Imitation Learning-Based Algorithm for Drone Cinematography System

Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the "best" viewpoint, which requires human effort to summarize and integrate viewpoint selection...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive and developmental systems Vol. 14; no. 2; pp. 403 - 413
Main Authors Dang, Yuanjie, Huang, Chong, Chen, Peng, Liang, Ronghua, Yang, Xin, Cheng, Kwang-Ting
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2379-8920
2379-8939
DOI10.1109/TCDS.2020.3043441

Cover

Loading…
Abstract Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the "best" viewpoint, which requires human effort to summarize and integrate viewpoint selection rules into a visual servo system to control a camera. In this work, we propose an integrated aerial filming system for autonomously capturing cinematic shots of action scenes on the basis of a set of demonstrations given for imitation. Our model, which is built on the basis of the deep deterministic policy gradient, takes a sequence of a subject's skeleton and the camera pose as input and outputs the camera motion with an optimal viewpoint related to the subject. In addition, we design a spatial attention network to selectively focus on the discriminative joints of the skeleton within each frame. Given the demonstrations with human motions, our framework learns to predict the next best viewpoint by imitating the demonstrations for viewing the motion of the subject. Extensive experimental results in simulated and real outdoor environments demonstrate that our method can successfully mimic the viewpoint selection strategy and capture a more accurate viewpoint than state-of-the-art autonomous cinematography methods.
AbstractList Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the “best” viewpoint, which requires human effort to summarize and integrate viewpoint selection rules into a visual servo system to control a camera. In this work, we propose an integrated aerial filming system for autonomously capturing cinematic shots of action scenes on the basis of a set of demonstrations given for imitation. Our model, which is built on the basis of the deep deterministic policy gradient, takes a sequence of a subject’s skeleton and the camera pose as input and outputs the camera motion with an optimal viewpoint related to the subject. In addition, we design a spatial attention network to selectively focus on the discriminative joints of the skeleton within each frame. Given the demonstrations with human motions, our framework learns to predict the next best viewpoint by imitating the demonstrations for viewing the motion of the subject. Extensive experimental results in simulated and real outdoor environments demonstrate that our method can successfully mimic the viewpoint selection strategy and capture a more accurate viewpoint than state-of-the-art autonomous cinematography methods.
Author Dang, Yuanjie
Yang, Xin
Cheng, Kwang-Ting
Liang, Ronghua
Huang, Chong
Chen, Peng
Author_xml – sequence: 1
  givenname: Yuanjie
  orcidid: 0000-0002-8302-1338
  surname: Dang
  fullname: Dang, Yuanjie
  email: dangyj@zjut.edu.cn
  organization: College of Information and Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Chong
  surname: Huang
  fullname: Huang, Chong
  email: chonghuang@umail.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
– sequence: 3
  givenname: Peng
  orcidid: 0000-0001-6122-0574
  surname: Chen
  fullname: Chen, Peng
  email: chenpeng@zjut.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Ronghua
  orcidid: 0000-0003-2077-9608
  surname: Liang
  fullname: Liang, Ronghua
  email: rhliang@zjut.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
– sequence: 5
  givenname: Xin
  orcidid: 0000-0001-6252-1061
  surname: Yang
  fullname: Yang, Xin
  email: xinyang2014@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 6
  givenname: Kwang-Ting
  orcidid: 0000-0002-3885-4912
  surname: Cheng
  fullname: Cheng, Kwang-Ting
  email: timcheng@ust.hk
  organization: School of Engineering, Hong Kong University of Science and Technology, Hong Kong
BookMark eNp9kLtuwjAUhq2KSqWUB6i6ROoc6lt8GSH0goTUAXbLcRwwIjG1zcDbNwjE0KHTOcP_nV_newSDzncWgGcEJwhB-bYu56sJhhhOCKSEUnQHhphwmQtJ5OC2Y_gAxjHuIISIES4oH4LZonVJJ-e7bGl16Fy3yWc62jqb7jc-uLRts8aHbB76yqx0nW118pugD9tTtjrFZNsncN_ofbTj6xyB9cf7uvzKl9-fi3K6zA2WJOUEVwxj1kDDocBEc65pVciCYS1EhURVY2ER1E0hqOS1kVo2EBqDKa2tYWQEXi9nD8H_HG1MauePoesbFWa86B_nDPcpfkmZ4GMMtlHm-l8K2u0VguqsTJ2VqbMydVXWk-gPeQiu1eH0L_NyYZy19paXWAhBOPkFut53yA
CODEN ITCDA4
CitedBy_id crossref_primary_10_1109_TCDS_2024_3397684
Cites_doi 10.1007/978-3-540-29678-2_5019
10.1007/s11263-011-0484-5
10.1109/ICRA.2018.8460703
10.1109/WACV.2015.36
10.1007/s00371-008-0228-x
10.1109/TPAMI.2016.2522437
10.1109/ICRA.2015.7140074
10.1109/TCDS.2017.2651643
10.1002/cav.398
10.1109/IROS40897.2019.8967592
10.1109/CVPR.2019.00437
10.1109/TCDS.2019.2928820
10.1109/CVPR.2016.507
10.1145/3181975
10.1109/LRA.2015.2509024
10.1145/1778765.1778859
10.1145/3072959.3073712
10.1145/1409060.1409068
10.1109/CVPR.2017.173
10.1515/jaiscr-2016-0019
10.1609/aaai.v31i1.11212
10.1016/j.cag.2009.03.003
10.1109/CVPR.2017.143
10.1109/IROS.2018.8594333
10.1145/237170.237259
10.1109/ICRA.2019.8793915
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCDS.2020.3043441
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2379-8939
EndPage 413
ExternalDocumentID 10_1109_TCDS_2020_3043441
9288837
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang
  grantid: RF-C2019001
– fundername: Zhejiang Province Key Research and Development
  grantid: 2019C01007
– fundername: Natural Science Foundation of China
  grantid: U1909203
  funderid: 10.13039/501100001809
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c293t-32b6226f0c70823a77a4b59562a88b18bd28e10af58497dc9a9f00cc244dec63
IEDL.DBID RIE
ISSN 2379-8920
IngestDate Mon Jun 30 10:16:32 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Tue Jul 01 01:08:11 EDT 2025
Wed Aug 27 02:24:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-32b6226f0c70823a77a4b59562a88b18bd28e10af58497dc9a9f00cc244dec63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6252-1061
0000-0001-6122-0574
0000-0003-2077-9608
0000-0002-8302-1338
0000-0002-3885-4912
PQID 2675043762
PQPubID 85513
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TCDS_2020_3043441
proquest_journals_2675043762
crossref_primary_10_1109_TCDS_2020_3043441
ieee_primary_9288837
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive and developmental systems
PublicationTitleAbbrev TCDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Wang (ref11)
ref15
ref14
ref30
ref33
ref10
(ref29) 2019
ref2
ref1
ref17
ref16
(ref34) 2015
ref19
ref18
Silver (ref27)
ref24
ref23
ref26
Kingma (ref32)
ref20
ref22
ref21
ref28
ref8
Merel (ref12) 2017
Abadi (ref31)
ref7
ref9
Lillicrap (ref25)
ref4
ref3
ref6
ref5
References_xml – start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations (ICLR)
  ident: ref25
  article-title: Continuous control with deep reinforcement learning
– ident: ref26
  doi: 10.1007/978-3-540-29678-2_5019
– ident: ref4
  doi: 10.1007/s11263-011-0484-5
– ident: ref16
  doi: 10.1109/ICRA.2018.8460703
– ident: ref21
  doi: 10.1109/WACV.2015.36
– ident: ref5
  doi: 10.1007/s00371-008-0228-x
– start-page: 265
  volume-title: Proc. Oper. Syst. Design Implement. (OSDI)
  ident: ref31
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref6
  doi: 10.1109/TPAMI.2016.2522437
– start-page: 13
  volume-title: Proc. Int. Conf. Learn. Representations (ICLR)
  ident: ref32
  article-title: Adam: A method for stochastic optimization
– ident: ref28
  doi: 10.1109/ICRA.2015.7140074
– volume-title: Learning human behaviors from motion capture by adversarial imitation
  year: 2017
  ident: ref12
– start-page: 5326
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref11
  article-title: Robust imitation of diverse behaviors
– ident: ref14
  doi: 10.1109/TCDS.2017.2651643
– volume-title: DJI
  year: 2015
  ident: ref34
– ident: ref8
  doi: 10.1002/cav.398
– ident: ref20
  doi: 10.1109/IROS40897.2019.8967592
– ident: ref9
  doi: 10.1109/CVPR.2019.00437
– ident: ref15
  doi: 10.1109/TCDS.2019.2928820
– ident: ref22
  doi: 10.1109/CVPR.2016.507
– volume-title: Carnegie-Mellon Mocap Database
  year: 2019
  ident: ref29
– ident: ref18
  doi: 10.1145/3181975
– ident: ref33
  doi: 10.1109/LRA.2015.2509024
– start-page: 387
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref27
  article-title: Deterministic policy gradient algorithms
– ident: ref13
  doi: 10.1145/1778765.1778859
– ident: ref17
  doi: 10.1145/3072959.3073712
– ident: ref3
  doi: 10.1145/1409060.1409068
– ident: ref10
  doi: 10.1109/CVPR.2017.173
– ident: ref7
  doi: 10.1515/jaiscr-2016-0019
– ident: ref24
  doi: 10.1609/aaai.v31i1.11212
– ident: ref2
  doi: 10.1016/j.cag.2009.03.003
– ident: ref30
  doi: 10.1109/CVPR.2017.143
– ident: ref19
  doi: 10.1109/IROS.2018.8594333
– ident: ref1
  doi: 10.1145/237170.237259
– ident: ref23
  doi: 10.1109/ICRA.2019.8793915
SSID ssj0001637847
Score 2.2604773
Snippet Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 403
SubjectTerms Algorithms
Animation
Cameras
Cinematography
Cinematography system
Drones
Encoding
Human motion
imitation filming
Machine learning
Servocontrol
Skeleton
Two dimensional displays
unmanned aerial vehicles
Videography
viewpoint control
Virtual environments
Visualization
Title Imitation Learning-Based Algorithm for Drone Cinematography System
URI https://ieeexplore.ieee.org/document/9288837
https://www.proquest.com/docview/2675043762
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxZeBVEoyANiQKR17DSJx1JABQkWisQWxY8Aog9U0gF-PWfHLeIhxJbBkR2f4_u-8_k7gENppLZFrIOisNEqYWggqLBZ5rLDc82k0DbecX0T9--iq_vO_RKcLO7CGGNc8plp2Ud3lq8namZDZW3BkK_xZBmWkbhVd7U-4ykxT1JXT4xx7DoVbH6IGVLRHvTObpEMMuSoNOJRFH5xQ66uyo_N2HmYizW4no-tSix5bs1K2VLv32Qb_zv4dVj1UJN0q7WxAUtmvAn17hhp9uiNHBGX_Omi6nU4vRx5sW7iFVcfglN0cJp0hw-T6VP5OCIIb8nZdDI2pIfQFJGuV7smler5Fgwuzge9fuDLKwQKfXwZcCZjBF8FVYk9bsuTJI9kB_kSy9NUhqnULDUhzQvEKCLRSuSioFQpBATaqJhvQ22Mfe4ACZWQhnEtWK4iExa5tCiBctMJE8112AA6n-xM-a-xFTCGmaMgVGTWPpm1T-bt04DjxSsvle7GX43rdr4XDf1UN6A5t2jm_8zXjMVW0B63Vbb7-1t7sMLsFQcXaWlCrZzOzD4Cj1IeuBX3AUNg0u0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TyMxEB5xUHANjwuI8HSBrkC3wWvvy2UIoPAIzQWJbrV-LCBIgsKmgF_P2OsEHZwQ3Ra27PXYnm_GM98A7EsjtS1iHZSl9VYJQwNBhY0ylzEvNJNCW39H7yrpXkfnN_HNHPyZ5cIYY1zwmWnZT_eWr0dqYl1lh4KhvcbTH7AQ22TcOlvr3aOS8DRzFcUYx8EzwabPmCEVh_3O8V80BxlaqTTiURT-o4hcZZVP17HTMafL0JvOrg4teWhNKtlSrx-IG787_RVY8mCTtOvdsQpzZvgLGu0hGtqDF_KbuPBP51dvwNHZwNN1E8-5ehscoYrTpP14OxrfV3cDggCXHI9HQ0M6CE4R63q-a1Lznq9B__Sk3-kGvsBCoFDLVwFnMkH4VVKV2ge3Ik2LSMZoMbEiy2SYSc0yE9KiRJQiUq1EIUpKlUJIoI1K-DrMD3HMDSChEtIwrgUrVGTCspAWJ1Bu4jDVXIdNoNPFzpX_G1sD4zF3RggVuZVPbuWTe_k04WDW5alm3viqccOu96yhX-ombE8lmvuz-ZyzxFLa48XKNv_faw8Wu_3eZX55dnWxBT-ZTXhwfpdtmK_GE7ODMKSSu273vQFulNY1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imitation+Learning-Based+Algorithm+for+Drone+Cinematography+System&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Dang%2C+Yuanjie&rft.au=Huang%2C+Chong&rft.au=Chen%2C+Peng&rft.au=Liang%2C+Ronghua&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=14&rft.issue=2&rft.spage=403&rft.epage=413&rft_id=info:doi/10.1109%2FTCDS.2020.3043441&rft.externalDocID=9288837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon