Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges

With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more complex, therein having, e.g., more degrees of design freedom, integration and fabrication constraints and design objectives. While full-wave electromagnetic simulation can be very accurate...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 17; no. 4; pp. 152 - 164
Main Authors Wu, Qi, Cao, Yi, Wang, Haiming, Hong, Wei
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.04.2020
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China Purple Mountain Laboratories, Nanjing 211111, China
Subjects
Online AccessGet full text
ISSN1673-5447
DOI10.23919/JCC.2020.04.014

Cover

Loading…
Abstract With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more complex, therein having, e.g., more degrees of design freedom, integration and fabrication constraints and design objectives. While full-wave electromagnetic simulation can be very accurate and therefore essential to the design process, it is also very time consuming, which leads to many challenges for antenna design, optimization and sensitivity analysis (SA). Recently, machine-learning-assisted optimization (MLAO) has been widely introduced to accelerate the design process of antennas and arrays. Machine learning (ML) methods, including Gaussian process regression, support vector machine (SVM) and artificial neural networks (ANNs), have been applied to build surrogate models of antennas to achieve fast response prediction. With the help of these ML methods, various MLAO algorithms have been proposed for different applications. A comprehensive survey of recent advances in ML methods for antenna modeling is first presented. Then, algorithms for ML-assisted antenna design, including optimization and SA, are reviewed. Finally, some challenges facing future MLAO for antenna design are discussed.
AbstractList With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more complex, therein having, e.g., more degrees of design freedom, integration and fabrication constraints and design objectives. While full-wave electromagnetic simulation can be very accurate and therefore essential to the design process, it is also very time consuming, which leads to many challenges for antenna design, optimization and sensitivity analysis (SA). Recently, machine-learning-assisted optimization (MLAO) has been widely introduced to accelerate the design process of antennas and arrays. Machine learning (ML) methods, including Gaussian process regression, support vector machine (SVM) and artificial neural networks (ANNs), have been applied to build surrogate models of antennas to achieve fast response prediction. With the help of these ML methods, various MLAO algorithms have been proposed for different applications. A comprehensive survey of recent advances in ML methods for antenna modeling is first presented. Then, algorithms for ML-assisted antenna design, including optimization and SA, are reviewed. Finally, some challenges facing future MLAO for antenna design are discussed.
With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more com-plex, therein having, e.g., more degrees of design freedom, integration and fabrication constraints and design objectives. While full-wave electromagnetic simulation can be very accurate and therefore essential to the design process, it is also very time consuming, which leads to many challenges for antenna design, optimization and sensitivity analysis (SA). Recently, machine-learning-assisted optimiza-tion (MLAO) has been widely introduced to accelerate the design process of antennas and arrays. Machine learning (ML) methods, in-cluding Gaussian process regression, support vector machine (SVM) and artificial neural networks (ANNs), have been applied to build surrogate models of antennas to achieve fast response prediction. With the help of these ML methods, various MLAO algorithms have been proposed for different applications. A comprehensive survey of recent advances in ML methods for antenna modeling is first presented. Then, algorithms for ML-assisted antenna design, including optimization and SA, are reviewed. Finally, some challenges facing future MLAO for antenna design are discussed.
