Hydrogen-Based Networked Microgrids Planning Through Two-Stage Stochastic Programming With Mixed-Integer Conic Recourse
Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked micr...
Saved in:
Published in | IEEE transactions on automation science and engineering Vol. 19; no. 4; pp. 3672 - 3685 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-5955 1558-3783 |
DOI | 10.1109/TASE.2021.3130179 |
Cover
Loading…
Abstract | Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked microgrids planning subject to multiple uncertainties (e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles), we propose a two-stage stochastic formulation with mixed integer conic program (MICP) recourse decisions. Our formulation involves the holistic investment and operation modeling to optimally site and configure the microgrids with HFSs. The MICP problems appearing in the second-stage capture the nonlinear power flow of networked microgrids system with binary decisions on storage charging/discharging status and energy transactions (including the trading of electricity, hydrogen, and carbon credits to recover the capital expenditures). To handle the computational challenges associated with the stochastic program with MICP recourse, an augmented Benders decomposition algorithm (ABD) is developed. Numerical studies on 33- and 47-bus exemplary networks demonstrate the economics viability of electricity-hydrogen coordination on microgrids level, as well as the benefits of stochastic modeling. Also, our augmented algorithm significantly outperforms existing methods, e.g., the progressive hedging algorithm (PHA) and the direct use of a professional MIP solver, which has largely improved the solution quality and reduced the computation time by orders of magnitude. Note to Practitioners-This paper proposes an optimal planning model for electricity-hydrogen microgrids with the renewable hydrogen production, storage, and refueling infrastructures. Our planning model is extended under a two-stage stochastic framework to address the multi-energy-sector uncertainties, e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles. The first-stage problem is to optimize the siting and sizing plan of microgrids. Then, in the second-stage problem, the coordinated scheduling of electricity and hydrogen supply systems is modeled as second-order conic programs (SOCPs) to accurately capture the power flow representation under stochastic scenarios. Also, the logical constraints with binary variables are introduced to describe the energy transactions and storage operations, which results in an MICP recourse structure. Note that the stochastic MICP formulation could be very challenging to compute even with a moderate number of scenarios. One challenge certainly comes from integer variables that cause the problem nonconvex. Another challenge follows from the fact that the strong duality of SOCPs might not hold in general. To mitigate those two challenges, we prove that the continuous relaxation of our recourse problem has strong duality, and make use of that continuous relaxation and other enhancements to design an augmented decomposition algorithm. As revealed by our numerical tests, the proposed decomposition method outperforms PHA in both the solution quality and computational efficiency. Comparing to the PHA, our ABD method often achieves tighter bounds with trivial optimality gaps. Also, it could reduce the computation time by orders of magnitude. With the help of advanced analytical tool, the proposed planning framework can be readily implemented in real-world applications. |
---|---|
AbstractList | Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities, and hydrogen storage could help decarbonize the energy and transportation sectors. In this paper, to support the hydrogen-based networked microgrids planning subject to multiple uncertainties (e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles), we propose a two-stage stochastic formulation with mixed integer conic program (MICP) recourse decisions. Our formulation involves the holistic investment and operation modeling to optimally site and configure the microgrids with HFSs. The MICP problems appearing in the second-stage capture the nonlinear power flow of networked microgrids system with binary decisions on storage charging/discharging status and energy transactions (including the trading of electricity, hydrogen, and carbon credits to recover the capital expenditures). To handle the computational challenges associated with the stochastic program with MICP recourse, an augmented Benders decomposition algorithm (ABD) is developed. Numerical studies on 33- and 47-bus exemplary networks demonstrate the economics viability of electricity-hydrogen coordination on microgrids level, as well as the benefits of stochastic modeling. Also, our augmented algorithm significantly outperforms existing methods, e.g., the progressive hedging algorithm (PHA) and the direct use of a professional MIP solver, which has largely improved the solution quality and reduced the computation time by orders of magnitude. Note to Practitioners-This paper proposes an optimal planning model for electricity-hydrogen microgrids with the renewable hydrogen production, storage, and refueling infrastructures. Our planning model is extended under a two-stage stochastic framework to address the multi-energy-sector uncertainties, e.g., RES generation, electric loads, and the refueling demands of hydrogen vehicles. The first-stage problem is to optimize the siting and sizing plan of microgrids. Then, in the second-stage problem, the coordinated scheduling of electricity and hydrogen supply systems is modeled as second-order conic programs (SOCPs) to accurately capture the power flow representation under stochastic scenarios. Also, the logical constraints with binary variables are introduced to describe the energy transactions and storage operations, which results in an MICP recourse structure. Note that the stochastic MICP formulation could be very challenging to compute even with a moderate number of scenarios. One challenge certainly comes from integer variables that cause the problem nonconvex. Another challenge follows from the fact that the strong duality of SOCPs might not hold in general. To mitigate those two challenges, we prove that the continuous relaxation of our recourse problem has strong duality, and make use of that continuous relaxation and other enhancements to design an augmented decomposition algorithm. As revealed by our numerical tests, the proposed decomposition method outperforms PHA in both the solution quality and computational efficiency. Comparing to the PHA, our ABD method often achieves tighter bounds with trivial optimality gaps. Also, it could reduce the computation time by orders of magnitude. With the help of advanced analytical tool, the proposed planning framework can be readily implemented in real-world applications. |
Author | Zeng, Bo Guan, Xiaohong Sun, Xunhang Cao, Xiaoyu Xu, Zhanbo |
Author_xml | – sequence: 1 givenname: Xiaoyu orcidid: 0000-0003-2775-1026 surname: Cao fullname: Cao, Xiaoyu email: cxykeven2019@xjtu.edu.cn organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 2 givenname: Xunhang surname: Sun fullname: Sun, Xunhang email: xhsun@sei.xjtu.edu.cn organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 3 givenname: Zhanbo orcidid: 0000-0002-8364-0753 surname: Xu fullname: Xu, Zhanbo email: zbxu@sei.xjtu.edu.cn organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China – sequence: 4 givenname: Bo orcidid: 0000-0002-8689-4281 surname: Zeng fullname: Zeng, Bo email: bzeng@pitt.edu organization: Department of Industrial Engineering and the Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 5 givenname: Xiaohong orcidid: 0000-0002-8826-0362 surname: Guan fullname: Guan, Xiaohong email: xhguan@xjtu.edu.cn organization: School of Automation Science and Engineering and the Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an, Shaanxi, China |
BookMark | eNp9UE1rGzEQFcWBJk5-QOlloed19blaHV3j1IEkDbFLj4tWO1krsSVXknH976vFJoceOpd5MO-DeVdo5LwDhD4RPCEEq6-r6XI-oZiSCSMME6k-oEsiRF0yWbPRgLkohRLiI7qK8RVjymuFL9FhceyC78GV33SErniEdPDhLaMHa_Ih2C4WTxvtnHV9sVoHv-_Xxergy2XSPRTL5M1ax2RN8TTQ9XY7EH_ZtM4Of6Ar71yCHkIx8y6TnsH4fYhwjS5e9CbCzXmP0c_b-Wq2KO9_fL-bTe9LQxVLJWPYqBYEKEYrWVFmOJiulZRjTaQQnLfARQWia6GVpu40w5zUWEitOgKSjdGXk-8u-N97iKl5zfkuRzY0u0hGWZ4xIidWfjnGAC_NLtitDseG4Gbotxn6bYZ-m3O_WSP_0RibdLLepaDt5r_KzyelBYD3JFXxigrJ_gLsrosl |
CODEN | ITASC7 |
CitedBy_id | crossref_primary_10_1016_j_rser_2025_115459 crossref_primary_10_1016_j_ijepes_2023_109328 crossref_primary_10_1016_j_energy_2024_131026 crossref_primary_10_1016_j_ijhydene_2024_08_004 crossref_primary_10_1007_s40518_024_00244_7 crossref_primary_10_1016_j_energy_2025_135309 crossref_primary_10_1109_TSTE_2022_3225314 crossref_primary_10_1016_j_apenergy_2023_120682 crossref_primary_10_1016_j_ijhydene_2023_07_237 crossref_primary_10_1093_jcde_qwac119 crossref_primary_10_1109_TASE_2024_3369651 crossref_primary_10_1016_j_ijhydene_2025_01_389 crossref_primary_10_1007_s42235_022_00292_z crossref_primary_10_1016_j_ijepes_2024_110328 crossref_primary_10_1093_jcde_qwac111 crossref_primary_10_1016_j_apenergy_2023_120849 crossref_primary_10_1155_2022_8011003 crossref_primary_10_1016_j_renene_2024_120210 crossref_primary_10_3389_fninf_2022_1063048 crossref_primary_10_1016_j_est_2024_110940 crossref_primary_10_3390_su16083225 crossref_primary_10_1109_JSYST_2022_3215594 crossref_primary_10_12677_JEE_2023_114019 crossref_primary_10_1109_TSTE_2024_3355123 crossref_primary_10_1109_TTE_2023_3323354 crossref_primary_10_3390_su152215750 crossref_primary_10_1109_TSG_2023_3340727 crossref_primary_10_1109_TSTE_2022_3217514 crossref_primary_10_1016_j_adapen_2024_100192 crossref_primary_10_1016_j_energy_2024_131166 crossref_primary_10_1109_TASE_2023_3309983 crossref_primary_10_1109_TSG_2022_3232545 crossref_primary_10_1016_j_est_2024_111125 crossref_primary_10_1016_j_jclepro_2023_135906 crossref_primary_10_1016_j_ijhydene_2024_01_200 crossref_primary_10_1049_gtd2_12923 crossref_primary_10_1016_j_ijhydene_2023_04_210 crossref_primary_10_1049_gtd2_13058 crossref_primary_10_1109_TSG_2024_3451993 crossref_primary_10_1109_TSTE_2024_3388274 crossref_primary_10_1016_j_renene_2024_121282 crossref_primary_10_1109_TASE_2024_3408893 crossref_primary_10_1360_SST_2023_0364 crossref_primary_10_3390_electronics13183620 crossref_primary_10_1109_TASE_2023_3289306 crossref_primary_10_1016_j_ijhydene_2024_12_120 crossref_primary_10_1016_j_apenergy_2024_123569 crossref_primary_10_1016_j_apenergy_2024_123328 crossref_primary_10_1016_j_ins_2024_120431 crossref_primary_10_1109_TASE_2024_3454750 crossref_primary_10_1049_esi2_12160 |
Cites_doi | 10.1109/TII.2019.2926779 10.1109/TPWRS.2018.2799954 10.1109/TTE.2018.2847244 10.1109/TPWRS.2015.2503426 10.1109/TPWRS.2017.2754940 10.1109/61.25627 10.1109/TAC.2014.2332712 10.1109/TPWRS.2017.2779540 10.1016/j.apenergy.2020.115225 10.1109/TIE.2015.2412524 10.1016/j.ijhydene.2017.06.116 10.1109/MELE.2017.2784631 10.1109/TSG.2019.2927833 10.1287/moor.16.1.119 10.1109/TSG.2019.2908848 10.1109/MELE.2017.2784632 10.1016/j.jenvman.2019.04.100 10.1016/j.ijhydene.2020.11.229 10.1109/TPWRS.2021.3087639 10.1109/TSG.2018.2872521 10.1109/TASE.2019.2910756 10.1109/JPROC.2011.2105231 10.1016/j.apenergy.2019.113568 10.1109/TCNS.2014.2323634 10.1016/j.rser.2018.04.090 10.1109/TASE.2018.2856908 10.1109/TASE.2020.2995914 10.1109/TSG.2019.2925620 10.1109/TSG.2018.2849852 10.1109/TPWRS.2017.2751514 10.1109/TPWRS.2018.2871377 10.1016/j.energy.2021.120136 10.1016/j.apenergy.2017.05.050 10.1109/TASE.2016.2620150 10.1787/1e0514c4-en 10.1109/TSG.2018.2863247 10.1109/TSG.2018.2856524 10.1007/s10107-016-1000-z 10.1109/TSTE.2018.2868827 10.1109/TSG.2015.2505298 10.1007/978-1-4419-7421-1 10.1007/s10287-010-0125-4 10.1016/j.rser.2020.110202 10.1109/TSG.2011.2159278 10.1109/TSTE.2021.3075615 10.1049/iet-rpg.2019.0663 10.1109/TPWRS.2017.2747625 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TASE.2021.3130179 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-3783 |
EndPage | 3685 |
ExternalDocumentID | 10_1109_TASE_2021_3130179 9646257 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Post-Doctoral Science Foundation grantid: 2019M663722 funderid: 10.13039/501100002858 – fundername: U.S. National Science Foundation grantid: CMMI 1635472 funderid: 10.13039/100000001 – fundername: National Natural Science Foundation of China grantid: 61803297; 61773308; 62103321; 62122062; U1766205 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: xzd012021039; xxj022019033 funderid: 10.13039/501100012226 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-330c9be5e93267623c4ecdb7240a175544be456e5dbeb7c8da30418057a9d1e73 |
IEDL.DBID | RIE |
ISSN | 1545-5955 |
IngestDate | Sun Jun 29 16:46:12 EDT 2025 Thu Apr 24 22:55:42 EDT 2025 Tue Jul 01 02:56:32 EDT 2025 Wed Aug 27 02:29:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-330c9be5e93267623c4ecdb7240a175544be456e5dbeb7c8da30418057a9d1e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2775-1026 0000-0002-8689-4281 0000-0002-8826-0362 0000-0002-8364-0753 |
PQID | 2724732333 |
PQPubID | 27623 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9646257 crossref_primary_10_1109_TASE_2021_3130179 crossref_citationtrail_10_1109_TASE_2021_3130179 proquest_journals_2724732333 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on automation science and engineering |
PublicationTitleAbbrev | TASE |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 (ref47) 2021 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref10 doi: 10.1109/TII.2019.2926779 – ident: ref42 doi: 10.1109/TPWRS.2018.2799954 – ident: ref25 doi: 10.1109/TTE.2018.2847244 – ident: ref37 doi: 10.1109/TPWRS.2015.2503426 – ident: ref24 doi: 10.1109/TPWRS.2017.2754940 – ident: ref46 doi: 10.1109/61.25627 – ident: ref36 doi: 10.1109/TAC.2014.2332712 – ident: ref13 doi: 10.1109/TPWRS.2017.2779540 – ident: ref18 doi: 10.1016/j.apenergy.2020.115225 – ident: ref15 doi: 10.1109/TIE.2015.2412524 – ident: ref17 doi: 10.1016/j.ijhydene.2017.06.116 – ident: ref2 doi: 10.1109/MELE.2017.2784631 – ident: ref27 doi: 10.1109/TSG.2019.2927833 – ident: ref29 doi: 10.1287/moor.16.1.119 – ident: ref26 doi: 10.1109/TSG.2019.2908848 – ident: ref3 doi: 10.1109/MELE.2017.2784632 – ident: ref14 doi: 10.1016/j.jenvman.2019.04.100 – ident: ref7 doi: 10.1016/j.ijhydene.2020.11.229 – volume-title: Making the Breakthrough: Green Hydrogen Policies and Technology Costs year: 2021 ident: ref47 – ident: ref32 doi: 10.1109/TPWRS.2021.3087639 – ident: ref23 doi: 10.1109/TSG.2018.2872521 – ident: ref12 doi: 10.1109/TASE.2019.2910756 – ident: ref5 doi: 10.1109/JPROC.2011.2105231 – ident: ref19 doi: 10.1016/j.apenergy.2019.113568 – ident: ref35 doi: 10.1109/TCNS.2014.2323634 – ident: ref20 doi: 10.1016/j.rser.2018.04.090 – ident: ref38 doi: 10.1109/TASE.2018.2856908 – ident: ref39 doi: 10.1109/TASE.2020.2995914 – ident: ref28 doi: 10.1109/TSG.2019.2925620 – ident: ref33 doi: 10.1109/TSG.2018.2849852 – ident: ref21 doi: 10.1109/TPWRS.2017.2751514 – ident: ref22 doi: 10.1109/TPWRS.2018.2871377 – ident: ref41 doi: 10.1016/j.energy.2021.120136 – ident: ref6 doi: 10.1016/j.apenergy.2017.05.050 – ident: ref11 doi: 10.1109/TASE.2016.2620150 – ident: ref1 doi: 10.1787/1e0514c4-en – ident: ref4 doi: 10.1109/TSG.2018.2863247 – ident: ref16 doi: 10.1109/TSG.2018.2856524 – ident: ref31 doi: 10.1007/s10107-016-1000-z – ident: ref8 doi: 10.1109/TSTE.2018.2868827 – ident: ref44 doi: 10.1109/TSG.2015.2505298 – ident: ref48 doi: 10.1007/978-1-4419-7421-1 – ident: ref30 doi: 10.1007/s10287-010-0125-4 – ident: ref40 doi: 10.1016/j.rser.2020.110202 – ident: ref43 doi: 10.1109/TSG.2011.2159278 – ident: ref45 doi: 10.1109/TSTE.2021.3075615 – ident: ref9 doi: 10.1049/iet-rpg.2019.0663 – ident: ref34 doi: 10.1109/TPWRS.2017.2747625 |
SSID | ssj0024890 |
Score | 2.5558002 |
Snippet | Networked microgrids that integrate the hydrogen fueling stations (HFSs) with the on-site renewable energy sources (RES), power-to-hydrogen (P2H) facilities,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3672 |
SubjectTerms | Algorithms augmented Benders decomposition Benders decomposition Computing time Decisions Decomposition Distributed generation Electrical loads Electricity electricity-hydrogen coordination Emissions control Energy storage Expenditures Fuel cell vehicles Hydrogen Hydrogen fuels Hydrogen production Hydrogen storage Microgrids Microgrids planning Mixed integer mixed integer second-order conic recourse Optimization Planning Power flow Power system planning Refueling Renewable energy sources Stochastic models Stochastic processes stochastic program Stochastic programming Uncertainty |
Title | Hydrogen-Based Networked Microgrids Planning Through Two-Stage Stochastic Programming With Mixed-Integer Conic Recourse |
URI | https://ieeexplore.ieee.org/document/9646257 https://www.proquest.com/docview/2724732333 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3IoUIq6vORDT1W9OHG8SY6AQCukRZVYVG5RbE8WBGzQkhWPX89Mkt1SilBvPowtR99k_I09D4DvRUFGj5XXkOWTUVgYmfhCcepTWiQ2UU1vwMFpr38enVyYiwX4Oc-FQcQ6-Ay7PKzf8n3ppnxVtpf2IqLr8SIskuPW5Gr9qauX1PcpzAikSY1pXzADle4N98-OyBMMA3JQNWvgX2dQ3VTlH0tcHy_HKzCYbayJKrnuTivbdc9vajb-785X4XPLM8V-oxhrsIDjL7D8qvrgOjz0n_ykJAWSB3SUeXHaRITTaMBReqPJlb8Xs6ZGYtg09BHDh1ISQx2hOKtKd5lznWfxq4nyumXB31fVJa3wiF7ydeMIJ-KQ6-8K9nQ5ZOQrnB8fDQ_7su3DIB2RgUpqrVxq0SBzPTKe2kXovI2JDOTEPkwUWSQehsZbtLFLfK5VFCTEBPPUBxjrDVgal2P8BgLTPKBFreLX3tAS-9E56XIvdE65wIcdUDNkMtcWKedeGTdZ7ayoNGMwMwYza8HswI_5lLumQsdHwusMzlywxaUD2zP4s_Yfvs9C-sBYh1rrzfdnbcGnkJMh6tC-bViqJlPcIYpS2d1aN18A847iQg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErF0lJ86AnhrRPHm-RYqlYLdFeVmoreotiebKu2m2qbVaG_npkku0BBiJsPY8vRNxl_Y88DYLssyeix8hqyfDIKSyMTXypOfUrLxCaq7Q04Gg-GJ9HnU3O6Ah-WuTCI2ASfYZ-HzVu-r9ycr8p20kFEdD1-AA8NJ-O22Vo_K-slzY0KcwJpUmO6N8xApTvZ7vE--YJhQC6qZh387RRq2qr8YYubA-bgGYwWW2vjSi7689r23d29qo3_u_fn8LRjmmK3VY0XsILTl_Dkl_qDa3A7_O5nFamQ_EiHmRfjNiacRiOO05vMzv2NWLQ1Elnb0kdkt5UkjjpBcVxX7qzgSs_iqI3zumLBr-f1Ga3wDb3kC8cJzsQeV-AV7Oty0MgrODnYz_aGsuvEIB3RgVpqrVxq0SCzPTKf2kXovI2JDhTEP0wUWSQmhsZbtLFLfKFVFCTEBYvUBxjrdVidVlN8DQLTIqBFreL33tAS_9EFafMgdE65wIc9UAtkcteVKeduGZd5466oNGcwcwYz78DswfvllOu2Rse_hNcYnKVgh0sPNhfw591ffJOH9IGxDrXWb_4-6x08Gmajw_zw0_jLBjwOOTWiCfTbhNV6Nse3RFhqu9Xo6Q_kj-WK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-Based+Networked+Microgrids+Planning+Through+Two-Stage+Stochastic+Programming+With+Mixed-Integer+Conic+Recourse&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Cao%2C+Xiaoyu&rft.au=Sun%2C+Xunhang&rft.au=Xu%2C+Zhanbo&rft.au=Zeng%2C+Bo&rft.date=2022-10-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=19&rft.issue=4&rft.spage=3672&rft.epage=3685&rft_id=info:doi/10.1109%2FTASE.2021.3130179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2021_3130179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |