Imitation Learning-Based Algorithm for Drone Cinematography System
Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the "best" viewpoint, which requires human effort to summarize and integrate viewpoint selection...
Saved in:
Published in | IEEE transactions on cognitive and developmental systems Vol. 14; no. 2; pp. 403 - 413 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2379-8920 2379-8939 |
DOI | 10.1109/TCDS.2020.3043441 |
Cover
Loading…
Abstract | Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the "best" viewpoint, which requires human effort to summarize and integrate viewpoint selection rules into a visual servo system to control a camera. In this work, we propose an integrated aerial filming system for autonomously capturing cinematic shots of action scenes on the basis of a set of demonstrations given for imitation. Our model, which is built on the basis of the deep deterministic policy gradient, takes a sequence of a subject's skeleton and the camera pose as input and outputs the camera motion with an optimal viewpoint related to the subject. In addition, we design a spatial attention network to selectively focus on the discriminative joints of the skeleton within each frame. Given the demonstrations with human motions, our framework learns to predict the next best viewpoint by imitating the demonstrations for viewing the motion of the subject. Extensive experimental results in simulated and real outdoor environments demonstrate that our method can successfully mimic the viewpoint selection strategy and capture a more accurate viewpoint than state-of-the-art autonomous cinematography methods. |
---|---|
AbstractList | Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods rely on heuristics for selecting the “best” viewpoint, which requires human effort to summarize and integrate viewpoint selection rules into a visual servo system to control a camera. In this work, we propose an integrated aerial filming system for autonomously capturing cinematic shots of action scenes on the basis of a set of demonstrations given for imitation. Our model, which is built on the basis of the deep deterministic policy gradient, takes a sequence of a subject’s skeleton and the camera pose as input and outputs the camera motion with an optimal viewpoint related to the subject. In addition, we design a spatial attention network to selectively focus on the discriminative joints of the skeleton within each frame. Given the demonstrations with human motions, our framework learns to predict the next best viewpoint by imitating the demonstrations for viewing the motion of the subject. Extensive experimental results in simulated and real outdoor environments demonstrate that our method can successfully mimic the viewpoint selection strategy and capture a more accurate viewpoint than state-of-the-art autonomous cinematography methods. |
Author | Dang, Yuanjie Yang, Xin Cheng, Kwang-Ting Liang, Ronghua Huang, Chong Chen, Peng |
Author_xml | – sequence: 1 givenname: Yuanjie orcidid: 0000-0002-8302-1338 surname: Dang fullname: Dang, Yuanjie email: dangyj@zjut.edu.cn organization: College of Information and Engineering, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Chong surname: Huang fullname: Huang, Chong email: chonghuang@umail.ucsb.edu organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA – sequence: 3 givenname: Peng orcidid: 0000-0001-6122-0574 surname: Chen fullname: Chen, Peng email: chenpeng@zjut.edu.cn organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 4 givenname: Ronghua orcidid: 0000-0003-2077-9608 surname: Liang fullname: Liang, Ronghua email: rhliang@zjut.edu.cn organization: College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China – sequence: 5 givenname: Xin orcidid: 0000-0001-6252-1061 surname: Yang fullname: Yang, Xin email: xinyang2014@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 6 givenname: Kwang-Ting orcidid: 0000-0002-3885-4912 surname: Cheng fullname: Cheng, Kwang-Ting email: timcheng@ust.hk organization: School of Engineering, Hong Kong University of Science and Technology, Hong Kong |
BookMark | eNp9kLtuwjAUhq2KSqWUB6i6ROoc6lt8GSH0goTUAXbLcRwwIjG1zcDbNwjE0KHTOcP_nV_newSDzncWgGcEJwhB-bYu56sJhhhOCKSEUnQHhphwmQtJ5OC2Y_gAxjHuIISIES4oH4LZonVJJ-e7bGl16Fy3yWc62jqb7jc-uLRts8aHbB76yqx0nW118pugD9tTtjrFZNsncN_ofbTj6xyB9cf7uvzKl9-fi3K6zA2WJOUEVwxj1kDDocBEc65pVciCYS1EhURVY2ER1E0hqOS1kVo2EBqDKa2tYWQEXi9nD8H_HG1MauePoesbFWa86B_nDPcpfkmZ4GMMtlHm-l8K2u0VguqsTJ2VqbMydVXWk-gPeQiu1eH0L_NyYZy19paXWAhBOPkFut53yA |
CODEN | ITCDA4 |
CitedBy_id | crossref_primary_10_1109_TCDS_2024_3397684 |
Cites_doi | 10.1007/978-3-540-29678-2_5019 10.1007/s11263-011-0484-5 10.1109/ICRA.2018.8460703 10.1109/WACV.2015.36 10.1007/s00371-008-0228-x 10.1109/TPAMI.2016.2522437 10.1109/ICRA.2015.7140074 10.1109/TCDS.2017.2651643 10.1002/cav.398 10.1109/IROS40897.2019.8967592 10.1109/CVPR.2019.00437 10.1109/TCDS.2019.2928820 10.1109/CVPR.2016.507 10.1145/3181975 10.1109/LRA.2015.2509024 10.1145/1778765.1778859 10.1145/3072959.3073712 10.1145/1409060.1409068 10.1109/CVPR.2017.173 10.1515/jaiscr-2016-0019 10.1609/aaai.v31i1.11212 10.1016/j.cag.2009.03.003 10.1109/CVPR.2017.143 10.1109/IROS.2018.8594333 10.1145/237170.237259 10.1109/ICRA.2019.8793915 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCDS.2020.3043441 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2379-8939 |
EndPage | 413 |
ExternalDocumentID | 10_1109_TCDS_2020_3043441 9288837 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang grantid: RF-C2019001 – fundername: Zhejiang Province Key Research and Development grantid: 2019C01007 – fundername: Natural Science Foundation of China grantid: U1909203 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c293t-32b6226f0c70823a77a4b59562a88b18bd28e10af58497dc9a9f00cc244dec63 |
IEDL.DBID | RIE |
ISSN | 2379-8920 |
IngestDate | Mon Jun 30 10:16:32 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 01:08:11 EDT 2025 Wed Aug 27 02:24:33 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c293t-32b6226f0c70823a77a4b59562a88b18bd28e10af58497dc9a9f00cc244dec63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6252-1061 0000-0001-6122-0574 0000-0003-2077-9608 0000-0002-8302-1338 0000-0002-3885-4912 |
PQID | 2675043762 |
PQPubID | 85513 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TCDS_2020_3043441 proquest_journals_2675043762 crossref_primary_10_1109_TCDS_2020_3043441 ieee_primary_9288837 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive and developmental systems |
PublicationTitleAbbrev | TCDS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Wang (ref11) ref15 ref14 ref30 ref33 ref10 (ref29) 2019 ref2 ref1 ref17 ref16 (ref34) 2015 ref19 ref18 Silver (ref27) ref24 ref23 ref26 Kingma (ref32) ref20 ref22 ref21 ref28 ref8 Merel (ref12) 2017 Abadi (ref31) ref7 ref9 Lillicrap (ref25) ref4 ref3 ref6 ref5 |
References_xml | – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) ident: ref25 article-title: Continuous control with deep reinforcement learning – ident: ref26 doi: 10.1007/978-3-540-29678-2_5019 – ident: ref4 doi: 10.1007/s11263-011-0484-5 – ident: ref16 doi: 10.1109/ICRA.2018.8460703 – ident: ref21 doi: 10.1109/WACV.2015.36 – ident: ref5 doi: 10.1007/s00371-008-0228-x – start-page: 265 volume-title: Proc. Oper. Syst. Design Implement. (OSDI) ident: ref31 article-title: TensorFlow: A system for large-scale machine learning – ident: ref6 doi: 10.1109/TPAMI.2016.2522437 – start-page: 13 volume-title: Proc. Int. Conf. Learn. Representations (ICLR) ident: ref32 article-title: Adam: A method for stochastic optimization – ident: ref28 doi: 10.1109/ICRA.2015.7140074 – volume-title: Learning human behaviors from motion capture by adversarial imitation year: 2017 ident: ref12 – start-page: 5326 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS) ident: ref11 article-title: Robust imitation of diverse behaviors – ident: ref14 doi: 10.1109/TCDS.2017.2651643 – volume-title: DJI year: 2015 ident: ref34 – ident: ref8 doi: 10.1002/cav.398 – ident: ref20 doi: 10.1109/IROS40897.2019.8967592 – ident: ref9 doi: 10.1109/CVPR.2019.00437 – ident: ref15 doi: 10.1109/TCDS.2019.2928820 – ident: ref22 doi: 10.1109/CVPR.2016.507 – volume-title: Carnegie-Mellon Mocap Database year: 2019 ident: ref29 – ident: ref18 doi: 10.1145/3181975 – ident: ref33 doi: 10.1109/LRA.2015.2509024 – start-page: 387 volume-title: Proc. Int. Conf. Mach. Learn. (ICML) ident: ref27 article-title: Deterministic policy gradient algorithms – ident: ref13 doi: 10.1145/1778765.1778859 – ident: ref17 doi: 10.1145/3072959.3073712 – ident: ref3 doi: 10.1145/1409060.1409068 – ident: ref10 doi: 10.1109/CVPR.2017.173 – ident: ref7 doi: 10.1515/jaiscr-2016-0019 – ident: ref24 doi: 10.1609/aaai.v31i1.11212 – ident: ref2 doi: 10.1016/j.cag.2009.03.003 – ident: ref30 doi: 10.1109/CVPR.2017.143 – ident: ref19 doi: 10.1109/IROS.2018.8594333 – ident: ref1 doi: 10.1145/237170.237259 – ident: ref23 doi: 10.1109/ICRA.2019.8793915 |
SSID | ssj0001637847 |
Score | 2.2604773 |
Snippet | Viewpoint selection for capturing human motion is an important task in autonomous aerial videography, animation, and virtual 3-D environments. Existing methods... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 403 |
SubjectTerms | Algorithms Animation Cameras Cinematography Cinematography system Drones Encoding Human motion imitation filming Machine learning Servocontrol Skeleton Two dimensional displays unmanned aerial vehicles Videography viewpoint control Virtual environments Visualization |
Title | Imitation Learning-Based Algorithm for Drone Cinematography System |
URI | https://ieeexplore.ieee.org/document/9288837 https://www.proquest.com/docview/2675043762 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxZeBVEoyANiQKR17DSJx1JABQkWisQWxY8Aog9U0gF-PWfHLeIhxJbBkR2f4_u-8_k7gENppLZFrIOisNEqYWggqLBZ5rLDc82k0DbecX0T9--iq_vO_RKcLO7CGGNc8plp2Ud3lq8namZDZW3BkK_xZBmWkbhVd7U-4ykxT1JXT4xx7DoVbH6IGVLRHvTObpEMMuSoNOJRFH5xQ66uyo_N2HmYizW4no-tSix5bs1K2VLv32Qb_zv4dVj1UJN0q7WxAUtmvAn17hhp9uiNHBGX_Omi6nU4vRx5sW7iFVcfglN0cJp0hw-T6VP5OCIIb8nZdDI2pIfQFJGuV7smler5Fgwuzge9fuDLKwQKfXwZcCZjBF8FVYk9bsuTJI9kB_kSy9NUhqnULDUhzQvEKCLRSuSioFQpBATaqJhvQ22Mfe4ACZWQhnEtWK4iExa5tCiBctMJE8112AA6n-xM-a-xFTCGmaMgVGTWPpm1T-bt04DjxSsvle7GX43rdr4XDf1UN6A5t2jm_8zXjMVW0B63Vbb7-1t7sMLsFQcXaWlCrZzOzD4Cj1IeuBX3AUNg0u0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TyMxEB5xUHANjwuI8HSBrkC3wWvvy2UIoPAIzQWJbrV-LCBIgsKmgF_P2OsEHZwQ3Ra27PXYnm_GM98A7EsjtS1iHZSl9VYJQwNBhY0ylzEvNJNCW39H7yrpXkfnN_HNHPyZ5cIYY1zwmWnZT_eWr0dqYl1lh4KhvcbTH7AQ22TcOlvr3aOS8DRzFcUYx8EzwabPmCEVh_3O8V80BxlaqTTiURT-o4hcZZVP17HTMafL0JvOrg4teWhNKtlSrx-IG787_RVY8mCTtOvdsQpzZvgLGu0hGtqDF_KbuPBP51dvwNHZwNN1E8-5ehscoYrTpP14OxrfV3cDggCXHI9HQ0M6CE4R63q-a1Lznq9B__Sk3-kGvsBCoFDLVwFnMkH4VVKV2ge3Ik2LSMZoMbEiy2SYSc0yE9KiRJQiUq1EIUpKlUJIoI1K-DrMD3HMDSChEtIwrgUrVGTCspAWJ1Bu4jDVXIdNoNPFzpX_G1sD4zF3RggVuZVPbuWTe_k04WDW5alm3viqccOu96yhX-ombE8lmvuz-ZyzxFLa48XKNv_faw8Wu_3eZX55dnWxBT-ZTXhwfpdtmK_GE7ODMKSSu273vQFulNY1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imitation+Learning-Based+Algorithm+for+Drone+Cinematography+System&rft.jtitle=IEEE+transactions+on+cognitive+and+developmental+systems&rft.au=Dang%2C+Yuanjie&rft.au=Huang%2C+Chong&rft.au=Chen%2C+Peng&rft.au=Liang%2C+Ronghua&rft.date=2022-06-01&rft.pub=IEEE&rft.issn=2379-8920&rft.volume=14&rft.issue=2&rft.spage=403&rft.epage=413&rft_id=info:doi/10.1109%2FTCDS.2020.3043441&rft.externalDocID=9288837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8920&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8920&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8920&client=summon |