Author Wu, Qi
Hong, Wei
Wang, Haiming
Cao, Yi
AuthorAffiliation State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China Purple Mountain Laboratories, Nanjing 211111, China
AuthorAffiliation_xml – name: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China Purple Mountain Laboratories, Nanjing 211111, China
Author_xml – sequence: 1
  givenname: Qi
  surname: Wu
  fullname: Wu, Qi
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China; Purple Mountain Laboratories, Nanjing 211111, China
– sequence: 2
  givenname: Yi
  surname: Cao
  fullname: Cao, Yi
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China; Purple Mountain Laboratories, Nanjing 211111, China
– sequence: 3
  givenname: Haiming
  surname: Wang
  fullname: Wang, Haiming
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China; Purple Mountain Laboratories, Nanjing 211111, China
– sequence: 4
  givenname: Wei
  surname: Hong
  fullname: Hong, Wei
  organization: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China; Purple Mountain Laboratories, Nanjing 211111, China
BookMark eNp9kL1PwzAQxT0UiVK6I7FkYUzwV1ybDUV8qqgLzJYT26lL6kSxK6B_PWmDGBg46XTS0_vd6d4ZmPjWGwAuEMwwEUhcPxdFhiGGGaQZRHQCpogtSJpTujgF8xA2cCjOGGF4Ct5fVLV23qSNUb13vk5VCC5Eo5O2i27r9iq61ifK68TFkKiua1w1arEd5Gi8V4k2wdU-3CSrrmv7uPMuOhOOVLVWTWN8bcI5OLGqCWb-M2fg7f7utXhMl6uHp-J2mVZYkJgSzAnSCjFM-MKWJtfYKooYgRXDnGqbQyhwSfJSEG6Nzq0eGsOyooIzIsgMXI17P5S3ytdy0-56P1yU-zp-HqKBdAhm8LHRV_VtCL2xsnLx-FrslWskgvKYqBwSlQdMQipHEP4Bu95tVf_1H3I5Is4Y82sXkAvEc_INBHqGhw
CODEN CCHOBE
CitedBy_id crossref_primary_10_3390_mi14061153
crossref_primary_10_3390_s22072688
crossref_primary_10_1007_s11277_024_11359_x
crossref_primary_10_1016_j_matpr_2022_02_200
crossref_primary_10_32604_cmc_2022_027653
crossref_primary_10_1016_j_measurement_2024_115719
crossref_primary_10_1109_OJAP_2024_3412609
crossref_primary_10_3390_app122010505
crossref_primary_10_3390_app11041627
crossref_primary_10_1109_TAP_2022_3153080
crossref_primary_10_1515_nanoph_2024_0032
crossref_primary_10_1109_LAWP_2024_3514156
crossref_primary_10_1109_JMMCT_2022_3180550
crossref_primary_10_1002_dac_70028
crossref_primary_10_1017_S1759078723001009
crossref_primary_10_2298_FUEE2301031R
crossref_primary_10_1016_j_engappai_2024_109381
crossref_primary_10_1016_j_heliyon_2023_e19548
crossref_primary_10_1007_s13369_023_07830_9
crossref_primary_10_1109_ACCESS_2023_3317371
crossref_primary_10_1109_TAP_2022_3153688
crossref_primary_10_1109_OJAP_2024_3385675
crossref_primary_10_1109_TAP_2021_3069491
crossref_primary_10_1038_s41598_025_90103_2
crossref_primary_10_1109_TAP_2024_3384758
crossref_primary_10_1109_ACCESS_2022_3199656
crossref_primary_10_1016_j_tws_2024_112212
crossref_primary_10_1016_j_nancom_2024_100562
crossref_primary_10_1016_j_aeue_2023_154699
crossref_primary_10_1016_j_aeue_2024_155589
crossref_primary_10_1038_s41598_022_12011_z
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2020.04.014
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 164
ExternalDocumentID zgtx202004014
10_23919_JCC_2020_04_014
9089185
Genre orig-research
GrantInformation_xml – fundername: The authors would like to thank the editors and the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this article. This work was supported in part by the Na-tional Key R&D Program of China under grant 2018YFB1801101, the National Natural Science Foundation of China under grants 61671145 and 61960206006, and the Key R&D Program of Jiangsu Province of China under grant BE2018121
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
RIG
2B.
4A8
93N
PSX
ID FETCH-LOGICAL-c293t-32831da162387fbe5d2fa41630c6284df50092b35b938fed5fdd5f20bc4986393
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:25 EDT 2025
Sun Jul 27 03:07:10 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Wed Aug 27 02:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords surro-gate models
Antenna designs
optimization
sensitivity analysis
machine learn-ing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c293t-32831da162387fbe5d2fa41630c6284df50092b35b938fed5fdd5f20bc4986393
PageCount 13
ParticipantIDs crossref_citationtrail_10_23919_JCC_2020_04_014
ieee_primary_9089185
wanfang_journals_zgtx202004014
crossref_primary_10_23919_JCC_2020_04_014
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2020
Publisher China Institute of Communications
State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China Purple Mountain Laboratories, Nanjing 211111, China
Publisher_xml – name: China Institute of Communications
– name: State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 211111, China Purple Mountain Laboratories, Nanjing 211111, China
SSID ssj0000866362
Score 2.3729868
Snippet With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more complex, therein having, e.g., more degrees of...
With the rapid development of modern wireless communications and radar, antennas and arrays are becoming more com-plex, therein having, e.g., more degrees of...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 152
SubjectTerms Antenna arrays
Antenna designs
Computational modeling
machine learning
Optimization
Predictive models
sensitivity analysis
Support vector machines
surrogate models
Training
Title Machine-learning-assisted optimization and its application to antenna designs: Opportunities and challenges
URI https://ieeexplore.ieee.org/document/9089185
https://d.wanfangdata.com.cn/periodical/zgtx202004014
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFH80uayXdm1WmnYNOvQymBLLkh17txEWSiHdZYXejD5DyaaU2oHSv75PshPaMsYOBh_0QPCT3vs9vS-AS8ZdkZnUUudkToVIOC1YZmgiubBOohOiQr3z4ia_uhXXd9ndHnzd1cJYa2PymR2H3xjLN2u9CU9lkxCjQvvSgx46bm2t1u49Bal5zuP8UJZPQ7xfTNuoZMpLVk6uZzN0BtMk9jVl4o0VimNVYtGOd9IvX9mX-SEstjtr00pW402jxvr5XdPG_936RzjoiCb53p6MI9iz_hg-bOuQ6wGsFjGP0tJucMSSIo8OoBuyRj3ypyvQJNIbct_U5FWomzRrEhDxXhITU0Dqb-TnQ6DyGx9btEYpvR3UUn-C2_mPX7Mr2o1eoBrtf0M5sg5mJENyVEydsgink4G7JTpHg2ZcFpo1KZ6pkhfOmswZ_NJEaVEWSHr4CfT92ttTIEpLVAqGF9pOhbG5cpmSXEuRpYlhrhzCZAtFpbu-5GE8xu8K_ZMIXoXgVQG8KhEVgjeELzuJh7Ynxz_WDgIYu3UdDkMYdWhX3Z2tq-dl8xQkUa0xcfZ3uXPYD0va1J3P0G8eN_YCWUmjRvE4vgA-kt-2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcigXvgpqKBQfuCDhZL22N7vcUEQVSlMurdSb5c8IlToVu5FQf33H3k1UEEIcVtqDR7L0bM-zZ94MwDvGQy1d6WkIuqJCFJzWTDpaaC580HgJMUnvvDir5hfi5FJe7sCHrRbGe5-Tz_w4_eZYvlvZdXoqm6QYFfqXB_BQJjFur9bavqggOa947iDKqmmK-ItpH5csecOayclshtfBssiVTZn4zQ_lxipZthODjst7Hub4CSw2c-sTS67G686M7e0fZRv_d_JP4fFANcmnfm08gx0fn8PeRonc7sPVImdSejq0jlhSZNIJdkdWeJJcDxJNoqMj37uW3At2k25FEiYxauJyEkj7kXy7SWR-HXOR1mxlN61a2hdwcfz5fDanQ_MFapEBdJQj72BOM6RH9TQYj4AGndhbYSt0aS7IVK7JcGkaXgfvZHD4lYWxoqmR9vCXsBtX0R8AMVbjseB4bf1UOF-ZII3mVgtZFo6FZgSTDRTKDpXJU4OMHwpvKBk8heCpBJ4qhELwRvB-a3HTV-X4x9j9BMZ23IDDCI4GtNWwa1t1u-x-JUs82Jh49Xe7t7A3P1-cqtMvZ18P4VEa3ifyvIbd7ufav0GO0pmjvDTvAA4n4v4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Assisted+Optimization+and+Its+Application+to+Antenna+Designs%3A+Opportunities+and+Challenges&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%80%9A%E4%BF%A1%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Qi+Wu&rft.au=Yi+Cao&rft.au=Haiming+Wang&rft.au=Wei+Hong&rft.date=2020-04-01&rft.pub=State+Key+Laboratory+of+Millimeter+Waves%2C+Southeast+University%2C+Nanjing+211111%2C+China+Purple+Mountain+Laboratories%2C+Nanjing+211111%2C+China&rft.issn=1673-5447&rft.volume=17&rft.issue=4&rft.spage=152&rft.epage=164&rft_id=info:doi/10.23919%2FJCC.2020.04.014&rft.externalDocID=zgtx202004014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg