holistic investment and operation modeling to optimally site and configure the microgrids with HFSs. The MICP problems appearing in the second-stage capture the nonlinear power flow of networked microgrids system with binary decisions on storage charging/discharging status and energy transactions (including the trading of electricity, hydrogen, and carbon credits to recover the capital expenditures). To handle the computational challenges associated with the stochastic program with MICP recourse, an augmented Benders decomposition algorithm (ABD) is developed. Numerical studies on 33- and 47-bus exemplary networks demonstrate the economics viability of electricity-hydrogen coordination on microgrids level, as well as the benefits of stochastic modeling. Also, our augmented algorithm significantly outperforms existing methods, e.g., the progressive hedging algorithm (PHA) and the direct use of a professional MIP solver, which has largely improved the solution quality and reduced the computation time by orders of magnitude. Note to Practitioners-This paper proposes an optimal planning model for electricity-hydrogen microgrids with the renewable hydrogen production, storage, and refueling infrastructures. Our planning model is extended under a two-stage stochastic framework to address the multi-energy-sector uncertainties, e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles. The first-stage problem is to optimize the siting and sizing plan of microgrids. Then, in the second-stage problem, the coordinated scheduling of electricity and hydrogen supply systems is modeled as second-order conic programs (SOCPs) to accurately capture the power flow representation under stochastic scenarios. Also, the logical constraints with binary variables are introduced to describe the energy transactions and storage operations, which results in an MICP recourse structure. Note that the stochastic MICP formulation could be very challenging to compute even with a moderate number of scenarios. One challenge certainly comes from integer variables that cause the problem nonconvex. Another challenge follows from the fact that the strong duality of SOCPs might not hold in general. To mitigate those two challenges, we prove that the continuous relaxation of our recourse problem has strong duality, and make use of that continuous relaxation and other enhancements to design an augmented decomposition algorithm. As revealed by our numerical tests, the proposed decomposition method outperforms PHA in both the solution quality and computational efficiency. Comparing to the PHA, our ABD method often achieves tighter bounds with trivial optimality gaps. Also, it could reduce the computation time by orders of magnitude. With the help of advanced analytical tool, the proposed planning framework can be readily implemented in real-world applications.
AbstractList Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked microgrids planning subject to multiple uncertainties (e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles), we propose a two-stage stochastic formulation with mixed integer conic program (MICP) recourse decisions. Our formulation involves the holistic investment and operation modeling to optimally site and configure the microgrids with HFSs. The MICP problems appearing in the second-stage capture the nonlinear power flow of networked microgrids system with binary decisions on storage charging/discharging status and energy transactions (including the trading of electricity, hydrogen, and carbon credits to recover the capital expenditures). To handle the computational challenges associated with the stochastic program with MICP recourse, an augmented Benders decomposition algorithm (ABD) is developed. Numerical studies on 33- and 47-bus exemplary networks demonstrate the economics viability of electricity-hydrogen coordination on microgrids level, as well as the benefits of stochastic modeling. Also, our augmented algorithm significantly outperforms existing methods, e.g., the progressive hedging algorithm (PHA) and the direct use of a professional MIP solver, which has largely improved the solution quality and reduced the computation time by orders of magnitude. Note to Practitioners-This paper proposes an optimal planning model for electricity-hydrogen microgrids with the renewable hydrogen production, storage, and refueling infrastructures. Our planning model is extended under a two-stage stochastic framework to address the multi-energy-sector uncertainties, e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles. The first-stage problem is to optimize the siting and sizing plan of microgrids. Then, in the second-stage problem, the coordinated scheduling of electricity and hydrogen supply systems is modeled as second-order conic programs (SOCPs) to accurately capture the power flow representation under stochastic scenarios. Also, the logical constraints with binary variables are introduced to describe the energy transactions and storage operations, which results in an MICP recourse structure. Note that the stochastic MICP formulation could be very challenging to compute even with a moderate number of scenarios. One challenge certainly comes from integer variables that cause the problem nonconvex. Another challenge follows from the fact that the strong duality of SOCPs might not hold in general. To mitigate those two challenges, we prove that the continuous relaxation of our recourse problem has strong duality, and make use of that continuous relaxation and other enhancements to design an augmented decomposition algorithm. As revealed by our numerical tests, the proposed decomposition method outperforms PHA in both the solution quality and computational efficiency. Comparing to the PHA, our ABD method often achieves tighter bounds with trivial optimality gaps. Also, it could reduce the computation time by orders of magnitude. With the help of advanced analytical tool, the proposed planning framework can be readily implemented in real-world applications.
Author Zeng, Bo
Guan, Xiaohong
Sun, Xunhang
Cao, Xiaoyu
Xu, Zhanbo
Author_xml – sequence: 1
  givenname: Xiaoyu
  orcidid: 0000-0003-2775-1026
  surname: Cao
  fullname: Cao, Xiaoyu
  email: cxykeven2019@xjtu.edu.cn
  organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Xunhang
  surname: Sun
  fullname: Sun, Xunhang
  email: xhsun@sei.xjtu.edu.cn
  organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Zhanbo
  orcidid: 0000-0002-8364-0753
  surname: Xu
  fullname: Xu, Zhanbo
  email: zbxu@sei.xjtu.edu.cn
  organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Bo
  orcidid: 0000-0002-8689-4281
  surname: Zeng
  fullname: Zeng, Bo
  email: bzeng@pitt.edu
  organization: Department of Industrial Engineering and the Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 5
  givenname: Xiaohong
  orcidid: 0000-0002-8826-0362
  surname: Guan
  fullname: Guan, Xiaohong
  email: xhguan@xjtu.edu.cn
  organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China
BookMark eNp9UE1rGzEQFcWBJk5-QOlloed19blaHV3j1IEkDbFLj4tWO1krsSVXknH976vFJoceOpd5MO-DeVdo5LwDhD4RPCEEq6-r6XI-oZiSCSMME6k-oEsiRF0yWbPRgLkohRLiI7qK8RVjymuFL9FhceyC78GV33SErniEdPDhLaMHa_Ih2C4WTxvtnHV9sVoHv-_Xxergy2XSPRTL5M1ax2RN8TTQ9XY7EH_ZtM4Of6Ar71yCHkIx8y6TnsH4fYhwjS5e9CbCzXmP0c_b-Wq2KO9_fL-bTe9LQxVLJWPYqBYEKEYrWVFmOJiulZRjTaQQnLfARQWia6GVpu40w5zUWEitOgKSjdGXk-8u-N97iKl5zfkuRzY0u0hGWZ4xIidWfjnGAC_NLtitDseG4Gbotxn6bYZ-m3O_WSP_0RibdLLepaDt5r_KzyelBYD3JFXxigrJ_gLsrosl
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_rser_2025_115459
crossref_primary_10_1016_j_ijepes_2023_109328
crossref_primary_10_1016_j_energy_2024_131026
crossref_primary_10_1016_j_ijhydene_2024_08_004
crossref_primary_10_1007_s40518_024_00244_7
crossref_primary_10_1016_j_energy_2025_135309
crossref_primary_10_1109_TSTE_2022_3225314
crossref_primary_10_1016_j_apenergy_2023_120682
crossref_primary_10_1016_j_ijhydene_2023_07_237
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_1109_TASE_2024_3369651
crossref_primary_10_1016_j_ijhydene_2025_01_389
crossref_primary_10_1007_s42235_022_00292_z
crossref_primary_10_1016_j_ijepes_2024_110328
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_1016_j_apenergy_2023_120849
crossref_primary_10_1155_2022_8011003
crossref_primary_10_1016_j_renene_2024_120210
crossref_primary_10_3389_fninf_2022_1063048
crossref_primary_10_1016_j_est_2024_110940
crossref_primary_10_3390_su16083225
crossref_primary_10_1109_JSYST_2022_3215594
crossref_primary_10_12677_JEE_2023_114019
crossref_primary_10_1109_TSTE_2024_3355123
crossref_primary_10_1109_TTE_2023_3323354
crossref_primary_10_3390_su152215750
crossref_primary_10_1109_TSG_2023_3340727
crossref_primary_10_1109_TSTE_2022_3217514
crossref_primary_10_1016_j_adapen_2024_100192
crossref_primary_10_1016_j_energy_2024_131166
crossref_primary_10_1109_TASE_2023_3309983
crossref_primary_10_1109_TSG_2022_3232545
crossref_primary_10_1016_j_est_2024_111125
crossref_primary_10_1016_j_jclepro_2023_135906
crossref_primary_10_1016_j_ijhydene_2024_01_200
crossref_primary_10_1049_gtd2_12923
crossref_primary_10_1016_j_ijhydene_2023_04_210
crossref_primary_10_1049_gtd2_13058
crossref_primary_10_1109_TSG_2024_3451993
crossref_primary_10_1109_TSTE_2024_3388274
crossref_primary_10_1016_j_renene_2024_121282
crossref_primary_10_1109_TASE_2024_3408893
crossref_primary_10_1360_SST_2023_0364
crossref_primary_10_3390_electronics13183620
crossref_primary_10_1109_TASE_2023_3289306
crossref_primary_10_1016_j_ijhydene_2024_12_120
crossref_primary_10_1016_j_apenergy_2024_123569
crossref_primary_10_1016_j_apenergy_2024_123328
crossref_primary_10_1016_j_ins_2024_120431
crossref_primary_10_1109_TASE_2024_3454750
crossref_primary_10_1049_esi2_12160
Cites_doi 10.1109/TII.2019.2926779
10.1109/TPWRS.2018.2799954
10.1109/TTE.2018.2847244
10.1109/TPWRS.2015.2503426
10.1109/TPWRS.2017.2754940
10.1109/61.25627
10.1109/TAC.2014.2332712
10.1109/TPWRS.2017.2779540
10.1016/j.apenergy.2020.115225
10.1109/TIE.2015.2412524
10.1016/j.ijhydene.2017.06.116
10.1109/MELE.2017.2784631
10.1109/TSG.2019.2927833
10.1287/moor.16.1.119
10.1109/TSG.2019.2908848
10.1109/MELE.2017.2784632
10.1016/j.jenvman.2019.04.100
10.1016/j.ijhydene.2020.11.229
10.1109/TPWRS.2021.3087639
10.1109/TSG.2018.2872521
10.1109/TASE.2019.2910756
10.1109/JPROC.2011.2105231
10.1016/j.apenergy.2019.113568
10.1109/TCNS.2014.2323634
10.1016/j.rser.2018.04.090
10.1109/TASE.2018.2856908
10.1109/TASE.2020.2995914
10.1109/TSG.2019.2925620
10.1109/TSG.2018.2849852
10.1109/TPWRS.2017.2751514
10.1109/TPWRS.2018.2871377
10.1016/j.energy.2021.120136
10.1016/j.apenergy.2017.05.050
10.1109/TASE.2016.2620150
10.1787/1e0514c4-en
10.1109/TSG.2018.2863247
10.1109/TSG.2018.2856524
10.1007/s10107-016-1000-z
10.1109/TSTE.2018.2868827
10.1109/TSG.2015.2505298
10.1007/978-1-4419-7421-1
10.1007/s10287-010-0125-4
10.1016/j.rser.2020.110202
10.1109/TSG.2011.2159278
10.1109/TSTE.2021.3075615
10.1049/iet-rpg.2019.0663
10.1109/TPWRS.2017.2747625
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2021.3130179
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 3685
ExternalDocumentID 10_1109_TASE_2021_3130179
9646257
Genre orig-research
GrantInformation_xml – fundername: China Post-Doctoral Science Foundation
  grantid: 2019M663722
  funderid: 10.13039/501100002858
– fundername: U.S. National Science Foundation
  grantid: CMMI 1635472
  funderid: 10.13039/100000001
– fundername: National Natural Science Foundation of China
  grantid: 61803297; 61773308; 62103321; 62122062; U1766205
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: xzd012021039; xxj022019033
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-330c9be5e93267623c4ecdb7240a175544be456e5dbeb7c8da30418057a9d1e73
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Sun Jun 29 16:46:12 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Tue Jul 01 02:56:32 EDT 2025
Wed Aug 27 02:29:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-330c9be5e93267623c4ecdb7240a175544be456e5dbeb7c8da30418057a9d1e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2775-1026
0000-0002-8689-4281
0000-0002-8826-0362
0000-0002-8364-0753
PQID 2724732333
PQPubID 27623
PageCount 14
ParticipantIDs ieee_primary_9646257
crossref_primary_10_1109_TASE_2021_3130179
crossref_citationtrail_10_1109_TASE_2021_3130179
proquest_journals_2724732333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
(ref47) 2021
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1109/TII.2019.2926779
– ident: ref42
  doi: 10.1109/TPWRS.2018.2799954
– ident: ref25
  doi: 10.1109/TTE.2018.2847244
– ident: ref37
  doi: 10.1109/TPWRS.2015.2503426
– ident: ref24
  doi: 10.1109/TPWRS.2017.2754940
– ident: ref46
  doi: 10.1109/61.25627
– ident: ref36
  doi: 10.1109/TAC.2014.2332712
– ident: ref13
  doi: 10.1109/TPWRS.2017.2779540
– ident: ref18
  doi: 10.1016/j.apenergy.2020.115225
– ident: ref15
  doi: 10.1109/TIE.2015.2412524
– ident: ref17
  doi: 10.1016/j.ijhydene.2017.06.116
– ident: ref2
  doi: 10.1109/MELE.2017.2784631
– ident: ref27
  doi: 10.1109/TSG.2019.2927833
– ident: ref29
  doi: 10.1287/moor.16.1.119
– ident: ref26
  doi: 10.1109/TSG.2019.2908848
– ident: ref3
  doi: 10.1109/MELE.2017.2784632
– ident: ref14
  doi: 10.1016/j.jenvman.2019.04.100
– ident: ref7
  doi: 10.1016/j.ijhydene.2020.11.229
– volume-title: Making the Breakthrough: Green Hydrogen Policies and Technology Costs
  year: 2021
  ident: ref47
– ident: ref32
  doi: 10.1109/TPWRS.2021.3087639
– ident: ref23
  doi: 10.1109/TSG.2018.2872521
– ident: ref12
  doi: 10.1109/TASE.2019.2910756
– ident: ref5
  doi: 10.1109/JPROC.2011.2105231
– ident: ref19
  doi: 10.1016/j.apenergy.2019.113568
– ident: ref35
  doi: 10.1109/TCNS.2014.2323634
– ident: ref20
  doi: 10.1016/j.rser.2018.04.090
– ident: ref38
  doi: 10.1109/TASE.2018.2856908
– ident: ref39
  doi: 10.1109/TASE.2020.2995914
– ident: ref28
  doi: 10.1109/TSG.2019.2925620
– ident: ref33
  doi: 10.1109/TSG.2018.2849852
– ident: ref21
  doi: 10.1109/TPWRS.2017.2751514
– ident: ref22
  doi: 10.1109/TPWRS.2018.2871377
– ident: ref41
  doi: 10.1016/j.energy.2021.120136
– ident: ref6
  doi: 10.1016/j.apenergy.2017.05.050
– ident: ref11
  doi: 10.1109/TASE.2016.2620150
– ident: ref1
  doi: 10.1787/1e0514c4-en
– ident: ref4
  doi: 10.1109/TSG.2018.2863247
– ident: ref16
  doi: 10.1109/TSG.2018.2856524
– ident: ref31
  doi: 10.1007/s10107-016-1000-z
– ident: ref8
  doi: 10.1109/TSTE.2018.2868827
– ident: ref44
  doi: 10.1109/TSG.2015.2505298
– ident: ref48
  doi: 10.1007/978-1-4419-7421-1
– ident: ref30
  doi: 10.1007/s10287-010-0125-4
– ident: ref40
  doi: 10.1016/j.rser.2020.110202
– ident: ref43
  doi: 10.1109/TSG.2011.2159278
– ident: ref45
  doi: 10.1109/TSTE.2021.3075615
– ident: ref9
  doi: 10.1049/iet-rpg.2019.0663
– ident: ref34
  doi: 10.1109/TPWRS.2017.2747625
SSID ssj0024890
Score 2.5558002
Snippet Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3672
SubjectTerms Algorithms
augmented Benders decomposition
Benders decomposition
Computing time
Decisions
Decomposition
Distributed generation
Electrical loads
Electricity
electricity-hydrogen coordination
Emissions control
Energy storage
Expenditures
Fuel cell vehicles
Hydrogen
Hydrogen fuels
Hydrogen production
Hydrogen storage
Microgrids
Microgrids planning
Mixed integer
mixed integer second-order conic recourse
Optimization
Planning
Power flow
Power system planning
Refueling
Renewable energy sources
Stochastic models
Stochastic processes
stochastic program
Stochastic programming
Uncertainty
Title Hydrogen-Based Networked Microgrids Planning Through Two-Stage Stochastic Programming With Mixed-Integer Conic Recourse
URI https://ieeexplore.ieee.org/document/9646257
https://www.proquest.com/docview/2724732333
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IoUIq6vORDT1W9OHG8SY6AQCukRZVYVG5RbE8WBGzQkhWPX89Mkt1SilBvPowtR99k_I09D4DvRUFGj5XXkOWTUVgYmfhCcepTWiQ2UU1vwMFpr38enVyYiwX4Oc-FQcQ6-Ay7PKzf8n3ppnxVtpf2IqLr8SIskuPW5Gr9qauX1PcpzAikSY1pXzADle4N98-OyBMMA3JQNWvgX2dQ3VTlH0tcHy_HKzCYbayJKrnuTivbdc9vajb-785X4XPLM8V-oxhrsIDjL7D8qvrgOjz0n_ykJAWSB3SUeXHaRITTaMBReqPJlb8Xs6ZGYtg09BHDh1ISQx2hOKtKd5lznWfxq4nyumXB31fVJa3wiF7ydeMIJ-KQ6-8K9nQ5ZOQrnB8fDQ_7su3DIB2RgUpqrVxq0SBzPTKe2kXovI2JDOTEPkwUWSQehsZbtLFLfK5VFCTEBPPUBxjrDVgal2P8BgLTPKBFreLX3tAS-9E56XIvdE65wIcdUDNkMtcWKedeGTdZ7ayoNGMwMwYza8HswI_5lLumQsdHwusMzlywxaUD2zP4s_Yfvs9C-sBYh1rrzfdnbcGnkJMh6tC-bViqJlPcIYpS2d1aN18A847iQg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErF0lJ86AnhrRPHm-RYqlYLdFeVmoreotiebKu2m2qbVaG_npkku0BBiJsPY8vRNxl_Y88DYLssyeix8hqyfDIKSyMTXypOfUrLxCaq7Q04Gg-GJ9HnU3O6Ah-WuTCI2ASfYZ-HzVu-r9ycr8p20kFEdD1-AA8NJ-O22Vo_K-slzY0KcwJpUmO6N8xApTvZ7vE--YJhQC6qZh387RRq2qr8YYubA-bgGYwWW2vjSi7689r23d29qo3_u_fn8LRjmmK3VY0XsILTl_Dkl_qDa3A7_O5nFamQ_EiHmRfjNiacRiOO05vMzv2NWLQ1Elnb0kdkt5UkjjpBcVxX7qzgSs_iqI3zumLBr-f1Ga3wDb3kC8cJzsQeV-AV7Oty0MgrODnYz_aGsuvEIB3RgVpqrVxq0SCzPTKf2kXovI2JDhTEP0wUWSQmhsZbtLFLfKFVFCTEBYvUBxjrdVidVlN8DQLTIqBFreL33tAS_9EFafMgdE65wIc9UAtkcteVKeduGZd5466oNGcwcwYz78DswfvllOu2Rse_hNcYnKVgh0sPNhfw591ffJOH9IGxDrXWb_4-6x08Gmajw_zw0_jLBjwOOTWiCfTbhNV6Nse3RFhqu9Xo6Q_kj-WK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-Based+Networked+Microgrids+Planning+Through+Two-Stage+Stochastic+Programming+With+Mixed-Integer+Conic+Recourse&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cao%2C+Xiaoyu&rft.au=Sun%2C+Xunhang&rft.au=Xu%2C+Zhanbo&rft.au=Zeng%2C+Bo&rft.date=2022-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=4&rft.spage=3672&rft.epage=3685&rft_id=info:doi/10.1109%2FTASE.2021.3130179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2021_3130179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon